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Summary
An adaptive three-dimensional mesh refinement method based on the law of

mass conservation has been introduced and tested using some analytical velocity
fields as accurate in identifying singular point, asymptotic plane and drawing closed
streamlines. This paper further investigates the adaptive mesh refinement method
using a velocity field that is due to a uniform strain and a point vortex. Similar
results have been obtained.

Introduction
Adaptive mesh refinement is one of the key issues in Computational Fluid Dy-

namics. There are a large number of publications on mesh adaptive refinements and
their applications. The Berger-Oliger method is one of the well-known adaptive
mesh refinements [6]. The refinement criterion for this method is local truncation
errors. As the solution progresses mesh points with high local truncation errors
are flagged. Fine meshes are created such that all the flagged points are interior to
some fine mesh. The method suits for solving hyperbolic partial differential equa-
tions on structured computational domains and the refinement factor is the same in
both space and time. The method has been extended to other applications [e.g. 5, 4,
1]. The other common methods include h-refinement (e.g. [13]), p-refinement (e.g.
[2]) or r-refinement (e.g. [14]), with various combinations of these also possible
(e.g. [7]). The overall aim of any adaptive algorithm is to allow a balance to be
obtained between accuracy and computational efficiency.

From a different point of view, an adaptive mesh refinement method based on
the law of mass conservation for three-dimensional incompressible or steady flows
has been created [10, 11]. The corresponding two-dimensional adaptive mesh re-
finement method was proposed in [8, 9]. We assume that f is a scalar function
depending only on spatial variables such that its product with the linear interpola-
tion of velocity fields at the nodes of a tetrahedron satisfies the law of mass conser-
vation on the tetrahedron. The criteria for mesh refinement are the conditions for
scalar functions f . The adaptive mesh refinement method for three-dimensional in-
compressible or steady flows in [10] has been investigated through some analytical
velocity fields and the corresponding CFD velocity fields that take the values of the
analytical velocity fields at the nodes of meshes. The advantages of the adaptive
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mesh refinement method include: (1) identify singular point, asymptotic plane; (2)
draw accurate closed streamlines; (3) control the accuracy by a threshold number
T.

We will further investigate the adaptive mesh refinement method in [10, 11]
with a velocity field that due to a uniform strain and a point vortex [3].

The Velocity Field
Let a non-axisymmetric strain be

U∗ = (αx∗,βy∗,γz∗) , α+β+γ=0, α ≤ β ≤ γ (1)

where an asterisk denotes dimensional variables [3]. We suppose that the magnetic
Prandtl number is small:

Pm = ν
/

η � 1

where ν is the kinematic viscosity and η is the magnetic diffusivity. Hence, we
have the point vortex in polar coordinates

ψ (r,θ ) ∼− 1
2π

lnr. (2)

The components of the dimensionless velocity fields that due to the uniform strain
(1) and the point vortex (2) in cylindrical coordinate system (r, θ , z) are

ur = −1
2

εmr (1+ λ cos2θ ) , uθ =
1

2πr
+

1
2

εmλ r sin 2θ , uz = εmz

where the parameter εm is the reciprocal of a magnetic Reynolds number and λ is a
non-negative parameter measuring the non-axisymmetry of the strain field (1). The
details of the velocity field can be found in [3].

The Adaptive Mesh Refinement Method
This section reviews the adaptive mesh refinement method proposed in [10].

The adaptive refinement method is for each element in a mesh. Fig.1 is a hexahedral
element of a mesh. The conditions for mesh refinement (MC) are for tetrahedra
only. The following process describes how to use the conditions (MC) to refine a
hexahedral element in a given initial mesh.

Let Vl be the linear interpolation of a CFD velocity field at a tetrahedron. It is
unique if the volume of the tetrahedron is non-zero [10, 12].

The refinement process is as follows.

1. Subdivide a hexahedron into five tetrahedra as shown in Fig. 2 and check if
Vl satisfies the law of mass conservation on all these tetrahedra. If yes, no
refinement for the hexahedron is required. If no, go to Step 2.
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Figure 1: A hexahedral
element.

Figure 2: Tetrahedral
subdivision of a hexahe-
dron.

Figure 3: Initial mesh
Figure 4: A streamline for λ=0.3
and εm = 1.

2. Apply the conditions (MC) to all of the tetrahedra in Fig. 2. If the condi-
tions (MC) are satisfied on these tetrahedra, there is no need to subdivide the
hexahedron. Otherwise, we subdivide the hexahedron into a number of small
hexahedral elements such that the lengths of all sides of the small hexahedral
elements are truly reduced (e.g. half).

3. Take the smaller hexahedra in the subdivided hexahedron as new elements
of the mesh by replacing the initial element in Fig. 1 and repeat these three
steps until a pre-specified threshold number T is reached.

In this paper, we subdivide a hexahedron into eight equal hexahedra as the same as
in [10].

Refined Meshes
This section presents the refined meshes for the velocity field described in Sec-

tion 2. Only the projections of the refined meshes on the (x, y) plane are shown
as in [3] because we are interested only in the structure of the velocity field on the
plane. These refined meshes identify the complicated regions of the velocity field
by comparing the streamlines and the refined meshes. Because the velocity field
has no definition at the origin, a square with side 0.1 unit and center at origin is cut
off from the square [-2 2]×[-2 2]. The initial mesh for all refinements is shown in
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Figure 5: Streamlines for λ=0.3. Figure 6: Refined mesh for
λ=0.3.

Figure 7: Streamlines for λ=0.6. Figure 8: Refined mesh for
λ=0.6.

Figure 9: Streamlines for λ=0.9. Figure 10: Refined mesh for
λ=0.9.

Fig. 3. Fig. 4 shows the streamline of the velocity field with seed point (2, -2).
Fig. 5, Fig. 7, and Fig. 9 show the streamlines of the velocity fields drawn by
Matlab function ODE45 with the seed points on the boundaries of the square [-2
2]×[-2 2]. Fig. 6, Fig. 8, and Fig. 10 show the refined meshes for T=6, εm = 1 and
λ = 0.3, 0.6 and 0.9, respectively.

From Fig. 5, 7, and 9, the projections of the streamlines increasingly strongly
converge toward the origin, i.e., the z axis in three-dimensions, as λ increases.
From Fig. 6, 8, and 10, we may understand that the refined meshes in the middle
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regions shrink toward the origin, i.e., the z axis, when λ increases; also the two
high density regions of nodes above and below x-axis move toward x-axis on both
sides when λ increases. The latter characteristic of the refined meshes is similar
to that of the streamlines shown in Fig. 5, 7, and 9. We may conclude from the
examples in [10] that we could draw accurate streamlines if the refined meshes are
used.
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