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Time Dependent Cyclic Constitutive Model and its
Application to Some Geotechnical Problems

T. Tanaka1

Summary
The viscoplastic constitutive relations with kinematic strain hardening-softening

model for geomaterials are developed. The constitutive models include strain-rate
dependent properties based on the thoery by Duvaut-Lions. The dynamic relaxation
method for static problems and the dynamic analysis for earthquake responses are
applied to boundary value problems using finite element methods.

Introduction
The viscoplastic kinematic hardening model is developed. This model is based

on the modified and extended soil model of isotropic strain hardening and soften-
ing elasto-plastic constitutive equation. The constitutive model is applied to the
boundary value problems such as cyclic behavior of geotechnical problems. The
explicit type dynamic relaxation method (Tanaka and Kawamoto, 1988) is used
for the static cyclic retaining wall problem and the explicit dynamic response anal-
ysis is applied to the time integration of liquefaction problem of a buried pipe.
The generalized return-mapping algorithm (Ortiz and Simo, 1986) is applied to the
integration algorithms of viscoplastic constitutive relations. The return mapping
algorithm is crucially important because the kinematic hardening model developed
here has intersecting yield lines.

Elasto-Plastic Constitutive Model
The yield function ( f ) and the plastic potential function (Φ) are given by:

f = αI1 +
σ̄

g(θL)
= 0 (1)

Φ = α ′I1 + σ̄ = 0 (2)

where

α =
2sinφ√

3(3− sinφ )
α ′ =

2sinψ√
3(3− sinψ)

(3)

where I1 is the first invariant (positive in tension) of deviatoric stresses and σ is the
second invariant of deviatoric stress. With the Mohr-Coulomb model,

g(θL) takes the following form:

g(θL) =
3− sinφ

2
√

3cosθL −2sinθL sinφ
(4)
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φ is the mobilized friction angle and θL is the Lode angle. The frictional hardening-
softening functions expressed as follows were used:

α(κ) = {2
√κε f /(κ +ε f )}mαp hardening-regime (5)

α(κ) = αr +(αp −αr)exp{−(κ −ε f )2/ε2
r } softening-regime (6)

where κ is plastic parameter, m, ε f and εr are the material constants (Yoshida
et al. 1995) and αp, αr are the values of α at the peak and residual states.

The residual friction angle (φr) and Poisson’s ratio (ν) were chosen based on
the data from the test of air-dried Toyoura sand. The peak friction angle (φP) is
estimated from the empirical relations based on the plane strain compression test
and triaxial test on Toyoura sand. A dilatancy angle ψ is defined by Eq. (7) and
Eq. (8).

sinψ =
sinφ − sinφ ′

r

1− sinφ sinφ ′
r

(7)

φ ′
r = φr[1−β exp{−(

κ
εd

)2}] (8)

where β and εd are material constants.

The kinematic hardening model considering the cumulative deformation by
cyclic loading is developed. This is a modified and extended soil model of strain-
hardening-softening property in order to take into account the cyclic behavior.
Within bounding surface, plastic behavior is assumed and hardening modulus is
much greater comparing the plastic behavior outside the bounding surface. The
hardening function is given by Eq. (9). In this equation, κ ′ is plastic parameter and
this parameter is cleared to zero at reversal point and a f is material constant. The
dilatancy angle ψ ′ is given by Eq. (10), and Eq. (11) and r f in Eq. (11) is reduction
factor for dilatancy.

αiy(κ ′) = a f

(
2
√

κ ′ε f

κ ′+ε f

)m

αp (9)

α
′
id(κ ′) = (αiy −αp)r f (10)

sinψ ′ =
3
√

3αid

2+
√

3αid
(11)
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Figure 1: Kinematic hardening model on π plane (Mohr-Coulomb model takes
pyramid shape)

Viscoplastic Constitutive Model
The constitutive equations of rate-dependent plasticity (Simo et al., 1988) orig-

inally proposed by Duvaut-Lions are as follows.

σ v = ηCε̇vp = σ − σ̄ (12)

ε p
B = ε p

A +λ (∂Φ/∂σ (13)

where η fluidity parameter, q is internal variables, σ and q are rate independent
solution, C is elastic modulus. Eq. (12) can be rewritten in incremental form as
follows.

Δε ir =
Δtn+1

η
(σn+1 − σ̄n+1)C−1 (14)

We can obtain the following equation.

σn+1 = ηCΔεn+1+ησn+Δtn+1 σ̄n+1
Δtn+1+η

= ησ trial
n+1 +Δtn+1 σ̄n+1

Δtn+1+η
(15)

A great deal of experimental results indicates that the stress is a unique function
of irreversible strain and its rate (Tatsuoka et al. 2002) and following the framework
of the three component model, Tatsuoka et al. proposed the TESRA (temporary
effect of strain rate and acceleration) model. We employed the simplified TESRA
model for viscoplsticity.

Fig.2 shows a model experiment of retaining wall using air-dried dense Toy-
oura sand. In the Fig.3. H=19cm, H1=4cm, H2=9cm, H3=14cm.The retaining wall
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Figure 2: Retaining wall model using air dried sand

Figure 3: Finite element mesh of retaining wall

with a rough wall face was analyzed and the result of analysis was compared with
the model experiment. The experiment was performed with the wall rotated about
its bottom into the sand mass cyclically. The finite element mesh of retaining wall
is shown in Fig.3. The wall friction angle (δ ) employed in these analyses was as-
sumed to be equal to the mobilized internal friction angle (φ ) of the sand. Fig.4
shows observed relationship between the earth pressure of no.2 pressure cell and
angle (θ ) of wall rotation. Fig.5 shows the earth pressure and wall rotation rela-
tionships calculated by the simplified TESRA model.

Cyclic viscoplastic constitutive model was applied to dynamic analysis of two-
dimensional buried pipe problem. Fig.6 shows the finite element mesh used for the
analysis. The pipe was buried within a saturated sand layer with relative density
85%. Fig.7 shows the horizontal acceleration applied and Fig.8 shows observed
and calculated displacements at the top of sand layer (center).
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Figure 4: Observed relationships
between earth pressure and wall
rotation
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Figure 5: Calculated relation-
ships between earth pressure and
wall rotation

Figure 6: Finite element mesh of buried pipe
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Figure 7: Input acceleration for buried pipe experiment
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Figure 8: Calculated displacement at the top of sand layer
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