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Stress distribution due to inclined line loads in fibrous
polymer composites

S. Gururaja1 and M. Ramulu2

Summary
Uni-Directional Fiber-Reinforced Plastic (UD-FRP) laminates have been mod-

eled as a quasi-homogeneous monoclinic half-space subjected to an inclined load
at the surface. Complete closed form stress-fields derived previously [1] based on
Lekhtinskii’s formulation [2] in conjunction with the principle of analytical con-
tinuation [3] were used to study the stress-response in relation to a few parameters
identified, namely, fiber-orientation, load inclination angle and spatial coordinates
with respect to line load application position in the half-space domain.

Introduction
Due to the extensive use of fibrous composite as load-bearing components in

recent times, there has been a renewed interest in the anisotropic half-space prob-
lem as an idealized descriptive model for analyzing UD-FRP laminates [4, 5].
Anisotropic half-space problem with surface load acting is a classical elasticity
problem that has received widespread treatment by researchers in the last several
decades [6]. Complete closed-form stress-fields for a line-load of fixed width acting
symmetrical about the origin at the surface of an anisotropic (monoclinic) elastic
half-space have been derived in [1]. The present work deals with understanding the
stress-fields by conducting a parametrical analysis vis-à-vis fiber-orientation, load
inclination angle and spatial coordinates with respect to the line-load application
position for a given width of line load in the half-space domain. The stress-fields
thus generated are believed to throw light on the edge-trimming process of UD-FRP
laminates.

Inclined load problem
UD-FRP composite laminate is modeled as a continuous quasi-homogeneous

linear elastic monoclinic half-space with symmetry existing about z, X3= 0 axis
whose stiffness properties have been calculated from standard tensor transforma-
tion relations. A Cartesian coordinate system is defined such that the angle between
problem X-axis and the material X1-axis in the anti-clockwise direction represents
the fiber angle of the UD-FRP as shown in Figure 1. Based on the need to sim-
plify the mathematical analysis, the following three assumptions have been made
to derive the stress field equations [1]:- a) Generalized plane strain deformation;
b) UD-FRP laminate is a continuous quasi-homogeneous linear elastic monoclinic
half space; and c) Quasi-static loading scenario is considered.
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Figure 1: UD-FRP composite representation as a quasi-homogeneous continuous
anisotropic elastic half-space; (a) Cartesian coordinate definition; and (b) line load
with uniform magnitude along z – axis.

Stress-fields derivation
From Cauchy-Reinmann relations for analytic functions, for a function f (z =

x + iy) analytic in the lower half-plane y ≤ 0, continuous up to the boundary with
f (∞) = 0 with ξ , a point on the boundary (abscissa):

1
2π

∞∫
−∞

f (ξ )
ξ − z

dξ = − f (z),
1

2π

∞∫
−∞

f (ξ )
ξ − z

dξ = 0 (1)

where f̄ denotes the complex conjugate of f . This property has been used in the
development of the complex potentials which are critical in the determination of
stress fields.

For a half-space problem with normal and tangential components of the exter-
nal tractions on the boundary y = 0 are denoted by N(ξ ) and T (ξ ) respectively. The
boundary conditions when y = 0 take the form σyy = N (ξ ) ,τxy = T (ξ ) ,τyz = 0.
From Muskhelishvelli’s approach of analytic continuation (extension of Equation
(1)), the complex stress functions for a monoclinic material are given by Lekhnit-
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skii [2]: -

Φ′
1 (z1) =

1
2π i (μ1 −μ2)

∞∫
−∞

N (ξ )μ2 +T (ξ )
ξ − z1

dξ

Φ′
2 (z2) = − 1

2π i (μ1 −μ2)

∞∫
−∞

N (ξ )μ1 +T (ξ )
ξ − z2

dξ

Φ′
3 (z3) = 0; z1 = x+ μ1y; z2 = x+ μ2y

(2)

where μ1,μ2 are the eigenvalues, derived from the stiffness matrix of the half-space
[1]. The corresponding stresses are thus known and computed as: -

σxx = 2Re
[
μ2

1 Φ′
1 (z1)+ μ2

2 Φ′
2 (z2)

]
σyy = 2Re

[
Φ′

1 (z1)+Φ′
2 (z2)

]
σzz = − 1

a33
(a13σxx +a23σyy +a63τxy)

τxy = −2Re
[
μ1Φ′

1 (z1)+ μ2Φ′
2 (z2)

]
τxz = τyz = 0

(3)

For a line load of width 2ε(x-direction) of constant magnitude N per unit length
symmetric about the z-axis acting at an inclination of α with respect to the y-
axis in counter-clockwise direction (Figure 1 (b)), the normal component N (ξ ) =
−N cosα

2ε
(u(ξ +ε)−u(ξ −ε)) , and the transverse component T (ξ ) =

−N sinα
2ε

(u(ξ +

ε)−u(ξ −ε)), where u(ξ −ε) is the Heaviside function indicating the location of
the line load compressive stresses are taken to be negative. Performing the integra-
tions of (2), the complex stress functions are represented by

Φ′
1 (z1) =

N(μ2 cosα + sinα)
4επ i (μ1 −μ2)

Ln

(
z1−ε
z1 +ε

)
,

Φ′
2 (z2) =

−N(μ1 cosα + sinα)
4επ i (μ1 −μ2)

Ln

(
z2 −ε
z2 +ε

)

Φ′
3 (z3) = 0

(4)

which reduce to Flamant’s solution for an isotropic half space as demonstrated in
[1]. The complete closed-form stress-field expressions are thus obtained by sub-
stituting Equation (4) in (3). It should be noted that there exists a mathematical
singularity at (±ε , 0) due to the assumed discontinuous geometry of the line load.
This is circumvented by considering stress-fields sufficiently away from the singu-
larity zone.
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Stress-Analysis Example
UD-FRP Graphite/Epoxy (Gr/Ep) laminate with E11 = 160.65 GPa, E22 = 9.62

GPa, E33 = 9.62 GPa, G12 = 6.32 GPa, G13 = 6.32 GPa, G23 = 3.58 GPa, ν12 =
0.2965, ν13 = 0.2965 and ν23 = 0.342 has been used in the present investigation.
Based on the stress fields derived, a few variables have been identified to perform
a parametric analysis, namely (1) Fiber-orientation θ of the UD-FRP laminate; (2)
magnitude of load N acting on the UD-FRP laminate; (3) the angle α that the load
makes with the vertical axis; and (4) magnitude of width 2ε of the line load. Fiber
orientation θ has been identified as the most significant parameter. To this end,
the variation of stress-fields with respect to fiber-orientation has been discussed in
detail. For the sake of conceptual understanding, the magnitude of N has been set to
unity to facilitate comparisons among the various cases. Additionally, the stresses
are evaluated at locations in x− y space representative of non-integer multiples of
half-width of load profile ε . C.W. Liu’s [7] erstwhile work of 1950 provides the
basis for the present analysis.

The stress distributions σxx, σyy and τxy at various depths due to a constant
line load profile of width 20 μm have been plotted for 0o, 45o, 90o and 135o fiber-
orientation in Figures 2 through 6 respectively. α = 45o loading scenario as a
combination effect of 0o and 90o cases has been looked at. The x- and y- coordi-
nates are normalized with respect to the half-width of line load profile ε . Strictly
speaking, as in [7], the magnitude of α would depend on the friction coefficient
and the specific problem at hand. However, in this investigation the α’s are chosen
arbitrarily in order to characterize the behavior of stress fields, and only one case
has been enumerated for brevity.

σyy distribution evolution for α = 0o has been enumerated in figure 2. The stress
fields are found to be symmetric about x/ε = 0 with the maximum stress magni-
tude occurring at x/ε = 0 for 0o and 90o fiber orientations. Also σyy is found to
decrease more rapidly with increased depth (y/ε) for θ = 0os compared to θ = 0o.
This can be attributed to the fact that for θ = 0o, the fibers are aligned along the
direction of the load application therefore load transfer is not as effective as in
θ = 0o. The “fiber” phase is the load carrying member and the “matrix” phase
is the load-transferring member of any composite system. This rationale explains
some of the salient stress-fields characteristics enumerated in this paper. If the load
acts along the direction of the fibers, the stress-dispersion would be minimal. Con-
versely, if the load is acting perpendicular to the fibers (or along the matrix so to
speak) the stress-dispersion would be maximal. Here stress-dispersion indicates
how fast the stress magnitudes decrease or decay. For example, σyy distribution
for θ = 0o exhibits higher stress-dispersion as compared with σyy distribution for
θ = 90o. Another thing to note here is the fact that σyy has been specified at the
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Figure 2: Variation of σyy due to line load distributions on a width 2ε of 20 μm
with respect to x/ε for Normal Load Case (α = 0o).

boundary y = 0. Therefore, when we look at the σyy distribution across the depth,
the stress-dispersion becomes an important parameter. For θ = 45o and 135o, the
maximum occurs approximately along the direction of the fiber orientation and the
stress-fields are no longer symmetric, however, they seem to be mirror images.
Also interesting to note is that the stress fields for θ = 45o and 135o are indica-
tive of the respective fiber orientations. This observation highlights the preserva-
tion of inherent stiffness characteristics along the respective fiber direction of an
UD-FRP laminate despite the quasi-homogeneous assumption postulated during
problem formulation thereby revalidating the model. Similar inferences have been
drawn for σyy distribution for α = 90o and have therefore not been included here.

Figure 3 depicts σyy distribution for α = 45o or the combination load case.
Being in the domain of linear elasticity, we would expect the stresses for the com-
bination load case to be a sum of the α = 0o and 90o cases. Figure 4 demonstrates
such an addition of stress-fields for θ = 0o laminate under the application of hori-
zontal and normal load cases to replicate the results for the combination load case.
Such an addition of stress-fields would be valid for all fiber-orientations and can be
demonstrated as for θ = 0o laminate. Due to such a superposition, the stress-fields
do not exhibit the symmetry as observed for normal and horizontal cases. We see
that while both compressive and tensile stresses exist for 90o/135o laminates, only
compressive stresses exist for 0o/45o laminates.

σxx distribution for combined load case has been shown in Figure 5. The ad-
ditive effects demonstrated for σyy distribution in Figure 4 hold true here as well.
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Figure 3: Variation of σyy due to line load distributions on a width 2ε of 20 μm
with respect to x/ε for α = 45o.
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Figure 4: Stresses acting in fiber-orientation θ = 0o due to combination load have
been demonstrated as a sum of stresses due to normal and tangential load cases
since the stress-field generation lies in the purview of linear elasticity.

Both compressive and tensile stresses are in play although the magnitude of tensile
stress is very small for 45o laminate. The 45o/135o laminate stress fields cease to
be mirror images due to the additive stress effects.

Finally, Figure 6 depicts the evolution of τxy distribution for the combined
load case. Most FRPs have a lower shear strength values as compared with ten-
sile or compressive strengths in parallel/perpendicular fiber directions. Therefore,
the magnitude of τxy is of great importance in ascertaining the failure behavior of a
given FRP laminate which will be dealt with in subsequent works.
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Figure 5: Variation of σxx due to line load distributions on a width 2ε of 20 μm
with respect to x/ε for Combination Case (α = 45o).
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Figure 6: Variation of τxy due to line load distributions on a width 2ε of 20 μm with
respect to x/ε for Combination Load Case (α = 45o).
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Conclusions and Future work
The basic idea behind this investigation has been to observe and compare the

corresponding stress fields in different fiber orientations due to a constant applied
line load. The variation in the stress fields among the various fiber-orientations
results due to the anisotropic nature of the half-space under consideration. The re-
lation of stress-fields to failure needs to be looked into in future. And finally, the
applicability of the present problem to edge-trimming process in UD-FRP lami-
nates needs to be addressed.
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