
Copyright c© 2008 ICCES ICCES, vol.7, no.1, pp.43-49

A Linearly Constrained Least-Squares Problem in
Electronic Structure Computations

Peng Ni1, Homer Walker1

Summary
One of the fundamental problems in electronic structure calculations is to deter-

mine the electron density associated with the minimum total energy of a molecular
or bulk system. The total energy minimization problem is often formulated as a
nonlinear eigenvalue problem. The most widely used algorithm for solving this
type of problem is the self-consistent field (SCF) iteration accelerated by Direct
Inversion on the Iterative Subspace (SCF-DIIS), in which a linearly constrained
least-squares problem is embedded. We will examine and compare the numerical
stability of three different ways to solve this least-squares problem.

Introduction
In electronic structure computations, we are involved in solving nonlinear eigen-

value problems (see details in [5]). These have the discretized form

H(X)X = XΛk, X ′X = Ik,

where the columns of X ∈ R
n×k (k < n) are approximate electron wave functions,

H(X) ∈ R
n×n is the discrete Hamiltonian, Λ ∈ R

k×k is a diagonal matrix with the
k smallest eigenvalues of H(X) on the diagonal, and Ik ∈ R

k×k is the identity ma-
trix. One of the most successful approaches to numerically solving this nonlinear
eigenvalue problem is the SCF-DIIS method [5].

A linearly constrained least-squares problem is embedded in the SCF-DIIS
method:

min
α

‖Dα‖ s.t.
k

∑
i=1

αi = 1, (1)

where D ∈ R
n×k, α = (α1, . . . ,αk)T ∈ R

k×1 and ‖ · ‖ is the Euclidean norm. The
matrix D is initially a single vector (k = 1) and varies from one SCF-DIIS iteration
to the next (with k changing accordingly) by adding a column on the right to incor-
porate new information and, if necessary, also dropping one or more columns on
the left, either to keep k from exceeding a practical bound or to keep D acceptably
well-conditioned.

There are several approaches to solving the least-squares problem. In this re-
port, we outline and compare three of these: (1) the Lagrange-multiplier method;
(2) a new, problem-specific implementation of the null-space method; and (3) an

1Worcester Polytechnic Institute, Worcester, MA 01609 USA.

44 Copyright c© 2008 ICCES ICCES, vol.7, no.1, pp.43-49

improved implementation of a method of elimination used previously for this prob-
lem [3]. The Lagrange-multiplier method is a commonly used technique for con-
strained optimization (see, e.g., [4]). The null-space method and the method of
elimination are general approaches to solving linearly constrained least-squares
problems (see, e.g., [1]); in the present context, each of these reduces the con-
strained problem on R

k to an unconstrained problem on R
k−1.

In the following, we describe these methods and their properties, noting in par-
ticular the conditioning of the linear systems that must be solved and the number
of floating-point operations (or flops) that are needed for implementation in the
SCF-DIIS context. We conclude with an illustrative case study in a particular ap-
plication, followed by a summary discussion. Throughout the following, we define
the condition number of a matrix M by κ(M) ≡ max‖v‖=1‖Mv‖/min‖v‖=1‖Mv‖.
This serves as a fundamental indicator of the accuracy that can be obtained in a
numerical solution of a linear system or least-squares problem, with more accuracy
resulting with smaller condition numbers (see, e.g., [2]).

Methods
The Lagrange-multiplier method. In this method (see general description in

[1]), we set

Φ(α ,λ)≡ 1
2
|Dα |2−λ (∑αi −1) =

1
2

αT DT Dα −λ (∑αi −1).

In order to minimize Φ(α ,λ), we set the gradient to zero, and this yields:(
DT D −�1
−�1T 0

)(
α
λ

)
=

(
�0
−1

)
(2)

where�1 = (1, . . .,1)T ∈R
k×1,�0 = (0, . . .,0)T ∈R

k×1. The coefficient matrix of (2)
may be ill-conditioned relative to D because of the term DT D, which has condition
number κ(DT D) = κ(D)2.

Obtaining α directly from (2) requires O(nk2) flops to form DT D and O(k3)
flops to solve (2). However, this cost can be reduced in the SCF-DIIS context, as
follows: One easily obtains from (2) that α = (DT D)−1�1/�1T (DT D)−1�1; thus one
needs only to solve a system with coefficient matrix DT D to obtain α . Suppose we
have the QR decomposition D = QR, where Q∈R

n×k is orthogonal, i.e., QT Q = Ik,
and R ∈ R

k×k is upper-triangular. Then DT D = RT QT QR = RT R, and α can be
obtained by solving triangular systems with RT and R. Since D is obtained from its
predecessor at the previous iteration by adding a new final column and, if necessary,
deleting one or more initial columns, one can update the QR decomposition from
the previous iteration in O(nk) flops (see below). Thus at each iteration (other than
the first one), one can update the QR decomposition at a cost of O(nk) flops and

A Linearly Constrained Least-Squares Problem 45

obtain α by solving triangular systems with RT and R at an additional cost of O(k2)
flops.

We sketch the steps of the updating, referring the reader to [2] for full details.
Suppose that, at some iteration, we have a predecessor matrix D and decomposition
D = QR from the previous iteration. Then the updating proceeds as follows:

• When adding a new final column to D, we apply the Gram–Schmidt pro-
cess to orthogonalize the new final column against the columns of Q. The
resulting vector and the orthogonalization coefficients then become new last
columns of Q and R, respectively.

• When deleting the first column of D, we also delete the first column of R, so
that we still have D = QR. Now R is upper-Hessenberg, and we left-multiply
R by Givens rotations (see details in §5.1.8 of [2]) to restore R to triangular
form. We then right-multiply Q by the transposes of the rotations in reverse
order to obtain the final Q.

The null-space method. The basic idea of the general method, as described
in [1], is to decompose the vector we want into the sum of a vector that satisfies the
constraint and another vector in the null space of the constraint matrix. Thus the
constrained problem becomes one of solving for the vector in the null space. By
choosing a basis of the null space, one can then reduce the problem to an uncon-
strained, lower-dimensional problem of finding a minimizing linear combination of
basis vectors.

For the problem (1), we introduce a particular implementation of the null-space
method that avoids the ill-conditioning of the previous approach and has other nu-
merical advantages. Denote v = (0, . . .,0,1)T ∈R

k×1 and set�1 = (1, . . .,1)T ∈R
k×1

as before. Write α = v + β , where β is in the null space of�1T , i.e., �1T β = 0. If
V ∈ R

k×(k−1) is full-rank and such that�1TV = 0, then the columns of V constitute a
basis of the null-space of�1T , and we can write β = V γ , where γ ∈ R

(k−1)×1. Then
the minimization problem becomes

min
�1T α=1

‖Dα‖= min
γ∈Rk−1

‖D(v+Vγ)‖= min
γ∈Rk−1

‖dk +DV γ‖, (3)

where dk = Dv. Note that, with of our choice of v, dk is just the last column of D
and thus is available at no cost.

46 Copyright c© 2008 ICCES ICCES, vol.7, no.1, pp.43-49

We choose V so that V = (v1, . . .,vk−1), where

v j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1/
√

j(j +1)
...

−1/
√

j(j +1)

√
j/(j +1)

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

}
j components

j = 1, . . . ,k−1. (4)

It is easily verified that�1TV = 0 and V is full-rank; moreover, V TV = Ik−1.

The normal equation of the least-squares problem (3) is

(DV)T (DV)γ = −(DV)T dk. (5)

This has condition number κ((DV)T (DV)) = κ(DV)2. One can obtain a better-
conditioned system with a QR decomposition DV = QR, where as above Q ∈
R

n×(k−1) is orthogonal and R ∈ R
(k−1)×(k−1) is upper-triangular. Then (5) becomes

(QR)T(QR)γ = −(QR)T dk ⇐⇒ Rγ = −QT dk.

Thus, we can obtain γ and subsequently α = v +V γ by solving a linear system
with condition number κ(R) = κ(QR) = κ(DV) =

√
κ(DV)2, which is typically

much smaller than that of (5). Since V TV = 1, we also have the bound κ(DV) ≤
κ(D)κ(V) = κ(D).

As in the previous method, one can at each SCF-DIIS iteration obtain the QR
decomposition of DV in O(nk) flops by updating a QR decomposition from the
previous iteration. In this case, we store Q0 and R0 such that D = Q0R0 in the
previous iteration. When D is modified at the current iteration by adding or drop-
ping columns, we update Q0 and R0 in O(nk) flops as in the previous method to
obtain D = Q0R0 for the modified D. Noting that R0V is upper-Hessenberg since
V is upper-Hessenberg, we then apply Givens rotations to R0V and to Q0 as in the
previous method to obtain DV = QR in O(nk) flops.

The method of elimination. The general approach of the method, as described
in [1], is to use the constraint to express some of the variables in terms of others in
order to reduce the constrained least-squares problem to an unconstrained problem
in fewer variables. The specific method considered here comes from [3]. Writing
D = (d1, . . . ,dk), we introduce new variables ᾱ = (ᾱ1, . . ., ᾱk−1)T such that

Dα =
k

∑
i=1

αidi = ᾱ1(d2−d1)+ ᾱ2(d3−d2)+ · · ·+ ᾱk−1(dk−dk−1)+dk = D̄ᾱ +dk,

A Linearly Constrained Least-Squares Problem 47

where D̄ = DW and

W =

⎛
⎜⎜⎜⎜⎜⎝

−1
1 −1

.
1 −1

1

⎞
⎟⎟⎟⎟⎟⎠ . (6)

Then the minimization problem becomes an unconstrained one:

min
ᾱ∈Rk−1

‖D̄ᾱ +dk‖ (7)

Once this has been solved for ᾱ , one can calculate α by α = W ᾱ +(0, . . . ,0,1)T .

One possibility for solving (7) is to solve the normal equation D̄T D̄ᾱ =−D̄T dk

for ᾱ. This approach is suggested in §4.2 of [3]. However, this normal equa-
tion involves κ(D̄T D̄) = κ(D̄)2. As in the null-space method, we can improve the
condition number with QR decomposition, this time of D̄, i.e., D̄ = QR, where
Q ∈ R

n×(k−1) is orthogonal and R ∈ R
(k−1)×(k−1) is upper-triangular. Then

(QR)T(QR)ᾱ = −(QR)T dk ⇐⇒ Rᾱ = −QT dk.

Thus one can obtain ᾱ by solving a linear system with R, which has condition num-
ber κ(R) = κ(QR) = κ(D̄) =

√
κ(D̄)2. We also have the bound κ(D̄) = κ(DW)≤

κ(D)κ(W), and one can show numerically that κ(W)≈ 2k/π for all but the small-
est values of k.

Again, we can avoid doing a direct QR decomposition of D̄ at every iteration
by making use of the upper-Hessenberg property of W. Specifically, we store Q0

and R0 such that D = Q0R0 and update them at each iteration as in the null-space
method, with the upper-Hessenberg W replacing the upper-Hessenberg V .

Comparison of the three methods: a case study
We performed numerical experiments with these methods in SCF-DIIS itera-

tions using data for various test materials. Our main interest was in observing the
maximum condition numbers encountered by the methods with varying bounds on
the maximum allowable value of k. Table 1 shows typical results, which were ob-
tained in the case of a water molecule. In the table, the first column indicates the
maximum allowable k-value (denoted kmax), and second through fourth columns
indicate the maximum condition numbers observed during the iterations.

Conclusion
We have outlined three methods for solving the linearly constrained least-

squares problem (1) and have discussed their relative merits in the context of the
SCF-DIIS method. By updating QR decompositions, each of the three can be im-
plemented in SCF-DIIS iterations at a cost of O(nk)+ O(k2) flops per iteration.

48 Copyright c© 2008 ICCES ICCES, vol.7, no.1, pp.43-49

Table 1: Maximum Observed Condition Numbers
kmax Lagrange Multipliers Null-Space Method Method of Elimination

1 1.000e+000 1.000e+000 1.000e+000
2 3.377e+002 1.000e+000 1.000e+000
3 6.096e+004 3.965e+001 3.750e+001
4 9.640e+005 1.725e+002 1.386e+002
5 4.467e+007 1.489e+003 1.015e+003
6 1.839e+010 2.028e+004 1.546e+004
7 7.703e+012 3.861e+005 2.795e+005
8 1.599e+014 8.838e+005 5.123e+005

However, the null-space method and the method of elimination are somewhat more
expensive than the Lagrange-multiplier method, since each requires an additional
update costing O(nk)+O(k2) flops. Whether this additional expense is significant
seems likely to depend on the overall cost of implementing SCF-DIIS in a particular
application.

The three methods result in different linear systems that must be solved. The
condition numbers of these systems, which govern the accuracy with which they
can be solved numerically, are as follows: For the Lagrange-multiplier method,
the condition number is κ(D)2, which is likely to be very large relative to κ(D).
For the null-space method, the condition number is κ(DV), where the columns of
V are defined by (4). Since V is orthogonal, we have κ(DV) ≤ κ(D). For the
method of elimination, the condition number is κ(DW), where W is defined by (6).
With the numerically observed approximation κ(W) ≈ 2k/π , we have the bound
κ(DW)≤ κ(D)κ(W) ≈ (2k/π)κ(D).

These observations clearly indicate that the Lagrange-multiplier method is likely
to encounter much worse condition numbers than the other two methods, and this is
borne out in the case study included above. In that study, the method of elimination
exhibits very slightly smaller condition numbers than the null-space method, but the
difference seems unlikely to be significant. The condition numbers for these two
methods are, however, significantly smaller than the square roots of the correspond-
ing condition numbers for the Lagrange-multiplier method, i.e., the corresponding
values of κ(D)2. This observation suggests that the bounds κ(DV) ≤ κ(D) and
κ(DW)≤ κ(D)κ(W) ≈ (2k/π)κ(D) are both somewhat pessimistic.

Acknowledgement
Advice and guidance from Dr. Chao Yang from Lawrence Berkeley National

Laboratory are happily acknowledged.

References

1. Björck, Å. (1996): Numerical methods for least squares problems, SIAM,

A Linearly Constrained Least-Squares Problem 49

Philadelpha.

2. Golub, G. H., Van Loan, C. F. (1996): Matrix Computations, third edition,
The Johns Hopkins University Press, Baltimore.

3. Kresse, G., Furthmuller, J. (1996): “Efficiency of ab-initio total energy cal-
culations for metals and semiconductors using a plane-wave basis set”, Com-
putational Materials Science 6, pp. 15-50.

4. Nocedal, J., and Wright, S. J. (1999), Numerical Optimization, Springer–
Verlag, New York.

5. Yang, C., Meza, J. C., and Wang, L. (2007): “A trust region direct con-
strained minimization algorithm for the Kohn-Sham equation”, SIAM J. Sci.
Comput. Vol. 29, No. 5, pp. 1854-1875.

