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Boundary Point Method applied for calculating elastic
strain and stress in bodies with cracks

J. Bernal1, S. Kanaun2 and V. Romero1

Summary
A new numerical method for the solution of integral equations of the theory of

elasticity for bodies with cracks is developed. The method is based on a class of
Gaussian approximating functions that simplify essentially the construction of the
final matrix of the linear algebraic system of the discretized problem. The results of
the application of the method to some plane problems of elasticity were compared
with the exact solutions and some other numerical solutions that exist in literature.

Introduction
In this Study we develop a new numerical method for the solution of the inte-

gral equations of the second boundary value problem of elasticity for bodies with
cracks. The method is based on a class of Gaussian approximating that are Gaus-
sian type functions concentrated in tangent planes to the surface of the body at
some number of surface nodes. The idea to use these functions for the solution of a
wide class of the integral equations of physics belongs to V. Maz’ya. The theory of
approximation Gaussian functions was developed in the works of V. Maz’ya[1,2].
These functions were used for the solution of a static problem of elasticity for an
infinite medium with thin inclusions and cracks. In this work we present some
numerical results for elasticity problems in bodies with cracks.

The second boundary value problem of elasticity for bodies with
cracks

Let us consider the numerical solution of the elasticity problem for a straight
crack that occupies an interval (|x| < l, y = 0) in an infinite plane. The plane is
subjected to stress field σ0 (x) at infinity. The integral equation of this problem
takes form:

∫
Γ

n(x) · [S(x−x′) ·n(x′)] ·b(x′)dΓ′ = −n(x) ·σ0, f or x ∈ Γ (1)

where Γ is the crack line.

For a constant stress field directed along y axis (σ0 = e2 ⊗e2) the exact solu-
tion of this equation takes the form b0 (x) = b0 (x)n where b0 (x) =

√
1−x2 and

n = e2 is a normal to the crack line. The error R(x) = bn (x)− b0 (x) of the nu-
merical solutions for various numbers of the nodes on the crack line is presented in
Fig.1. It is seen from these graphs that the maximum of the error is concentrated in

1Universidad del Caribe. Dpto. De Ciencias Básicas e Ingeniería.
2Instituto Tecnológico y de Estudios Superiores de Monterrey , CEM.



190 Copyright c© 2007 ICCES ICCES, vol.3, no.4, pp.189-194, 2007

the vicinities of the crack tips. But the asymptotics of the solution near the crack
tips give us important information for engineering applications. It is known [3, 4]
that the exact jump b(x) of the displacement vector on the crack has the following
asymptotic near the crack tip.

b(x) = β
√

r +O
(

r3/2
)

(2)

 

Figure 1: Error R(x) of the numerical
solution in the problem for a straight
crack in a infinite plane.

 

Figure 2: Local coordinate system in
the crack tip.

Here r is the distance between point x ∈ S and the crack tip (Fig. 2). The
components βs, βn of the vector β in Eq. (2) are connected with stress intensity
factors KI and KII by the equations [3,4] KI =

√
2πβn

μ0
4 ; KII =

√
2πβs

μ0
4(1−v0)

and the asympotics of components σ22 and σ12 of the stress tensor near the crack tip
have the following well known forms σ22 = KI√

2πρ +O(1) ; σ12 = KII√
2πρ +O(1) .

In order to calculate vector coefficient β in Eq. (2) and the stress intensity
factors with high precision we have to modify the above developed method. This
modification is based in the theorem of polynominal conservativity [4]. This theo-
rem allows us to find the solution of the integral equation of the crack problem in
the form:

b(x) = Bm (x)
√

l2 −x2; Bm (x) = a1 +a2x+a3x2 + ...+amxm−1, (3)

Let us introduce a set of auxiliary nodes in the crack line x( j)
a ( j = 1, 2, ..., Ma)

and use these nodes for gaussian approximation of the function b(x) in the Eq. (3).

b(x) =
m

∑
k=1

ak

Ma

∑
j=1

(x( j)
a )k−1B0(x( j)

a )
1√
πD

exp

⎡
⎢⎣−

(
x−x( j)

a

)2

Dh2
a

⎤
⎥⎦ (4)
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where B0 (x) =
√

l2 −x2 and ha is the distance between auxiliary nodes. For a
good approximation of b(x) the number Ma should be sufficiently large (Ma > 50) .
After substituting Eq. (4) for b(x) in Eq. (54) in reference [5] it has been found that

the components of the stress tensor presented in Eq. (69) [5] depends of a(k)
s , a(k)

n

that are the components of the vectors ak in Eq. (3) in the local basis (s, n) ak =
a(k)

s s+a(k)
n n.

The components of the forces that act on the crack line take the forms

fs (x) = σ0
12 (x, 0)+

m

∑
k=1

Sk
12 (x, 0) a(k)

s ; fn (x) = σ0
22 (x,0)+

m

∑
k=1

Sk
22 (x,0)a(k)

n , (5)

and if the crack sides are free from stress we have

fs (x) = fn (x) = 0, |x| ≤ l (6)

In order to obtain 2m unknowns a(k)
s and a(k)

n in Eq. (3) let us satisfy Eqs. (5)
and (6) in m nodes on the crack line (the main nodes ). The final system of the
equations for a(k)

s and a(k)
n takes the form

m

∑
k=1

Sk
12

(
x(l), 0

)
a(k)

s = −σ0
12

(
x(l), 0

)
;

m

∑
k=1

Sk
22

(
x(l), 0

)
a(k)

n = −σ0
22

(
x(l), 0

)
,

(7)

for l = 1, 2, ..., m. Here x(l) are coordinates of the main nodes on the crack line.

Let us consider the numerical solution of the system (7) when the applied field
is a constant tension along y−axis. σ0

11 = σ0
12 = 0 and σ0

22 = 1.For m = 5,Ma = 50
and homogeneous distribution of the main nodes (l = 1)

x( j)
a = −1+

(
j− 1

2

)
ha, ha = 2

Ma
,

f or j = 1,2, ...,Ma,

x(k) = −1+
(
k− 1

2

)
, h = 2

m ,

f or j = 1,2...,m,

the solution of the system (7) is a(k)
s = 0, for k = 1, 2, ...,5, and a(1)

n = 0.9912,

a(2)
n = 0, a(3)

n = 0.0037, a(4)
n = 0, a(5)

n = 0.0048. Taking into account that the
exact solution of this problem has form b0 (x) = b0 (x)n, therefore a(k)

s = 0, for

k = 1,2,3, ...,5, and a(1)
n = 1, a(k)

n = 0, for k = 2,3, ..,5, we see that the error of the
numerical solution is less than 1% in this case.

In the case of a finite rectangular area with a central straight crack subjected to
a constant tension in y−direction .The solution of this problem can be found in the
form
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σ (x,y) =∫Γc
[S(x−x′,y−y′) ·n(x′,y′)] ·bc

(
x′,y′

)
dΓ′+

∫Γb
[S(x−x′ ,y−y′) ·n(x′,y′)] ·bc

(
x′,y′

)
dΓ′,

(8)

where the first integral is spread over the crack line Γc and the second integral is
over the external border of the area Γb.

Using Eqs. (4) for the presentation of the vector bc (x) we have to choose a

set of auxiliary nodes x( j)
a ( j = 1, 2, ..., Ma) on the crack line as well as the power

m−1 of the polynominal Bm (x) in Eq. (3). Then the coordinates of m main nodes
on the crack line should be defined and the boundary conditions are satisfied at
these nodes. Let us enumerate the main nodes on the crack line from 1 to m . We
have also to define the nodes on the external boundary of the body where vector
b(x) is approximated in reference [5]. The numeration of the latter nodes is from
m+1 to M , where M is the total number of the main nodes. As a result, the stress
tensor σ (x,y) in the global basis (e1,e2) is approximated by the Eq. (5) that follows
and Eqs. (43)-(46) in reference [5]:

σ (x, y) = σ11e1 ⊗e1 +σ12 (e1 ⊗e2 +e2 ⊗e1)+σ22e2 ⊗e2

where σ11,σ12,σ22 are defined in Eq. (46) in reference [5].

The forces f(x) = n(x) ·σ (x) , forx ∈ S on the surface of the body and crack
surfaces are calculated from Eq. (9).

The values of these forces at the main nodes have the following forms in the
local bases

(
s(i),n(i)

)

f
(

x(i),y(i)
)

= f (i)
s s(i) + f (i)

n n(i), (9)

The final system for unknown coefficients a(k)
s ,a(k)

n that define the solution b(x)
on the crack line and coefficients b(i)

s ,b(i)
n in the nodes on the external boundary of

the area follows from the boundary conditions and takes the form:

2M

∑
l=1

Bc
klXl = Fk, f or k = 1, 2, ..., 2M (10)

The solution of Eq. (10) was obtained for various sizes of the rectangle and
the crack lenghts. In Fig. 3 the graphs of the functions σ22 (x,0) are presented for
a = 2 (length of plate),b = 3 (height of plate), and l = 1 (length of crack). The
number of auxiliary nodes on the crack line was chosen as Ma = 70, the number of
the main nodes was m = 5 and m = 27,47,67. The increasing of the number of the
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auxiliary nodes and the main nodes does not change the solution. The results of the
calculation of stress intensity factors in the crack tips are presented in Fig. 4.

 

Figure 3: Distributions of the stress
components σ22(x,0) along the crak
line.

 

Figure 4: Stress intensity factors for a
central crack in rectangular plane area.

In this figure k (α ,ω) = KI
K∞

I
= βn

β ∞
n

= Bm
n (l) , ω = a

b , α = l
a

where Bm
n (l) is the normal component of the vector Bm (x) defined in Eq. (3),

K∞
I and β ∞

n are stress intensity factor KI and coefficient βn that correspond
to an infinite plane with the crack length l. Solid lines in Fig. 4 are numerical
solutions presented in Ref. 6 (the precision is 1%), dashed lines are numerical
solutions obtained by the developed method. For ω = 0.5 the following numbers
of nodes were used: m = 5, Ma = 70, and M = 105, and for ω = 1.5, m = 11, Ma =
70, M = 71. Numerical results in Fig. 4 were obtained for these coordinates of the
main nodes on the crack line.

Conclusions
The numerical method developed in this work is an effective tool for the so-

lution of the second boundary value problem of elasticity. The accuracy of the
method depends on the density of he nodes on the body surface. In the developed
version of the method the distances between the neighbor nodes were chosen the
same. The method allows also to consider non homogeneous distributions of the
nodes on the surface of the considered body [5, 6].

The area of possible application of the method is in all the problems of mathe-
matical physics that can be reduced to the solution of integral equations. A future
development of the method is the solution of Elasto-Plastic problems for bodies
with cracks in 2D and 3D cases.
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