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Incompressible Viscous Flow Simulations Using the
Petrov-Galerkin Finite Element Method
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Summary
The applications of a finite element scheme to three-dimensional incompress-

ible viscous fluid flows are presented. The scheme is based on the Petrov-Galerkin
weak formulation with exponential weighting functions. The incompressible Navier-
Stokes equations are numerically integrated in time by using a fractional step strat-
egy with second-order accurate Adams-Bashforth scheme for both advection and
diffusion terms. Numerical solutions for flow around a circular cylinder and flow
around a railway vehicle in a tunnel are presented.

Introduction
From the computational point of view, the numerical simulations of three-

dimensional viscous fluid flows up to high Reynolds number are indispensable in
science and engineering fields. Numerical instabilities have been experienced in
the solution of incompressible Navier-Stokes equations at a high Reynolds num-
ber. To stabilize such calculations, various upwind schemes have been successfully
presented in finite difference and finite element frameworks [1,2].

We have developed a finite element scheme based on the Petrov-Galerkin weak
formulation using exponential weighting functions for solving accurately and in a
stable manner the flow field of an incompressible viscous fluid up to high Reynolds
number regimes [3,4]. The Navier-Stokes equations are semi-explicitly integrated
in time by using a fractional step strategy, and hence split into the advection-
diffusion eqution and linear Euler-type equtions. As the time-marching scheme, we
adopt effectively the second-order accurate Adams-Bashforth explicit differencing
for both advection and diffusion terms.

The purpose of this paper is to present the application of the Petrov-Galerkin
finite element scheme using exponential weighting functions to various flow prob-
lems in three-dimensional incompressible viscous fluid. The workability and valid-
ity of the present approach are demonstrated through flow around a circular cylinder
[5-10] and flow around a railway vehicle in a tunnel up to high Reynolds number.

Statement of the Problem
The motion of an incompressible viscous fluid flow is governed by the Navier-

Stokes equations in dimensionless form. By applying the time splitting technique
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to the set of equations, we can split formally the problem into the following two
parts :

u̇i(ũi,un
i )+u jui, j =

1
Re

ui, j j in ℑ×Ω (1)

u̇i(un+1
i , ũi) = −p,i , ui,i = 0 in ℑ×Ω (2)

In these expressions, ui is the velocity vector component, p is the pressure, Re
is the Reynolds number, ũi is the auxiliary velocity vector, and un

i denotes the value
of ui at time level nΔt, where Δt is a time increment.

Petrov-Galerkin Finite Element Formulation
Let us now consider the Petrov-Galerkin finite element formulation using ex-

ponential weighting functions [4] to equation (1). By applying the divergence the-
orem to the weighted residual form of equation (1), and after some manipulations,
we have the following weak form :

∫
Ωe

{
u̇i(ũi,un

i )+u jui, j
}

MαdΩ+
∫

Ωe

1
Re

ui, jNα , jdΩ =
∫

Γe

τiNα dΓ (3)

where τi ≡ ui, jn j/Re, Ωe is a subdomain of the whole domain Ω, Γe is the boundary
on the subdomain, and Mα denotes the weighting function given by

Mα(x) = ∑
γ ,i

Nα(x)e−ai(Nγ xγ
i −xα

i )

ai = αi| Li | sgn(vi)

⎫⎪⎬
⎪⎭ (4)

where Nα is the shape function in three dimensions, vi is the velocity vector av-
eraged in Ωe, Li is the reference length for xi-directions, αi is the upwinding pa-
rameters which control an effect of the upwinding, and sgn(vi) denotes the signum
function.

At this stage, by using the second-order accurate Adams-Bashforth strategy as
a time integration scheme, we have the finite element system of equations [4]. On
the other hand, the conventional Galerkin finite element formulation can be applied
to solve numerically the set of equation (2).

Numerical Examples
In this section we present numerical results obtained from applications of the

above-mentioned numerical method to incompressible viscous flow problems. In
our numerical performances, we adopt the lowest interpolation functions in which
the velocity and the scalar potential are piecewise trilinear, and the pressure is con-
stant over each element. The initial velocities are assumed to be zero everywhere
in the interior domain.
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Flow around a circular cylinder
We shall consider the flow around a circular cylinder. Fig.1 shows the geome-

try with the boundary conditions, the finite element mesh, and the configuration of
the closed wake of the flow around a circular cylinder. The Reynolds number,Re,
based on the uniform velocity,U0, at the inflow and the diameter,D, of the cylinder
is up to 106. The parameters that characterize the finite element approximation
are summarized in Table 1. Fig.2 shows the streamlines and pressure fields at
early times around the cylinder in horizontal x1x2−section at x3 = 2.0 for differ-
ent Reynolds numbers up to 9500. The quantitative comparisons of the main wake
length and the twin vortex characteristics behind the cylinder are shown in Fig.3.
For the Reynolds numbers of 550 and 3000 our numerical results are in good agree-
ment with the experimental data [5] and other numerical data [6,7]. For Re = 9500
our predictions of the main wake length are slightly defferent to the experimen-
tal data [5], while the present results are similar to the other numerical data [6].
Fig.4 shows the instantaneous streamlines and pressure fields around the cylinder
in the horizontal center cross-section for different high Reynolds numbers. From
these results, it is interesting that the separation points on the cylinder shift on the
leeward at Re = 5×105. As a result, it is clear that the width of the wake is con-
siderably narrower than those up to subcritical Reynolds number of 105. In Fig.5,
we give the time-averaged pressure distributions along the surface of the cylinder
for several Reynolds numbers, and also compare with the experimental data [8,9].
The peak magnitudes of our profile at Re = 105 seem to be overestimated conspic-
uously in comparison with the experimental data [8], while the agreement between
the present and the peak magnitudes of other experimental data using a short cylin-
der appears satisfactory. At Re = 5×105, the present results are in good agreement
with the experimental data [9]. In Fig.6 we give the time-averaged drag coefficient,
Cd, and the Strouhal number, St , through comparison with experimental data [8]
and other numerical solutions [2,10]. The minimum value of the present drag coef-
ficients is 0.4572 at Re = 5×105. The correlation between the present results and
some other data appears satisfactory except the solutions of 2D flow simulations up
to Reynolds number of 104. The present results for the Strouhal number are also
qualitatively similar to the experimental data.

Table 1: A summary of the parameters
Re Nodes Elements lmin �t αi

550 179,970 168,000 0.00341 0.001 0.2
3000 179,970 168,000 0.00341 0.002 0.4
9500 179,970 168,000 0.00341 0.002 0.4
104 179,970 168,000 0.00341 0.002 0.4

105 −106 179,970 168,000 0.00341 0.002 1.0
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(a) Geometry and boundary
conditions

(b) Finite element mesh (c) Configuration of the
closed wake

Figure 1: Flow around a circular cylinder

(a) Re = 550 (b) Re = 3000 (c) Re = 9500

Figure 2: Streamlines and pressure fields

(a) Re = 550 (b) Re = 3000 (c) Re = 9500

Figure 3: Main-wake length and the characteristics of a twin vortex
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(a) Re = 104 (b) Re = 105 (c) Re = 5×105

Figure 4: Streamlines and pressure fields

Figure 5: Time-averaged pressure distributions

Flow around a railway vehicle in a tunnel
As the second example, we shall consider the flow around a railway vehicle

for different shapes. Fig.7 shows the geometry, the boundary conditions, and the
finite element mesh of the flow around a railway vehicle. The Reynolds numbers,
Re, based on the uniform velocity, U0, at the inflow and the diameter of the wheel,
D, are 105 and 106, respectively. The parameters that characterize the finite el-
ement approximation are summarized in Table 2. Fig.8 shows the instantaneous
streamlines around rear and side surfaces of the railway vehicle for Re = 105 and
106. The corresponding pressure fields are shown in Fig.9. From the streamlines
at Re = 106(see Fig.8(b)), there appears to have the flow behavior in x1-direction
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(a) Drag coefficients (b) Strouhal numbers

Figure 6: Time-averaged drag coefficients and Strouhal numbers

behind the railway and the longitudinal vortices are appeared in the downstream
region of the railway vihicle.It is also clear from the pressure field(see Fig.9(b)). In
Fig.10 we give the distributions of Powell’s sound source term, ∇ · (ω ×u). Here,
Powell’s sound source term is a value acquired from the right-hand side of Pow-
ell equation, ∂ 2ρ/∂ t2 −a2

0∇2ρ = ρ0∇ · (ω ×u). It turns out that the noises occur
mainly near the front and top-edge regions of the railway vehicle.

Table 2: A summary of the parameters
Case Nodes Elements lmin Δt αi

1 368,760 310,940 0.024 0.01 0.25
2 453,442 386,040 0.024 0.01 0.25

(a) Geometry and boundary conditions (b) Finite element mesh(Case 2)

Figure 7: Flow around a railway vehicle in a tunnel

(a) Re = 105 (Case 1) (b) Re = 106 (Case 2)

Figure 8: Instantaneous streamlines

Conclusions
We have presented a finite element scheme for solving numerically three-dimen-
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(a) Re = 105 (Case 1) (b) Re = 106 (Case 2)

Figure 9: Instantaneous pressure fields

(a) Re = 105 (Case 1) (b) Re = 106 (Case 2)

Figure 10: Distribution of sound sources

sional incompressible Navier-Stokes equations. The scheme is based on the Petrov-
Galerkin finite element formulation using exponential weighting functions. The set
of equations is numerically integrated in time by using the second-order accurate
Adams-Bashforth strategy for both advection and diffusion terms.

As the numerical examples, flow around a circular cylinder and flow around a
railway vehicle in a tunnel are simulated up to high Reynolds number regimes. The
numerical results for flow around a circular cylinder are qualitatively and quanti-
tatively in good agreement with experimental data and other numerical ones. The
numerical results also demonstrate that the present approach is capable of solving
three-dimensional incompressible Navier-Stokes equations in a stable manner up
to high Reynolds numbers.
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