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Higher-Order Stress and Size Effects Due to Self Energy of
Geometrically Necessary Dislocations
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Summary
The self energy of geometrically necessary dislocations (GNDs) is considered

to inevitably introduce the higher-order stress work-conjugate to slip gradient in
single crystals. It is pointed out that this higher-order stress stepwise changes in
response to in-plane slip gradient and thus directly influences the onset of initial
yielding in polycrystals. The self energy of GNDs is then incorporated into the
strain gradient theory of Gurtin (2002). The resulting theory is applied to model
crystal grains of size D, leading to a D−1-dependent term with a coefficient de-
termined by grain shape and orientation. It is thus shown that the self energy of
GNDs induced by slip gradient accounts for the grain size dependence of initial
yield stress and also the dislocation cell size dependence of flow stress in the sub-
micron to several micron range of grain and cell sizes.

Introduction
As is well known, polycrystals exhibit the dependence of yield stress on grain

size. The Hall-Petch relation is said to be an established one for this dependence
in the conventional range of grain size. The Hall-Petch plot, however, usually has
nonlinearity, as grain size is reduced from the conventional range. It is noted that
the nonlinearity can occur around one to several microns of grain size, leading to the
stronger, grain size dependence of yield stress than that by the Hall-Petch relation,
as was observed in [1-3]. It is also noted that such fine grained polycrystals tend to
clearly show initial yield points at stresses markedly depending on grain size [e.g.,
1-3]. It is thus worthwhile to analyze the grain size dependence of yield stress in
the submicron to several micron range of grain size.

The size effects mentioned above are targeted by the strain gradient theories of
plasticity, which have been proposed in several studies so far, as was summarized in
[4]. The theories are classified into two groups, i.e., higher-order and lower-order
theories. Gurtin [5] developed a higher-order theory, in which a higher-order stress
was introduced as the work-conjugate to slip gradient in single crystals. His theory
seems promising for analyzing the size dependence of yield stress, because the
constraint of slip on grain boundaries is explicitly represented using the additional
boundary condition on slip. Okumura et al. [6] thus implemented his theory in a
homogenization method to analyze the yield behavior of a 2D model polycrystal;
however, no marked dependence on grain size was obtained with respect to initial
yield stress.
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In this study, the self energy of geometrically necessary dislocations (GNDs)
is considered to analyze the grain size dependence of yield stress. First, by dis-
cussing the self energy of GNDs in single crystals, the higher-order stress work
conjugate to slip gradient is inevitably introduced. The self energy of GNDs is then
incorporated into the strain gradient theory of Gurtin [5]. The resulting theory is
applied to model crystal grains, so that an analytical prediction is derived for the
grain size dependence of yield stress. The prediction obtained is compared with
published experimental data on the grain size dependence of initial yield stress and
the dislocation cell size dependence of flow stress.

Theory
We assume small deformation and employ Cartesian coordinates xi (i = 1, 2, 3).

Hereafter, ( ),i will indicate the differentiation with respect to xi.

GNDs occur, if the slip in slip system β , γ (β), has gradient [7]. GNDs are,
in general, mixed dislocations, as illustrated in Fig. 1, where m(β)

i and s(β)
i are

the unit vectors indicating the slip plane normal and slip direction on slip system
β , respectively, and t(β)

i is defined as t(β)
i = ei jks(β)

j m(β)
k . Here ei jk denotes the

permutation symbol. Since mixed GNDs are decomposed into edge and screw

components, the density of GNDs, ρ(β)
G , is expressed as [7, 8]

ρ(β)
G = b−1

[
(γ (β)

,i s(β)
i )2 +(γ (β)

,i t(β)
i )2

]1/2
, (1)

where b denotes the magnitude of the Burgers vector. Let us define the in-plane
component of γ (β)

,k to be γ (β)
,k_ = (γ (β)

,i s(β)
i )s(β)

k +(γ (β)
,i t(β)

i )t(β)
k . Eq. (1) then becomes

ρ(β)
G = b−1

(
γ (β)
,k_ γ (β)

,k_

)1/2
. (2)

A single dislocation in an infinitely large single crystal has the following self energy
per unit length: E0 = αμb2, where α is a coefficient, and μ indicates the modulus
of rigidity. Then, if the interaction among GNDs is negligible, and if α is assumed
to be constant, the self-energy density of GNDs, ψ(β), is written as

ψ(β) = αμb2ρ (β)
G (3)

The above equation can be valid especially just after initial yielding, where ρ (β)
G

is supposed to be low. Using Eqs. (2) and (3), the increment of ψ(β) is expressed
as dψ(β) = ξ (β)

i dγ (β)
,i , where ξ (β)

i is the higher-order stress defined as

ξ (β)
i = αμbν (β)

i , (4)
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Figure 1: Mixed GND on slip system
β .

Figure 2: Step change of higher-order
stress ξ (β) in response to in-plane
slip gradient ∇γ (β).

and ν (β)
i signifies the direction of in-plane slip gradient γ (β)

,i_ , i.e.,

ν (β)
i = γ (β)

,i_

/(
γ (β)
,k_ γ (β)

,k_

)1/2
. (5)

It is emphasized that ξ (β)
i is interpreted as the work-conjugate to slip gradient γ (β)

,i .

As seen from Eqs. (4) and (5), ξ (β)
i has the magnitude equal to αμb and stepwise

changes in response to in-plane slip gradient γ (β)
,i_ , as shown in Fig. 2. This stepwise

variation in ξ (β)
i , which is a consequence of the self energy of GNDs expressed as

Eq. (3), brings about explicitly influencing the initial yielding of polycrystals.

The high-order stress ξ (β)
i derived above is now incorporated into the Gurtin

theory [5]. He generally introduced the work-conjugate to slip gradient for the pur-
pose of establishing a framework of strain gradient plasticity of single crystals. He
proposed a variational principle in which displacement ui and slip γ (β) indepen-
dently have their variations δui and δγ (β). If only δγ (β) is considered in a region
V , and if γ (β) is assumed to be either constrained or free on its boundary ∂V , his
variational principle takes a form

∫
V

σi jδε p
i jdV = ∑

β

∫
V

(
k(β)δγ (β) +ξ (β)

i δγ (β)
,i

)
dV (6)

where σi j and ε p
i j indicate stress and plastic strain, respectively, and k(β) is the

work-conjugate to slip γ (β) and is interpreted as slip resistance. Here, it is noted
that ε p

kl = ∑
β

γ (β)μ(β)
kl , where μ(β)

kl = 1
2(s(β)

k m(β)
l + m(β)

k s(β)
l ). The above equation

then provides the following yield condition that needs to be satisfied in V [5]:

τ (β)−k(β) +ξ (β)
i,i = 0, (7)
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where τ (β) denotes the resolved shear stress on slip system β , i.e., τ (β) = μ(β)
i j σi j .

Substitution of Eq. (4) into Eq. (6) gives∫
V

σi jδε p
i jdV = ∑

β

∫
V

(
k(β)δγ (β) +αμbν (β)

i δγ (β)
,i

)
dV (8)

The above equation means that plastic work consists of the energy dissipation due
to slip and the change in the self energy of GNDs.

Analysis of Model Grains
In this section, using the theory described in the preceding section, 2D and 3D

model grains are analyzed by assuming a constant slip resistance (i.e., k(β) = k0)
and no slip on grain boundaries (i.e., γ (β) = 0 on ∂V).

Let us consider a circular grain of diameter D, for which Cartesian coordinates
x, y and z are taken as shown in Fig. 3. Let us suppose that the grain has s(β) and
m(β) oriented in the x- and z-directions, respectively. Then, the constraint of slip on
∂V causes in-plane slip gradient ∇γ (β) to occur in the vicinity of ∂V . According
to Eqs. (4) and (5), thus, ξ (β) develops so as to be directed from ∂V to the grain
center; ξ (β)has the magnitude equal to αμb in the vicinity of ∂V . Consequently,
we have ξ (β) = −αμbn on ∂V , where n indicates the outward unit normal to ∂V .
Hence, using Eq. (7) and the divergence theorem, the average of τ (β) in the grain,
〈τ (β)〉, is evaluated as 〈

τ (β)
〉

= k0 +4
αμb

D
. (9)

Let us apply Eqs. (4) and (7) to a spherical grain of diameter D (Fig. 4), in which
s(β) and m(β) are oriented in the x- and z-directions, respectively. Let us suppose
that slip γ (β) is about to occur in the whole grain. The constraint of slip on ∂V ,
then, causes ∇γ (β) in the vicinity of ∂V on each cross-section perpendicular to the
z-direction, as illustrated in Fig. 4. This results in ξ (β) = −αμbñ on ∂V , where ñ
denotes the outward unit normal to ∂V defined on each cross-section perpendicular
to the z-direction. Then, using Eq. (7) and the divergence theorem, we derive∫

V
ξ (β)

i,i dV = −αμb
∫

∂V
niñidA, (10)

〈
τ (β)

〉
= k0 +

3π
2

αμb
D

(11)

Let us consider a tetrakaidecahedron grain of side length l, in which m(β) is
oriented in either the [001] or [111] direction (Figs. 5(a), (b)). This grain has the
volume equal to 8

√
2 l3, so that the grain is supposed to have a diameter D satisfying

8
√

2l3 = (π/6)D3. Then, applying Eqs. (7) and (10) to the grain gives〈
τ (β)

〉
= k0 +5.16

αμb
D

, if m(β) oriented in [001], (12)
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Figure 3: Circular grain.
Figure 4: Spherical grain.

Figure 5: Tetrakaidecahedron grain; (a) m(β) // [0 0 1], and (b) m(β) // [1 1
1]. 〈

τ (β)
〉

= k0 +4.82
αμb

D
, if m(β) oriented in [111]. (13)

Comparison with Experiments
The second terms on the right-hand sides in Eqs. (9), (11), (12) and (13) are

regarded as expressing the grain size dependence of critical resolved shear stress.
Therefore, by introducing the Taylor factor M, the uniaxial tensile yield stress of
polycrystals, σY , is evaluated to be

σY = σ0 +MΘ
αμb

D
, (14)

where σ0 = Mk0, and Θ � 5 according to Eqs. (12) and (13).

Fig. 6 compares the prediction by Eq. (14) and the published experimental
data on the grain size dependence of σY . For the prediction by Eq. (14), we have
assumed that M = 3, and that α has the following expression based on dislocation
loops of diameter D [9]:

α =
2−ν

8π(1−ν)
ln

(
4D
r0

−2

)
, (15)
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which reduces to α = 0.10ln(6.5× 103D) by taking ν =0.33 and r0 ≈ b/3 with
b � 2.5×10−4μm: it is noted that the dislocation core energy has been taken into
account by taking r0 ≈ b/3 [9]. For the experimental data, stresses at low off-
set strains 0.2% and 0.5% , σ0.2 and σ0.5, have been plotted as σY , because no
interaction among GNDs has been taken into account in deriving Eq. (14). It is
seen from Fig. 6 that the prediction by Eq. (14), which has the D−1-dependence
of σY , agrees considerably well with the experimental data in the submicron to
several micron range of D. We therefore can say that the self energy of GNDs is
responsible for the initial yielding of fine-grained polycrystals. Fig. 7 compares

Figure 6: Prediction by Eq. (14) and
experimental data on the dependence of
initial yield stress on grain diameter D.

Figure 7: Prediction by Eq. (14) and
experimental data on the dependence of
flow stress on dislocation cell diameter
D.

the prediction by Eq. (14) and the experimental data on the dependence of flow
stress on the dislocation cell diameter D in the stage II. The experimental data in
the figure were plotted by Stacker and Holt [10]. As seen from the figure, Eq. (14)
is successful in predicting the experimental data. This allows us to say that the self
energy of GNDs nicely accounts for the dislocation cell size dependence of flow
stress in the stage II.
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