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Non-thermal Statistical Mechanics of Disordered
Structures and Materials

A.H.W. Ngan1

Summary
When a random structure is loaded by far-field stresses, the elements inside

will not be subject to the same forces because of structural inhomogeneities. Such
a system represents an interesting analog to a thermal system at equilibrium – the
structural irregularities qualify for a description by a Shannon-like entropy, and
there is also the usual (e.g. elastic) strain energy. When an entropy is related to en-
ergy, one immediately steps into the familiar field of statistical mechanics, but for
a strained random structure, the real (Kelvin) temperature plays no role. Instead,
an effective temperature exists but this is not the Kelvin temperature. The proper
statistical mechanics framework that should be used to describe such systems is
therefore non-thermal.

Using low-density elastic networks as prototype systems, this paper reviews re-
cent computer simulation and experimental results that support such a non-thermal
statistical mechanics framework. These results show the existence of an effective
temperature in the description of these structures. As a second example, the dy-
namic formation of dislocation patterns during plastic deformation or annealing of
crystals is also discussed within the same statistical mechanics framework.
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Introduction
Either by design or otherwise, many engineering materials are randomly struc-

tured. Examples include grain piles, polymeric scaffold materials for tissue engi-
neering applications, metallic foams and so on. Because of structural randomness,
the internal force distribution in these materials due to external loadings would not
be uniform, yet a thorough understanding of the force distribution is of paramount
importance in the development of, for example, yield criteria for these materials.

Most previous investigations on random materials focused on mean-field be-
haviors involving regular, periodic structures [1]. Although a mean-field under-
standing is essential for elastic behavior, failure of these materials depends on ex-
treme internal forces. Post-yield phenomena such as local buckling and shear bands
are well-known to occur [2], but the onset of these phenomena is determined by the
first failure of those elements sustaining the largest elastic forces. An understanding
of the variance of the internal elastic forces is therefore of paramount importance
in understanding the first-failure conditions of these structures. However, structural
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irregularities have only been explicitly considered by a few groups of authors [3-6].
The simulated structures in these studies were different from case to case and so
a universal picture is not yet available. Another approach is to add an empirical,
volume-dependent term in an assumed constitutive law to reflect the high plastic
compressibility of the material [1], but this “black-box” approach avoids directly
treating structural randomness.

A completely different view of the subject was provided by Edwards [7] who
advocated the use of a statistical entropy to describe the states of random structures.
The present author took the additional step to relate Edwards’ entropy to the strain
energy in these systems to complete an analog with thermodynamics [8-9]. In the
following, the theory and the key computer simulation and experimental results are
reviewed.

The Non-thermal Free Energy
The basic assumption of the present author’s theory is that a non-thermal sys-

tem attains mechanical equilibrium or steady state when an analog of the free en-
ergy

F = U −θ S, (1)

reaches a local minimum, i.e. δF = 0, at a constant θ . Here U is the strain energy
and S the macroscopic configurational entropy, in the sense defined by Edwards
[7], and because the problem is non-thermal, θ is simply a linking factor and not
the Kelvin temperature. The condition δF = 0 is simply a statement that the strain
energy U is minimized at constant S, and since θ behaves as a Lagrange multi-
plier for the constraint on S, it is a measure of the constant value of S. Thus, the
condition δF = 0 means the finding of a metastable equilibrium state; the system
cannot reach the global equilibrium state (at θ = 0) in general because of certain
“frustrations” present. In the following, the condition δF = 0 will be applied to
predict mechanical equilibrium of static structures as well as the steady state of a
dynamic system.

Elastic Networks
As a prototype example, we look at a loaded structure made up of joining struts

together (fig. 1). Each strut in the network will sustain an axial force f , a shear
force s, and a bending moment m. Simple beam analysis shows that the strain
energy of a given strut is W ≈ Cf f 2 + Css2 + Cmm2, where the C’s are material
and dimensional constants [9]. For an entire network, or an ensemble of similar
replicas of such a network, the forces and moments will follow distributions Pi(i)
where i = f , s or m, and so the strain energy functional U is

U = Cf

∫
f 2Pf ( f ) d f + Cs

∫
s2Ps (s) ds + Cm

∫
m2Pm (m) dm. (2)
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Under the assumption of an ergodic force/moment-space, the entropy functional is
given by

S =−k f

∫
Pf ( f ) ln [Pf ( f )] d f − ks

∫
Ps (s) ln [Ps (s)]ds−km

∫
Pm (m) ln [Pm (m)]dm ,

(3)
where k f , ks and km are Boltzmann-like constants. The conditions δF/δPi = 0
(i = f , s or m) give rise to Gaussian forms of the probability density functions

Pi (i) = A exp[−κ(i− io)2], (4)

where κ = Ci/kiθ , and A and io are normalization constants.

The ergodicity assumption can be loosely understood by the observation that
in a disordered system, the force network is very random [10] and so there is no a
priori biasing in the force-space. The best way to justify ergodicity, however, is to
see if the prediction agrees with experiment. Fig. 1 shows an experiment in which
the axial forces f were measured from 2-D silicone networks [11]. The measured
axial forces indeed follow a Gaussian distribution as predicted by eqn. (4).

Figure 1: Experimental measurement of axial force distribution in 2-D elastic net-
works. The left panel shows the experimental setup [11]. The network is made
of silicone and the axial forces in the members inside were measured from the
displacements of the nodes upon load application.

The above experiment only allowed probability density change of about 2 or-
ders of magnitude to be measurable. To sample even rarer forces, finite element
simulations were carried out. 2-D and 3-D elastic networks were simulated using
the FEAP finite element package developed by R.L. Taylor. Fig. 2 shows por-
tions of a simulated perturbed square grid (2-D) and a cubic grid (3-D). A series of
increasingly irregular structures were built from a regular square or cubic grid by
randomly displacing each node in the grid within a range which is a certain fraction
rd (< 0.5) of the mean grid spacing. The fraction rd then becomes a parameter char-
acterising the randomness of the structure. The simulated grids typically consisted
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of 10,000 to 20,000 struts. The linear elastic behaviour of the structures under
different load states was calculated using the Euler-Beam Element in the FEAP
package. Fig. 3(a) shows the simulated axial force distribution in 2-D grids with
different values of rd under hydrostatic loading. It can be seen that the sharpness of
the axial force distribution decreases as rd, or the structural randomness, increases.
Fig. 3(b) shows the axial force distributions under biaxial pure shear. At rd = 0, the
distribution comprises two delta functions positioned at two (bifurcated) values of
the mean force. This is to be expected because in the regular square grid configura-
tion (rd = 0), all struts which are aligned parallel to the tensile axis will be subject to
the same tensile force, and all those parallel to the compression axis will be subject
to the same compressive force. As rd increases from zero, the structure becomes
increasingly perturbed and the force distribution becomes more spread as shown in
fig. 3(b). The model curves in fig. 3 are all Gaussian curves and they fit the sim-
ulated data very well. The parameter κ shown there is an inverse measure of the
effective temperature θ , and it can be seen that as structural randomness increases,
the effective temperature increases. Results in 3-D show similar features.

For load mixities other than the hydrostatic or pure shear states, the force dis-
tributions can be obtained by superposition of the hydrostatic and pure shear states.
As an example, a uniaxial tensile load state with load σ can be obtained by super-
position of a hydrostatic state of stress σ/2 and a pure-shear state with principal
stresses ±σ/2. Denoting the force distribution under the hydrostatic and the pure-
shear load state respectively Ph

i (i) and Pd
i (i), the distribution under the superimpos-

ing load state is,

Pi(i) =
∞∫

−∞

Ph
i (i− t)Pd

i (t)dt. (5)

Figure 2: 2-D and 3-D grids used in finite element simulation. First grid has rd =
0. The last two grids have rd = 0.4.

Fig. 4 shows the predicted axial force distribution (the solid curve) in a 2-D grid
under uniaxial loading, which is the convolution of two Gaussian functions centred
at 0.5 and 1.5 of the abscissa. There is no fitting parameter involved in the predicted
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Figure 3: Axial force distributions in 2-D grids calculated using finite element
simulation under (a) hydrostatic loading and (b) biaxial pure shear loading.

force distribution here and the agreement with the finite element results (the discrete
points) is excellent. With the force distributions at different load mixities worked
out this way, the failure criteria for the structure can be constructed using a survival
probability concept [9]. Fig. 5 shows the predicted first-yield and buckling loci (the
triangles and squares respectively), in comparison with a plastic collapse mean-
field theory [12] (the circles).
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Figure 4: Axial force distribu-
tions of 2-D perturbed square
grid under unaxial loading.
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Dislocation Patterning
As an example to illustrate the condition δF = 0 in an evolving system, let us

turn to the formation of dislocation patterns during plastic deformation or annealing
of crystals. Hähner proposed that dislocation patterning is driven by noise [13], but
this view is challenged by recent dislocation dynamics simulations by Thomson
[14], who showed that dislocation patterning is a consequence of a balance between
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Figure 6: Predicted steady-state dis-
location density distribution [15].

Figure 7: Experimental fractal
pattern of dislocations [16].

energetics and noise. The mutual interaction energy between dislocations drives the
system towards ordering, but as the system evolves, frustrations to ordering arise
due to the noisy back stresses in the slip planes. This is in the same spirit of the
condition δF = 0 in this work, which implies δU = θ δS at equilibrium or steady
state. The present author exploited the condition δU = θ δS in an analytical manner
[15]. Anticipating that the long range interactions between dislocations are difficult
to deal with analytically, he used simple relations to express the energy distribution,
ε , on the lattice sites of the system in terms of the local dislocation density, ρ . This
amounts to the adoption of a field method for the problem, instead of one based on
multi-particles. For low dislocation densities, the following energy function was
used,

ε(ρ) =
αμb2

4
ln

(
ρ

ρmin

)
, (6)

where the pre-logarithmic factor is a constant and ρmin refers to the outer cut-off
radius for the dislocation distribution. Note that this energy function represents dis-
location repulsion, and for attraction, another function was used [15]. The strain en-
ergy and entropy were then given by U =

∫
ε P(ε)dε and S =−k

∫
P(ε) ln[P(ε)]dε,

and the condition δF/δP = 0 gives rise to the following steady-state distribution
of the dislocation density

P(ρ) =
A
ρ

exp
[ρ

θ
(c− lnρ)

]
, (7)

where A and c are normalization constants. Fig. 6 plots eqn. (7) at different chosen
values of θ . At small values of θ (e.g. 0.01), P(ρ) is uni-modal and corresponds
to a state of homogeneous spatial distribution of dislocations. At higher values of
θ (e.g. 10), P(ρ) is twin-peaked at a low density and a high-density, corresponding
to cell formation. At even higher values of θ (e.g. 1000), P(ρ) is a power law,
corresponding to a fractal geometry of patterning, a real example of which is shown
in fig. 7.
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Conclusions
A general statistical mechanics principle for describing static or dynamic equi-

librium of non-thermal systems is proposed. Application of this principle to elastic
random networks yields predictions that are in good agreement with experimental
and finite element simulated results. The dynamic problem of dislocation pattern-
ing also seems to be describable by this principle.
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