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Nonlinear Vibration Analysis of a Fluid-Loaded Plate in
Magnetic Field
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Summary
In the present study, we perform the non-linear vibration analysis of an elastic

plate subjected to weak fluid loading in an inclined magnetic field. The structural
nonlinearity, fluid nonlinearity, and the effects of magnetic field are all incorporated
in the formulations to derive the governing equation of the plate. The method
of multiple scales is adopted to determine the eigenvalues and mode shapes of
the linear vibration, and then the amplitude of the nonlinear vibration response of
the plate is calculated. Based on the assumptions of ordering and formulations
of multiple scales, it can be concluded that the non-linear dynamics in weak fluid
loading conditions is totally dominated and controlled only by the structural non-
linearity and linear effect of the magnetic field. Both thick and thin plates are
investigated; the contributions due to the structural nonlinearity and acoustic linear
radiation damping are of the same order for a rather thick plate. For a thin plate, the
structural nonlinearity completely controls the behavior of the plate, which implies
that in this case the effect of fluid loading is considerably negligible. In general, it
can be concluded that both the effects of magnetic field and structural nonlinearity
play important roles only on the first few modes of the plate.

Introduction
Recently the nonlinear dynamics of a magneto-elastic plate under fluid loading

has drawn many researchers’ attention both in classical technical applications (for
example, vibrations of naval structures in fluids) and in advanced applications (for
example, vibrations of magneto-electrically driven micro-electromechanical sys-
tems). In addition to the practical importance, the nonlinear vibration analysis of
a magneto-elastic plate in fluid is of fundamental interest in the theory of nonlin-
ear dynamical systems. Some researchers [1-3] have already tackled the problem
of nonlinear vibrations of acoustically loaded elastic structures. The purpose of
their investigations was to search for the possibility of energy exchange between
vibrations at different frequencies and different modes that are uncoupled in a lin-
ear theory. Dowell [1] demonstrated that these interaction effects are generated by
structural nonlinearities, while an acoustic part of the problem may be considered
as a linear one in weak fluid excitation. Furthermore, it was assumed that reso-
nant frequencies of an elastic structure are not influenced by the added mass of a
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surrounding acoustic medium. Abrahams [2] and Engineer and Abrahams [3] per-
formed the analysis of non-linear vibrations of a baffled plate and a cylindrical shell
in several excitation states by using the theory of non-linear structural-acoustic cou-
pling. Recently, Sorokin [4] has suggested a model of heavy loading of a non-linear
elastic structure by a dense and weakly compressible fluid, and he has investigated
several non-linear effects produced by the fluid’s non-linearity. However, some-
times the structures are subjected to the effects of a magnetic field, therefore it is
necessary to reformulate the nonlinear vibration analysis of a fluid plate subjected
to the effects of a magnetic field. The following researchers made significant con-
tributions in the vibration analysis of structures in a magnetic field. Shin, Wu and
Chen [5] have studied the transient vibrations of a simply supported beam with ax-
ial loads and transverse magnetic fields. Recently Liu and Chang [6] performed
the vibration analysis of a magneto-elastic beam with general boundary conditions
subjected to axial load. Hasanyan et al. [7] used the method of multiple scales to
investigate the nonlinear vibration and instability of perfectly conductive plates in
an inclined magnetic field. The purpose of the present study is to adopt the non-
linear structural-acoustic coupling formulation to the case of weak fluid loading of
a structure subjected to an inclined magnetic field. Weak excitation conditions are
taken into account with calculated resonant frequencies of linear vibrations and the
effects of the fluid, structural nonlinearities, and magnetic field are compared and
discussed.

Formulation of Problem
Consider an isotropic fluid-loaded plate, located in an external stationary in-

clined magnetic field B(B01,0,B03). The governing equation of motion of the plate
can be expressed as follows: (Dowell [1] and Hasanyan et al. [7])
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Here E, ρp, ν and h are Young’s modulus, density, the Poisson ratio, and thick-
ness of the plate, respectively, and w is the lateral displacement, f is a driving load,
p is a contact acoustic pressure and k is the wave number. The third and fourth
terms of equation (1) are the linear and nonlinear effects due to the inclined mag-
netic field. The fifth term of equation (1) represents the nonlinear stretching effect
due to the immobile edges of the plate in the axial direction. The boundary condi-
tions are imposed at x = 0 and L, L being the length of a plate. The purpose of the
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present study is to thoroughly perform the nonlinear vibration analysis of a plate
under weak fluid loading in an inclined magnetic field.

The velocity potential function Φ can be formulated by a linear wave equation
as follows:
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Here c f is the velocity of sound in a fluid.

The above equation is assumed to be valid in an acoustic domain with the
pressure defined by the Bernoulli relation in the following expression:
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In addition, it is definitely essential to present the continuity condition to adopt
the full Bernoulli relation for the acoustic pressure on the structure; that is, the
following equation is presented to consider the deformation of the plate [6]:
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Equations (1-4) constitute a non-linear formulation of the problem of dynamics for
a fluid-loaded plate in a magnetic field. In the present study, the method of multiple
scales to the time variable is applied to investigate the non-linear fluid-structure
interaction in a magnetic field.

Numerical Results
For simplicity, the boundary conditions of the plate are assumed as simply

supported at both ends, and the following parameter values are adopted:

L = 1.0m, h = 0.01m, ρp = 0.04Kg/m, ρ f /ρp = 0.128,

c f /cp = 0.308, ν = 0.3, R = D2/D0 = 8.0/m2, S = D3/D0 = 1.0/m2

In order to produce a very large amplitude of displacement of a rather thick
plate, first we choose h/L=0.1 and f0/E = 0.20×10−3, and we denote A = r

L as
a normalized amplitude. For simplicity, we assume that the driving load is dis-
tributed in the kth mode shape, i.e., F(x) = Wk(x). Without the effect of magnetic
field (R=0), the first resonant eigenvalue is computed as λ1 = 2.501, and the cor-
responding first natural frequency is ω01 = 29.93 rad/sec; while if we consider
the effect of magnetic field (R=8), the first resonant eigenvalue is calculated as
λ1 = 1.602, and the corresponding first natural frequency is ω01 = 12.28 rad/sec.
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Figure 1: Frequency response near the
first natural frequency of plate with
h/L=0.1 and R=0.
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Figure 2: Frequency response near the
first natural frequency of plate with
h/L=0.1 and R=8.
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Figure 3: Frequency response near the
first natural frequency of plate with
h/L=0.01 and R=0.
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Figure 4: Frequency response near the
first natural frequency of plate with
h/L=0.01 and R=8.

In Figure 1, the normalized amplitude A is presented with respect to the driving
frequency of the driving load without the effect of magnetic field (R=0), as seen
in the figure, the amplitude based on the linear theory is larger than that of the
nonlinear theory, which is fairly reasonable. In Figure 2, with the presence of the
magnetic field (R=8) the amplitude from the linear theory is much larger than that
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of the same case without the magnetic field as presented in Figure 1; furthermore,
the amplitude of the nonlinear theory is much less than that of the linear theory.
It can be inferred that the effect of magnetic field has a significant impact on the
amplitude of the plate, especially when the driving frequency of the excitation load
is near the first natural frequency of the plate. It can also be concluded from Figure
1 that in the case of a thick plate the contributions due to the structural nonlin-
earity and acoustical linear radiation damping are of the same order without the
effect of magnetic field. However, as it can be seen from Figure 2, in the pres-
ence of a magnetic field the influence of structural nonlinearity is still pronounced
but the resonant peak of the response has disappeared. Now we select a different
set of parameters, i.e., h/L=0.01 and f0/E = 0.20×10−6 to simulate a thin plate.
In the case without the magnetic field (R=0), the first three resonant eigenvalues
are computed as λ1 = 1.561, λ2 = 4.511, λ3 = 7.137, and with the magnetic field
(R=8) the first three resonant eigenvalues are estimated as λ1 = 1.030, λ2 = 4.263,
λ3 = 6.971. In Figure 3, the amplitude of the plate is plotted with respect to the
driving frequency near the first natural frequency of the plate, which is computed
as ω01 = 36.89 rad/sec without the magnetic field. The structural nonlinearity com-
pletely controls the behavior of the plate, which implies that in this case the effects
of fluid loading is considerably negligible as compared with the effect of structural
nonlinearity. In Figure 4, the effect of magnetic field is included and the first natu-
ral frequency of the plate is calculated as ω01 = 16.05 rad/sec. The plots show very
similar trends as those in Figure 3 except that the amplitude of the linear response
has increased tremendously due to the fact that the fundamental natural frequency
has reduced a lot. In general, it can be concluded that the effects of magnetic field
play an important role only on the first few modes, say first two modes for the case
in this study. In addition, the effects of nonlinearity on the behavior of the plate
is quite remarkable for the first few modes, however, it is negligible as the higher
modes are concerned.
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