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Identification Problems in Metal Forming
Iwona Pokorska1 and Andrzej Sluzalec2

Summary
This work has been focused on a unified approach for parameter identification

in metal forming processes of poroplastic materials. In order to solve the associated
inverse problem a chosen functional is minimized by the use of gradient based
methods and a sensitivityanalysis. Several numerical and experimental results were
presented. These are: the direct problem of simple compression, re-identification
of flow stress and identification of loading functions.
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Introduction
The purpose of this work is to present a unified strategy for parameter identifi-

cation of poroplastic materials in the context of the finite-element method. Consid-
ering the solution of the inverse problem, various strategies exist in the literature.
A common-classical-approach for solution of the inverse problem is to consider
parameter identification as an optimization problem. In this respect a least-squares
functional is minimized in order to provide the best agreement between experimen-
tal data and simulated data in a specific norm. In order to stabilize the numerical
results it may be necessary to amend this basis function by a regularization term.
In the context of identification for poroplastic material models we use model infor-
mation of the specific material law. If we consider the parameter identification in
the context of the finite element method, this approach is similar to procedures in
shape optimization. In the corresponding terminology the material parameters are
the design variables of the optimization problem.

Algorithms for solution of the resulting optimization problem may be classi-
fied into two classes i.e. methods which only need the value of the least-squares
function and descent methods which require also the gradient of the least-squares
function. This paper is structured as follows: In the first section the basic equations
for the direct problem for modeling poroplastic material behavior are summarized.
Next a short review for solution of the discretized direct problem in the context of
the finite element method is presented. Finally a solution of inverse problem is de-
scribed. The numerical examples of identification of material parameters in powder
forming of poroplastic materials are presented in the last section.

Solution of the Inverse Problem
Inverse Problem

Denote by κ such material parameters as parameters describing the power law
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of matrix material, parameters characterizing the relation between apparent yield
stress of matrix material and base material and parameters characterizing the load-
ing function for porous material which have to be found. Let Ū be the observation
space. Since only incomplete data are available from the experiment, we introduce
an observation operator W:U → Ū mapping the displacement field u(·,κ) to points
of the observation space Ū . The inverse problem of poroplasticity can be expressed
to find κ such that

Wu(·,κ) = ū (1)

for given ū ∈ Ū.

In solution of inverse problems in poroplasticity it is convenient to analyze
the density field. Note that there exists a mapping W2: Uρ → Ū ¯̃ρ where Ū ¯̃ρ is the
observation space of relative densities and Ūρ̃ is the space of relative densities and
there exists W3: Uρ → Ūρ̃ . Consider the following optimization problem

J(κ) =
1
2
‖Wu(·,κ)− ū‖2

Ū → min
κ

J2(κ) =
1
2

∥
∥W2ρ̃ (·,κ)− ¯̃ρ

∥
∥2 → min

κ

(2)

Denote the set of nmp points, where experimental data are available by {xi}nmp
i=1 at

ntdat time steps
{

t j
}ntdat

j=1 . The total number of experimental data is ndat = nmpndimntdat

, where dim is the dimension of space. The observation operators W and W2 are
defined by

Wu(·,κ) =
{

u1 (xi, t j,κ) , ...,undim (xi, t j,κ) i = 1, ...,nmp, j = 1, ...,ntdat
}

W2ρ̃ (·,κ) =
{

ρ̃1 (xi, t j,κ) , ..., ρ̃ndim (xi, t j,κ) i = 1, ...,nmp, j = 1, ...,ntdat
} (3)

Introduce the following definitions

u j (κ) =
{

u1 (xi, t j,κ) , ...,undim (xi, t j,κ) i = 1, ...,nmp
}

j = 1, ...,ntdat

ρ̃ j (κ) =
{

ρ̃1 (xi, t j,κ) , ..., ρ̃ndim (xi, t j,κ) i = 1, ...,nmp
}

j = 1, ...,ntdat
(4)

for the simulated data and analogously for the experimental data ū j and ¯̃ρ j, j =
1, ...,ntdat, respectively. The least-squares problem (2) can be expressed as

J (κ) =
1
2
‖u(κ)− ū‖2

2 → min
κ

J2 (κ) =
1
2

∥∥ρ̃ (κ)− ¯̃ρ
∥∥2

2 → min
κ

(5)

It should be noted that sometimes the problem (5) which is well posed, may lead
to numerical instability in solutions because the small variations of ū may lead
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to large variations of the parameters κ . These difficulties are caused, e.g. if the
material model has to many parameters. A mathematical tool, suitable to overcome
the above-mentioned numerical instabilities is a regularization of the functional in
(5), and this leads to the more general problem

J (κ) =
1
2

∥∥Bδ1
(u(κ)− ū)

∥∥2
2 +

α1

2

∥∥Bμ1 (κ − κ̄)
∥∥2

2 → min
κ

J2 (κ) =
1
2

∥∥Bδ2

(
ρ̃ (κ)− ¯̃ρ

)∥∥2
2 +

α2

2

∥∥Bμ2 (κ − κ̄)
∥∥2

2 → min
κ

(6)

where the matrices Bδ1,2
and Bμ1,2 , the scalars α1,2 and the parameters κ̄ can be

chosen based on information or statistical investigations.

The errors appearing in the identification problem can be divided into two
kinds. The first type of errors is addressed throughout statistical investigations.
In this respect, when considering the maximum method, on the basis of sufficient
experimental results a normal distribution with known variances leads to the first
part of the function (6). The second one is addressed throughout the complexity of
the model, thus decreasing the model error. In doing so, it should be realized, that
the additional material parameters may also result into the aforementioned numer-
ical instability for the identification process, if appropriate steps are not performed
when planning the experiment. Finally we can summarize that the requirements
have to be carefully balanced to obtain numerical stability of calculations and re-
ducing the model error.

Examples
Simple Compression of Rigid-Poroplastic Material

Assume the flow stress of the matrix material for a rigid-plastic material model
in the form

σ̄ = Yb [1+(γ ε̄)]n (7)

The above model is known as a material model with power hardening. In the case
of linear hardening one puts in the above expression n = 1.0. The friction between
the specimen and the flat dies is modeled by friction factor. Consider the simple
compression, where a cylindrical sintered P/M perform is compressed between two
flat dies. The following characteristics of forming process are assumed. The initial
diameter-to-height ratio of the cylinder is 1.2 and the original height used is unity
for calculation. The perform has uniform initial relative density of 0.800.The total
reduction in height is 50%.

According to the symmetry of the workpiece, one quarter of the cylinder is em-
ployed for the analysis and is divided into 16 quadrilateral elements interconnected
at 25 nodal points. Deformation is analyzed step-by-step with increments of 0.1%
of the initial height of the cylinder. The simulations were carried out with friction
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Figure 1: Distribution of relative density and effective strain for reduction in height
50%.

factor m = 0.1. The flow stress of the matrix material was assumed to be expressed
by (7) with Yb = 110.0, γ = 0.768 and n = 1.0. Fig. 3.1 shows the predicted relative
density distributions and effective strain distributions at 50% reduction in height.
It is seen from At 50% reduction in height, the density is lowest at the equator of
the side surface, and at this stage, the side surface barrels considerably. The higher
mean stress at the equator results in the low density at this point. It is also noted
that at 50% reduction in height, densification near the center of the die contact sur-
face has been accelerated. This can be explained by the fact that the pressure near
the z axis increases as radius-to-thickness ratio increases. It is well known that
higher pressure near the axis can be achieved with higher friction when a thin disk
is compressed between two flat dies.

Re-identification of Flow Stress of Matrix Material
The examples intend to test the optimization algorithm in case of parameter

re-identification of flow stress of matrix material. The solution procedure was as
follows. First direct problem of metal forming of a rigid-poroplastic material is
solved with assumed material data of the matrix material with Yb = 110.0, γ =
0.768 and n = 1.0. The loading function was assumed by the expression (2). The
material parameters A and μ are assumed in the forms (3) and (4), respectively. The
following parameters of the process were assumed: initial relative density 0.8000,
friction factor 0.5, total number of nodal points 25, total number of elements 16,
the diameter of the specimen 2.4 cm and height 2.0 cm. Deformation is analyzed
step-by-step with increments of 0.1% of the initial height of the cylinder. In the
first example the parameter γ has been identified. Other parameters were assumed
as constant. The displacement field u = u(γ) at 30% and 40% reductions in height
was calculated for various values of parameter γ with value of step 0.01. Next
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the sensitivity ∂u∂γ was calculated for γ as the design parameter. Then the re-
identification problem has been solved based on the displacements obtained from
the solution of the direct problem. As an objective function the following function
is examined

J (Yb,γ ,n) = ∑
k

(uk − ūk)
2 → min

(Yb ,γ ,n)
(8)

The results of re-identification tests are given in Table 3.1.

The second example concerns the identification of parameter n in a rigid-plastic
material model given by expression (7) with parameters for the direct problem as-
sumed as follows: Yb = 110.0, γ = 0.768 and n = 1.0. The procedure was the same
as described above for the identification of parameter γ . The results are given in
Table 3.2. As an example displacements in r-direction of the middle-outer point of
the specimen in function of parameters γ and n are given in Tables 3.3 and 3.4.

It should be noted that one can identify simultaneously two material parameters
in the power law of material model.

Table 1: Starting and obtained values in the re-identification process for the material
parameter γ in a rigid poroplastic material law of matrix material

parameter starting obtained
Yb 110.0 110.0
n 1.0 1.0
γ 1.0 0.768

Table 2: Starting and obtained values in the re-identification process for the material
parameter n in a rigid poroplastic material law of matrix material

parameter starting obtained
Yb 110.0 110.0
n 1.5 1.0
γ 0.768 0.768

Table 3: Examples of displacements in r-direction of the middle-outer point of the
specimen in function of parameter γ ( reduction 30% in height )

parameter γ 0.6 0.7 0.8 0.9 1.0 1.1
displacement [cm] 1.3921 1.3917 1.3914 1.3911 1.3908 1.3905

Table 4: Examples of displacements in r-direction of the middle-outer point of the
specimen in function of parameter n ( reduction 30% in height )

parameter n 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
displacement
[cm]

1.3918 1.3915 1.3912 1.3910 1.3907 1.3904 1.3902 1.3899
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Concluding Remarks
Powder metallurgy has evolved into a manufacturing technique for produc-

ing high performance components economically in metalworking industry because
of its low manufacturing cost compared to conventional metal forming processes.
The development and solution of metallurgical and mechanical problems of pow-
der forming processes seems recently to be very important. This work has been
focused on a unified approach for parameters identification of P/M specimens in
powder forming processes. The first step was to describe the numerical solution of
the direct problem. In order to solve the associated inverse problem a chosen func-
tional is minimized by the use of gradient based methods and a sensitivity analysis.
From the computational standpoint it follows that the determination of the gradient
can be performed to the step-by-step solution of the direct problem. Several nu-
merical and experimental results were presented. These are: the direct problem of
simple compression of rigid-poroplastic material, re-identification of flow stress of
matrix material, determination of apparent yield stress of poroplastic as well as the
identification of loading functions. The experimental studies which in particular
were the basis for the subsequent identification were conducted on unique testing
machines.

The concept proposed in this work is a flexible approach for identification of
mentioned above poroplastic material models and can be useful to apply the results
to metalworking industry. The information derived can be used for the subsequent
quantitative design as well as optimization of the powder metallurgy processes.
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