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HYBRID a powerful Boundary Element-Finite Element
Method(BEM/FEM) software for analysis of seismic

response of multiphase porous media
B. Gatmiri1

Summary
This document summarizes the basic concepts and steps of establishment of

the set of equations of wave propoagation in far field and of the dynamic behaviour
of porous media in the near field. A breif description of HYBRID software as a
powerful tool for evaluation of local seismic site effect is presented. The Combi-
nation of the FEM and BEM and improvement of numerical algorithm for the time
truncation are described.

Introduction
As it is stated, the response of a site to a seismic solicitation depends on topog-

raphy and geotechnical local characteristics. A considerable amount of theoretical
work has been reported in the literature of geotechnics and seismology, in order
to model, quantify and predict the effects of the basin topography. Concerning
the stragraphical effects, based on 1D models of soil columns, many softwares are
developped (SHAKE family softwares) which do not take into account many sig-
nificant feature of porous media to estimate this kind of site effects. In order to
model site effects in more realistic circumstances (for P-SV waves and for a arbi-
trary shape of topographical feature), numerical methods have to be used. The finite
difference method, the finite element method, the discrete wavenumber method,
and the boundary element method are the most frequently used. Domain-based
methods such as the Finite Element Method (FEM) represent excellent tools in an-
alyzing heterogeneity and non-linearity in the soil. However, the size of the prob-
lem can easily exceed computing capacities and time because of the difficulty of
modeling wave propagation in unbounded domains. In recent years, the boundary
element methods (BEM), based on the discretization of integral equations, have
gained importance in the resolution of wave propagation problems. These tech-
niques can avoid the introduction of fictitious boundaries and reduce the dimen-
sionality of the problem. In order to benefit from the advantages of both domain-
and boundary-based methods, the BEM was coupled with the FEM and the finite
difference method. In this paper, The basic theoretical development and numerical
implementation and optimization of HYBRID software is briefly given. Analysis
of two-dimensional wave scattering due to the presence of topographical irregular-
ities and sediment filling is studied with the aid of a hybrid numerical technique,
combining finite elements in the near field and boundary elements in the far field.
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The HYBRID program is developed by Gatmiri and his coworkers [2, 3, 4]. The
integration process is approximated in the domain by time truncation [5]. Hence
calculations are performed faster, with a good accuracy compared to traditional
boundary integration methods.

Formulation of problems combining BEM and FEM
The finite-element method (FEM) is particularly adapted to work with anelas-

tic or non linear soils. The boundary-element method (BEM) reduces the problem
by one dimension and is relevant for half-plane problems. The study of site effects
requires the resolution of mechanical wave radiation equations in irregular config-
urations, defined by specific topographical and geotechnical conditions. That is
why hybrid models combing both methods are often used. In our study, sediments
are modeled by finite elements. Substratum is represented by boundary elements,
which is adapted to the study in the far field.. All materials are supposed to be
elastic.

For the near field which is finite element domain, dynamic behaviour of sat-
urated porous media is formulated based on the theory of Biot. The u-p form of
porodynamic equations is used [1,2,3]. The details of the equations are given in the
mentionned references. The final matrix form of the FEM équation are given in this
paper. In addition of the linear and nonlinear elastic behaviour, the mixed harden-
ing multi-yield surface model (Prevost) is implemented in HYBRID for simulation
of elastoplastic behaviour of saturated soils. The "cutting plane" algorithme (Ortiz
and Simo) is employed to integrate the elasto-plastic constitutive equations.

In the finite-element domain, application of the modified Newton-Raphson it-
erative method leads to:

M ·Üt+Δt(k) +Kt · (Ut+Δt(k) −Ut+Δt(k−1)) = Rt+Δt −Ft(k) (1)

where M is the mass matrix, and Kt is the rigidity matrix at instant t. Ut+Δt(k) is
the displacement vector for the kth iteration done to reach the load increment Rt+Δt

imposed at t+ � t. Ft(k) is the force calculated by the behavior law of the material
at the kth iteration.

Using the Newmark method in which:

Ut+Δt = Ut +
Δt
2
· (U̇t +U̇t+Δt ) (2)

equation (1) becomes:

K̄t ·ΔU (k) = Rt+Δt −Ft(k)−
(

4
Δt2 M

)
· (Ut+Δt(k−1)−Ut)+

(
4
Δt

M

)
·U̇t +M ·Üt

(3)



HYBRID a powerful BEM/FEM software for analysis of seismic response 161

where:

K̄t = Kt +
4

Δt2 M (4)

Adding K̄t ·Ut+Δt(k−1) at both sides of equation (3) and assuming that zone 1
is modeled with finite elements:

K̄t
1 ·Ut+Δt(k)

1 = Rt+Δt
1 −Zt+Δt(k)

1 (5)

where:

Zt+Δt(k)
1 = Ft(k)

1 −Kt
1 ·Ut+Δt(k−1)

1 −
(

4
Δt2 ·Ut

1 +
4
Δt

·U̇t
1 +Üt

1

)
·M1 (6)

The boundary integral equation of elastodynamics in time-domain for a homo-
geneous isotropic elastic medium, occupying a volume Ω, bounded by a surface Γ,
and subjected to an incident plane wave is:

ci j(ξ )u j(ξ ) =
∫
Γ

[Gi j(ξ ,x, t)∗ t j(x, t)−Fi j(ξ ,x, t)∗u j(x, t)]dΓ+ueq
i (ξ , t) (7)

if the contributions of initial conditions and body forces are neglected. ξ is the
source point, x is the field point; ui and ti are the amplitudes of the i-th component
of displacement and traction vectors respectively, at the boundary; ueq

i represents
the incident wave; symbol ∗ indicates a Riemann convolution integral; ci j is the
discontinuity term depending on the local geometry of the boundary at ξ and on
the Poisson’s ratio; Gi j and Fi j are the fundamental solutions representing the dis-
placement and traction at x in direction i due to a unit point force applied at ξ in
the j-direction. Two-dimentional elstodynamic kernels used in HYBRID are given
by Gatmiri and Kamalian (2002a); Gatmiri and Nguyen (2005).

The numerical implementation of equation (7) requires a discretization in both
time and space. For this purpose, the boundary Γ is discretized into a defined
number of elements, and time axis is divided into N equal intervals so that t =
N. � t. Both constant and linear temporal variations can be used for each field
variable. Space discretization gives the following matricial expression at instant
t = N. � t:

F1 ·UN = G1 ·T N +
N−1

∑
n=1

(GN+1−n ·T n −F N+1−n ·Un) (8)

The equations obtained from the FEM are expressed in force and displace-
ment whereas in the BEM, stresses replace forces. Therefore, equations need to be
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adapted. In the last term of (8), stresses are transformed into forces as follows:

Z
′t(k) = N · (G1) ·

N−1

∑
n=1

(FN+1−n ·Un −GN+1−n ·T n) (9)

Consider that zone 2 modeled by boundary elements and has a common fron-
tier with zone 1, which is modeled by finite elements (See 5, 6). The governing
matricial equation of zone 2 can be written in the same way as (5):

K̄t
2 ·Ut+Δt(k)

2 = Rt+Δt(k)
2 −Z

′t+Δt(k)
2 (10)

General formulation of the improved integration method
Assuming that the number of time steps chosen for the integration approxima-

tion sums to m, the Nth equation is expressed as:

c.uN =
∫
Γ

tN∫
tN−m

Gi j ∗ t j(x, t).dΓ−
∫
Γ

tN∫
tN−m

Fi j ∗u j(x, t).dΓ+
∫
Ω

Gm
i j.F

N−m.dΩ (11)

The domain integral can only be approximated as:

∫
Ω

Gm
i j.F

N−m.dΩ ≈ ψm ·
∫
Ω

Gm−1
i j .FN−m.dΩ (12)

where:

ψm =

⎡
⎣∫

Ω

Gm
i j.dΩ

⎤
⎦
−1

·
∫
Ω

Gm
i j.dΩ (13)

Writing equation (11) at the instant t = (N −1). � t for m and m-1 yields:

∫
Ω

Gm
i j.F

N−m.dΩ =
∫
Γ

TN−m∫
tN−m−1

Gi j ∗ t j(x, t).dΓ−
∫
Γ

TN−m∫
tN−m−1

Fi j ∗u j(x, t).dΓ

+
∫
Ω

Gm
i j.F

N−m−1.dΩ

(14)

The same thing can be done at t = (N −2). � t and using (11), (12) and (14)
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yields:

c.uN ≈
∫
Γ

TN∫
tN−m

Gi j ∗ t j(x, t).dΓ−
∫
Γ

TN∫
tN−m

Fi j ∗u j(x, t).dΓ

+ψm ·
⎡
⎣∫

Γ

TN−m∫
tN−m−1

Gi j ∗ t j(x, t).dΓ−
∫
Γ

TN−m∫
tN−m−1

Fi j ∗u j(x, t).dΓ

⎤
⎦

+ψm ·
∫
Ω

Gm
i j.F

N−m−1.dΩ

(15)

Approximating the domain integral in equation (14) results in:

∫
Ω

Gm−1
i j .FN−m.dΩ ≈

∫
Γ

TN−m∫
tN−m−1

Gi j ∗ t j(x, t).dΓ−
∫
Γ

TN−m∫
tN−m−1

Fi j ∗u j(x, t).dΓ

+ψm ·
∫
Ω

Gm−1
i j .FN−m−1.dΩ

(16)

Rewriting equation (15), by equations (11), (12), and (16) and repeating the
process till the domain integral affects the initial forces at t=t0, yields:

c.uN ≈
∫
Γ

TN∫
tN−m

Gi j ∗ t j(x, t).dΓ−
∫
Γ

TN∫
tN−m

Fi j ∗u j(x, t).dΓ

+
N−m

∑
i=1

ψ i
m ·

⎡
⎣∫

Γ

TN−m−i+1∫
tN−m−i

Gi j ∗ t j(x, t).dΓ−
∫
Γ

TN−m−i+1∫
tN−m−i

Fi j ∗u j(x, t).dΓ

⎤
⎦

+ψN−m
m ·

∫
Ω

Gm
i j.F

0.dΩ

(17)

When ψm < 1, limi→∞ ψ i
m = 0. It is possible to ignore the time steps at a

certain distance from the limit of backtracking. The integration process continues
until a convergence criterion ψq

m < Lm is satisfied for some small tolerance Lm. In
other words, the time integration is truncated after m + q steps (m + q < N) and
the determination of the current state requires only the knowledge of m+q former
states. Therefore, computation time decreases considerably. Moreover, only the
first m + q pairs of coefficients (Gi j, Fi j) need to be stored instead of all N pairs,
which reduces temporary storage requirement. The precision is controlled by the
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tolerance Lm and by the number of time steps m. In the half-plane problems treated
in the following examples, m and Lm are selected to be equal 5 and 0.1 respectively,
which gives a reasonable precision. The diffraction of a plane SV wave of vertical
incidence by a semi-circular canyon is studied for an elastic half-plane. The Poisson
ratio is ν = 1/3 and the dimensionless frequency η of the input signal equals 2. The
dimensionless frequency η is the ratio of the characteristic dimension of the relief
to the wavelength.

The horizontal and vertical motion amplitudes given by the time truncation
method are compared with the results obtained by other authors. Amplitudes are
normalized by the displacement measured on the outcrop. Fig. 1 shows an excellent
agreement between the diverse modeling techniques.

a.H orizontaldisplacem ents b.Verticaldisplacem ents

Figure 1: Normalized displacement amplitudes for vertical incidence of a harmonic
plane SV wave upon a semi-circular canyon.
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