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Summary
We use a finite element formulation of the level set method to model the evolu-

tion of the free surface of axi-symmetric spreading flows of highly viscous media
on a horizontal plane. We consider specifically the growth of a lava dome as an
example however similar problems also occur in flows involving the spreading of
molten metals or ceramics. Here we restrict ourselves on constant viscosity fluids
for simplicity. In real lavas or melts the viscosity is highly temperature dependent.
This manifests itself in the formation of thin predominantly elastic-plastic bound-
ary layers along the free (cold) surfaces of the spreading flows. In our model we
follow Iverson [23] who assumes that the thin boundary layer behaves like an ideal
plastic membrane shell enclosing the free surface. The effect of the membrane
shell is then formally identical to a surface tension-like boundary condition for the
normal stress at the free surface.

Introduction
The thermo-mechanical behavior of fluids in the vicinity of interfaces often

differs from the behavior in the bulk of the fluid. Typical reasons for this are an
imbalance between the various intermolecular forces resulting in surface tension or
a strong temperature dependent viscosity leads to the existence of a brittle elastic
crust with a thickness dependent on the ratio of the thermal diffusion time to the
characteristic time scale of the flow (Peclet number). If the thickness of the crust
is small compared to the smaller of the principal curvature radii of the surface then
bending effects may be negligible and the crust can be modeled like a brittle-elastic
membrane. The thickness of the membrane varies along the surface depending on
the exposure time of the surface. Surface tension is modeled in a similar whereby
the membrane stresses usually are assumed as constant or dependent on the temper-
ature or solute concentrations only (e.g. Adamson [20]). Structural elements such
as membranes, shells and plates are relatively easy to model on the basis of the
level set method since geometric quantities such the curvature radius are straight
forward to calculate from the level set function. It should be mention that models
involving bending stiffness such as shells and plates are somewhat more compli-
cated to model since they include fourth order spatial derivatives. Membranes and
surface tension models involve only second order derivatives. In the following we
illustrate how level sets can be used to characterize not only the free surface of an
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axi-symmetric lava dome but also model in a simplified way the influence of the
brittle cold boundary layer.

Lava domes are steep-sided mounds of lava. They form during an eruption
when the extruded lava is so viscous that it cannot flow freely away from the vent.
Their propensity to collapse in a hazardous manner Voight [18] makes them of
concern to the surrounding area. Improved models are required to better understand
this phenomenon.

Model Formulation
The lava dome is modeled as an axi-symmetric viscous continuum. The gov-

erning equations read:

(r (2ηvr,r −P)),r + r (η(vr,z +vz,r)),z −2η vr
r +P + r fr = 0

r (2ηvz,z −P),z +(rη(vr,z +vz,r)),r + r fz = 0
(1)

, where P is the lava pressure, (r,z) are the coordinates of the cylindrical coordinate
system, (vr,vz)are the corresponding velocities, η is the shear viscosity which we
assume as constant for simplicity and ( fr, fz)are volume forces. We also assume
that on the time scale of interest elastic volume changes can be neglected so that

vr,r +vz,z +
vr

r
= 0 (2)

For the modeling of surface effects we also need to solve the heat equation

ρcp (T,t +viT,i) =
1
r

(rkT,i),i , i = (r, z) (3)

,where ρ is the lava density, cpis the heat capacity at constant pressure and kis the
thermal conductivity. Boundary conditions for (1)-(3) will be introduced at the end
of this section.

The model geometry and the assumed boundary conditions are represented in
Figure 1.

The fluid surrounding the lava dome is modeled as an incompressible low-
viscosity medium. The pressure P0 at the inlet is assumed as constant. In our
simulations we concentrate on cases where l >> a (compare Figure 1).

For the surface of the lava dome we adopt the assumption made by Iverson [23]
in connection with a model for brittle shells enclosing pressurized magma. Iverson
assumes that the stress resultants of the membrane are both equal to the tensile
strength of the membrane σT , which is assumed as constant, times the thickness
d of the membrane. This simplifies the treatment of the membrane significantly
since no membrane strains need to be calculated. The strength parameter σT d be-
comes the effective surface tension acting on the cold boundaries of the lava dome.
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Figure 1: Model geometry and boundary conditions

It should be mentioned that Iverson’s assumption is consistent with plastically ad-
missible stress states of a Mohr-Coulomb medium. The relationship between the
normal stress exerted by the lava on the membrane and the membrane stresses reads
[22]:

pn =
nss

Rs
+

nφφ

Rφ
wherepn = −σi jnin j , i, j = (r, z) (4)

In (4) pn is positive in compression; nss and nφφ are the stress resultants (inte-
grals of normal stress over the membrane cross-section) in the direction of s and in
ring direction (out of plane in Figure 2) respectively; Rsis the curvature radius in
the plane containing the s-direction and the surface normal vector n. The radius Rφ
is the projection of the radial coordinate onto n (Figure 2).

Figure 2: Definition of curvature radius in the n−φ plane
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Inserting nss = nφφ = σT dinto (4), yields

pn = σT d(
1
Rs

+
1

Rφ
) (5)

We use the half space cooling model [21] as a simple means to estimate the mem-
brane thickness. In this model (using notations as appropriate for the present appli-
cation) the halfspace is initially at temperature T = Tlava everywhere except at the
free surface where the temperature is kept at T = Tair. As time processes the thermal
surface gradient decreases from infinite at t = 0 to zero at t = ∞. Turcotte and Schu-
bert [21] define the thickness of the thermal boundary layer as the distanced from
the free surface into the interior of the half space where (T −Tlava)/(Tair−Tlava)has
dropped from 1.0 to 0.1. The result reads d = 2.32

√
κt where

√
κt is the charac-

teristic thermal diffusion distance. The membrane thickness d is associated with a
material point the position of which needs to be traced in a computational simula-
tion. Thickness values can also be assigned in a simplified way to spatial surface
locations by using the relationship between the thermal surface flux and the char-
acteristic thermal diffusion time. We have

q = −kT,ini (6)

Where k is the thermal conductivity and ni is the surface normal vector. From the
half space cooling solution we obtain the following relationship:

d = 2.32k(Tlava−Tair)/q (7)

The Level Set Method
Level set methods are computational techniques for tracking moving interfaces

[12-15]. They rely on an implicit representation of the interface whose equation of
motion is numerically approximated using schemes built from those for hyperbolic-
conservation laws. A scalar function φ is initialized over the domain as a “signed”
distance function with respect to the interface with a constant gradient of unity,
i.e. |φ,i| = 1. The interface is represented as the zero level-set of this function. At
each time step, once the velocity v is solved, the new φ is calculated by solving the
advection equation:

φ,t +v ·∇φ = 0 (8)

The property of φ being a distance function is not preserved in general during
advection i.e. |φ,i| �= 1 after some time steps. Therefore a re-initialization procedure
is required to restore the |φ,i|= 1 property. If at time t the level set function is to be
re-initialized we follow Sussman et al. [13] and solve:

ψ,τ = sign(φ )(1−|∇ψ |), (9)



Free Surfaces Modeling Based on Level Sets 229

where ô is an artificial time. Solving the above equation to a steady state and
usingψ(τ = 0) = φ (t) as an initial condition, the solution will have the same zero
level set as φ (t) and will be a real distance function(|∇ψ | = 1). It should be noted
that equation (9) can also be written as a non-homogeneous advection equation as:

ψ,τ +w ·∇ψ = sign(φ ) with w = sign(φ )
∇ψ
|∇ψ | (10)

Finite Element Implementation
The modeling library escript has been developed as a module extension of the

scripting language Python to facilitate the rapid development of 3-D parallel sim-
ulations on the Altix 3700 [Davies et al, 2004]. The finite element kernel library,
Finley, has been specifically designed for solving large-scale problem and has been
incorporated as a differential equation solver into escript. In the escript program-
ming model Python scripts orchestrate numerical algorithms which are implicitly
parallelised in escript module calls, without low-level explicit threading implemen-
tation by the user.

Results
Simple benchmark test for level set with surface tension

We consider a closed surface with surface tension embedded in a viscous medium.
In Figure 3 we have represented the unfolding process from the initial distorted
shape to the energetically preferred spherical shape. The relationship between the
pressure jump Δp across the surface and the radius at equilibrium reads ΔpR = nT

where nT is the surface tension. The latter relationship was satisfied to a maximum
relative error of the pressure jump of 5%.

Figure 3: Level set representation of the evolution of an initially distorted surface
with surface tension to the energetically preferred spherical shape

Lava dome evolution
In figure 4 we compare the influence of the presence of a stabilizing membrane

on the surface of an evolving lava dame on its shape. The shape of the dome with
an enclosing membrane (Figure 4 , right) is more rounded; but more significantly
and contrary to the situation without a membrane, there exists a steady state where
the size and shape of the dome is in equilibrium with the applied pressure.
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Figure 4: Lava dome without (lefty) and with surface tension (right)

Conclusion
We employed a finite element formulation of the level set method to model

the evolution of lava domes. It should be pointed out that similar problems also
occur in flows involving the spreading of molten metals or ceramics. The viscosity
of solidifying fluids is highly temperature dependent. In spreading flows where
the free surface is in contact with a cooling fluid (air) this manifests itself in the
formation of a thin, highly viscous or viscous-elastic plastic boundary. From a
computational modeling point of view the appropriate resolution of the thin layer
either requires an extremely fine computational mesh, dynamic mesh refinement
around the cold boundary layer or, and this is what we have chosen to do here,
the thin layer is represented as a structurally distinct membrane shell while the
lava enclosed by the membrane is modeled as a constant viscosity fluid. Following
Iverson [23] we assume that the thin boundary layer behaves like an ideal plastic
membrane shell. The effect of the membrane shell is then formally identical to a
surface tension-like boundary condition for the normal stress at the “free” surface.
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