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A comparison of the RBF-based meshfree boundary knot
and the boundary particle methods

W. Chen!
Summary
This paper is concerned with the two new boundary-type radial basis function

collocation schemes, boundary knot method (BKM) and boundary particle method
(BPM). The BKM is developed based on the dual reciprocity theorem, while the
BKM employs the multiple reciprocity technique. Unlike the method of funda-
mental solution, the two methods use the non-singular general solution instead of
the singular fundamental solution to circumvent the controversial artificial bound-
ary outside the physical domain. Compared with the boundary element method,
both BKM and BPM are meshfree, super-convergent, integration-free, symmetric,
and mathematically simple collocation techniques for general PDEs. In particu-
lar, the BPM does not require any inner nodes for inhomogeneous problems. In
this study, the accuracy, efficiency, and applicability of the two methods are nu-
merically tested to some 2D, 3D Helmholtz, diffusion, and convection-diffusion
problems under complicated geometries. Their advantages and disadvantages are
compared and discussed based on numerical observations.

keywords: boundary knot method; boundary particle method; radial basis
function; meshfree.

Introduction
In last decade much effort has been devoted to developing a variety of mesh-

free schemes for numerical partial differential equation (PDE) discretization. The
driving force behind the scene is that the mesh-based methods such as the standard
FEM and BEM often require prohibitively computational effort to mesh or remesh
in handling high-dimensional, moving boundary, and complex-shaped boundary
problems. Most meshfree techniques available today are based on using moving
least square (MLS) strategy. In their weak-form fashion, a shadow element is still
necessary for numerical integration rather than for function interpolation. There-
fore, these methods are not truly meshfree.

The methods based on the radial basis function (RBF) are inherently meshfree
due to the fact that the RBF method uses the one-dimensional distance variable
irrespective of dimensionality of problems. Therefore, the RBF methods are in-
dependent of dimensionality and complexity of problem geometry. Nardini and
Brebbial!l in 1982 have actually applied the RBF concept to develop currently
popular dual reciprocity BEM (DR-BEM) without a notion of “RBF”. Only af-
ter Kansa’s pioneer work 2/ in 1990, the research on the RBF-based numerical
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schemes for PDEs has become very active. The RBF-based meshfree techniques in
the collocation fashion are all truly meshfree without the need of any mesh at all.

Among the existing RBF schemes, the so-called Kansa’s method is a domain-
type collocation technique, while the method of fundamental solution (MFS), also
known as the regular BEM versus singular BEM, is a classical boundary-type RBF
collocation methodology. The MFS outperforms the standard BEM in its merits be-
ing integration free, convergence speed, easy-to-use, and meshfree.’) On the other
hand, the main drawback of the MFS is due to the use of the fictitious boundary
outside the physical domain. The arbitrariness in the determination of the arti-
ficial boundary introduces such troublesome issues as instability in dealing with
problems having complicated geometry and impedes the efficacy of the MFS to
practical engineering problems.

Instead of using the singular fundamental solution, Chen and Tanakal! ex-
ploited the non-singular general solution to the approximation of the homogeneous
solution and removed the controversial artificial boundary in the MFS. Like the
MEFS and DRBEM, the new method also employs the dual reciprocity method to ap-
proximate the particular solution. This method is called the boundary knot method
(BKM). Some preliminary numerical experiments*>) show that the BKM can pro-
duce excellent results with relatively a small number of nodes for various linear
and nonlinear problems. Kang et all® and Chen et al”-8! also developed a meshfree
collocation scheme via the nonsingular general solution to calculate the eigenvalue
problems. Their method is in essence very similar to the BKM in the evaluation of
the homogeneous solution. The differences lie in that the BKM has a symmetric
formulation [9] for the problems having mixed boundary conditions and can also
solve the inhomogeneous and nonlinear problems. In the BKM, the RBF of differ-
ent types can be used to evaluate the particular solution without the requirement of
mesh. In general, the fundamental and the general solutions of PDE problems can
also be considered the radial basis function.

On the other hand, in recent years the multiple reciprocity BEM (MR-BEM)!!%!
has attracted much attention in the BEM community. The method uses high-order
fundamental solutions to approximate high-order homogeneous solutions and then
get the particular solutions. By analogy with the MR-BEM, Chen" introduced the
meshfree boundary particle method (BPM) which combines the RBF and the mul-
tiple reciprocity principle to formulate a simple and truly boundary-only meshfree
collocation method. The BPM surpasses the MR-BEM in that the method is much
easier to program, inherently meshfree, integration-free, and super-convergent ob-
served in a number of numerical experiments. In particular, compared with the
MR-BEM, the computing cost in the BPM has been dramatically reduced thanks to
an recursive multiple reciprocity scheme introduced by Chen!!!l. By analogy with
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Fasshauer’s Hermite RBF!'2/| a symmetric BPM formulation is also developed!!'].

The advantages and disadvantages of the MR-BEM relative to the DR-BEM are
that it does not use inner nodes at all for general inhomogeneous problems but that
its mathematical formulation is more complicated and may require more computing
cost in some cases. Both the techniques can produce satisfactory solutions for a
wide variety of engineering problems. As the MR-BEM versus the DR-BEM['3],
the purpose of this study is to distinguish the basic strategies of the BKM and the
BPM. Through testifying these two new methods to some typical 2D and 3D PDE
problems, we compare their advantages and disadvantages. The rest of this paper is
organized as follows. In sections 2 and 3, we give a brief introduction of the BKM
and the BPM, followed by section 4 for numerical results and discussions. Finally,
section 5 draws some conclusions based on results reported here.

Boundary knot method
To clearly illustrate our idea, consider the following example without loss of
generality

R{up=f(x), xeq, (1)
u(x)=R(x), xCSy, (2a)
du(x)
P N(x), xCSr, (2b)

where R is a differential operator, x means a multi-dimensional independent
variable, and 7 is the unit outward normal. The solution of Eq. (1) can be expressed

as
U= up~+up,, 3)

where u;, and u, are the homogeneous and the particular solutions, respectively.
The latter satisfies

R{up} = f(x), 4)
but does not necessarily satisfy boundary conditions. To evaluate the particular
solution, the inhomogeneous term is approximated first by

N+L
AOEWTIO! (5)
j=1
where A; are the unknown coefficients. N and Lare respectively the numbers of
knots on the domain and the boundary. The use of interior points is usually neces-
sary to guarantee the accuracy and convergence of the BKM solution. r; = Hx —X; H
represents the Euclidean distance norm, and ¢ is the radial basis function. By forc-
ing approximation representation (5) to exactly satisfy Eq. (4) at all nodes, we can
uniquely determine

A=A f ()}, (©6)
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where A, is the nonsingular RBF interpolation matrix. Finally, we can get the
particular solutions at any point by summing localized approximate particular so-
lutions

u,,_’]fgw(ux_x,“), )

where the RBF ¢ is related to the RBF ¢ through operator R. Substituting Eq. (6)
into Eq. (7) yields

up =PA, {f (x))}, (8)

where @ is a known matrix comprised of ¢ (r;;).

On the other hand, the homogeneous solution u has to satisfy both the govern-
ing equation and the boundary conditions. Unlike the dual reciprocity BEM!' and
MFESP! using the singular fundamental solution, the BKM*5) approximates u;, by
means of the corresponding nonsingular general solution, namely,

L
x) =Y ogu® (ry), )

where £ is the index of source points on boundary; u* is the nonsingular general
solution of operator R. oy are the desired coefficients. Collocating Egs. (1) and
(2a,b) at all boundary and interior knots in terms of representation (8) and (9), we
have the unsymmetric BKM schemes. For the sake of brevity, the details are omit-
ted herel*3). In order to get a symmetric BKM scheme for self-adjoint operators,
we modify the BKM approximate expression (9) to the homogeneous solution uy,

asl®
Ly Ly+Ly a
= Z asu I"b Z A = ) ) (10)
s=1 s=Lg+1 dn

where 7 is the unit outward normal as in boundary condition (2b), and L; and Ly
are respectively the numbers of knots at the Dirichlet and the Neumann boundary
surfaces. The minus sign associated with the second term is due to the fact that
the Neumann condition of the first order derivative is not self-adjoint. In terms of
expression (10), the collocation analogue equations (1a) and (2a,b) are written as

Ly N Lg+Ly ou® ( )7 N '
> a (ris) = Y, ag = R(x;) —up (%), (11)
s=1 s=Ly+1

& ou (r]b) ba ‘92”#(’7&‘) a”p (xj)

S0 2000 TS (P i -2

s=1
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Ly Lty oyt (11
Zasu#(rls)— Z as% = —up(xg). (13)
s=1 S:Ld-‘rl n

The system matrix of the above equations is symmetric if operator R{} is self-
adjoint. Note that i,s and j are reciprocal indices of the Dirichlet (S,) and the
Neumann boundary (Sr) nodes./ indicates response knots inside domain Q. After
the solution of the above simultaneous algebraic equations, we can employ the ob-
tained expansion coefficients o and inner knot solutions u; to calculate the BKM
solution at any knots. It is stressed here that the MFS could not produce the sym-
metric interpolation matrix at all.

The present form of the BKM uses the expansion coefficient rather than the

direct physical variable in the approximation of the boundary value. Therefore, this
fashion of the BKM is called as the indirect BKM.

Boundary particle methods
Just like the DR-BEM, the interior nodes are usually necessary in the BKM

for inhomogeneous problems. A recent rival with the DR-BEM is the MR-BEM®],
which applies the multiple reciprocity principle to circumvent the domain inte-
gral without using any inner node in general. In this section, we will develop a
boundary-only RBF scheme called the boundary particle method ') with the mul-
tiple reciprocity principle.

The multiple reciprocity method assumes that the particular solution in Eq. (3)
can be approximated by a sum of the higher-order homogeneous solutions, namely,

w=up+u) =up+ Y uy, (14

m=1

where superscript m is the order index of the homogeneous solution. u2 and ug
are equivalent to the homogeneous solution u;, and the particular solution u,, in Eq.
(3). Through an incremental differentiation operation via operator R{}, we have
successively higher order differential equations:

u) (x;) = R (x;) — ud (x;
{ 0 (1) = R (x) _’352&) | s

= ) R fuh (o
i)} a(f(x_,)_i};(){u}, X)) (15b)

R () p =R f ()} — Rl (x)
{ a%n_'{uﬁ?x.f} 9(9‘"‘2{f(xf)}a_w_'{”Z(i)}) } », m=23,... (159
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where R"{ } denotes the n-th order operator R{}, say R' { }=RR°{}, and RO { }=R{},
i and j are respectively the Dirichlet and the Neumann boundary knots. u), is the
n-th order of the particular solution defined as

wy="Y uj. (16)
m=n+1

The m-order homogeneous solution is approximated by
L
ujt (x) = By (). (17)
k=1
where L is the number of boundary nodes, and u!, the corresponding m-th order gen-

eral solutions. Collocating boundary equations (15a,b,c) only on boundary nodes,
we have the boundary discretization equations

3 B () =R ()~ ()

0 oy ¢ =b (18a)
3 B2 = ) — )
S, BISO {u (ra)} = £ (1) — RO {ucd (x)}
A o — b, (18b)
L g i)} _ a()-2 ()}
P on on
S ol =w ) w ey |
= R 2 f eV L (s =b", n=2,73,...
éﬁ;a% {stw)} _ 20 ()} o))
(18c¢c)

In terms of the MR-BEM, the successive process is truncated at some order M,
namely, let

R} =o0. (19)
The practical solution procedure is a reversal recursive process:
B =B = = B (20)
It is noted that due to
Rty ()} = wj (o), P2}

the coefficient matrices of all successive equations are the same, i.e.,

oBr=b", n=M,M~—1,...,1,0, (22)
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Thus, the LU decomposition algorithm is suitable for this task. Finally, the
resulting solution is given by

M L
u(xi) =, > Biuy (rie). (23)
n=0k=1
The BPM differs from the BKM in how to evaluate the particular solution. The
former applies the dual reciprocity method, while the latter employs the multiple
reciprocity method. The advantage of the BPM over the BKM is that it dose not re-
quire interior nodes which may be especially attractive in such problems as moving
boundary, inverse problems, and exterior problems. It is expected that like the MR-
BEMUB!, the truncated order M in the BPM may not be large (usually two or three
orders) in a variety of practical uses. The above form of the BPM is unsymmetric.
It is rather straightforward to derive the symmetric BPM schemeby replacing Eq.
(17) with a representation similar to Eq. (10) and thus, matrix Q in Eq. (22) will be
symmetric if operator R{} is self—adjoint“ 1,
Numerical experiments and discussions
Figs. 1 and 2 display the 2D and 3D irregular geometries to be tested, which
respectively include a triangle cut-out and a two-ball (radii=1, center distance=+/2)
cavity. Unless specified Neumann boundary conditions shown in Fig. 1 and on
x=0 surface in Fig. 2, the otherwise boundary are all Dirichlet type. The BKM
employs 9 inner nodes for all 2D inhomogeneous case as shown by small crosses
in Fig. 1. We applied equally spaced knots on the boundary except on the two-ball
surface where the random knots were employed. The Helmholtz and the steady
diffusion-reaction equations

Viu+ v u = f(x), (24a)
Viu—1tlu= q(x), (24b)

and the steady convection-diffusion equation
DV?u(x) —ve Vu(x) — xu(x) = g (x), (25)

are examined, where v denotes a velocity vector, 7 is the Thiele parameter, D the
diffusivity coefficient, K represents the reaction coefficient. For the 2D tested ex-
amples in this study, the accurate solutions are

u=x sinxcosy (26)

for a 2D inhomogeneous Helmholtz problem (y = v/2), and

U= xte 26+y) (27)
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for a 2D inhomogeneous steady convection-diffusion problems (D=1, v, = v, =
v,=-2, k¥=0,). For 3D tested cases, the accurate solutions are

U = Sinxcosycosz (28a)
and u=e %4 9 £ % (28b)

respectively for the 3D homogeneous Helmholtz (y = /3) and the convection-
diffusion (D=1, v, = vy, = v,=-0, k=0, Peclet number is 24 for o=1 and 480 for
0=20) problems. The corresponding inhomogeneous function f(x), g(x), g(x) and
boundary conditions can easily be derived accordingly. The above problems have
been tested in refs. [4,11]. In this study, both the BKM and BPM are used to
solve these problems to compare merits and demerits of either method. For the
convection-diffusion problems, the Peclet number Pe is defined as

ik
Pe=11 29
e =7 (29)
where [ is the characteristic length. For the aforementioned examples, the Peclet
number is 16 for the 2D convection-diffusion problem, 24 for ¢ =1 and 480 for
0=20 in the 3D cases.

The high-order general solutions of Helmholtz, diffusion, and convection-diffusion
problems are respectively given by

@ (r) = A (yr) T e (1) (30)
wh (r) = A (Tr) P L (T), 31)
wh (1) = Ay (ur) PP Ly (), n>2, (32)

where 7 is the dimension of the problem; m denotes the order of the general
solution; J and I respectively represent the Bessel and the modified Bessel functions
of the first kind; A,, = A1/ (2xm*y?), Ag=1;

u=[(/2D)+x/D)| 3 (33)

For the 2D and 3D cases, the Bessel functions in formulas (30-32) can be restated
by sine and exponential functions in an explicit way[4=1 U In this study, the second-
order high order general solutions are used as the radial basis function in the BKM
approximation of the particular solution. The L, norms of relative errors are cal-
culated by the numerical solutions at 364 nodes for 2D and 500 nodes for 3D. The
absolute error is taken as the relative error if the absolute value of the accurate
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Fig. 1. Configuration of a square with a trigeometric catout
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Fig. 2. A cube with a two-ball cavity

solution is less than 0.001. Note that different numbers and locations of inner and
boundary nodes are used for BKM and BPM coefficients and for L, norm of relative
erTors.

Numbers inside parentheses in all tables below indicate the numbers of the
boundary plus the inner nodes used by the respective method. The experimental
results of the 2D Helmholtz problem are displayed in Table 1. It is found that both
methods produce very accurate solutions with a small number of nodes. Like the
DR-BEM, the BKM is found somewhat sensitive to the location and the number of
inner nodes, while the BPM does not need any inner nodes at all.
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Table 1: L, norm of relative errors for the 2D inhomogeneous Helmholtz problem

by the BKM and the BPM
BKM | 1.9¢-3 (26+9) | 9.3e-5 (3349)
BPM | 2.8e-3 (26) 6.8e-4 (33)

The BKM and BPM results for the 2D steady convection-diffusion problem are
listed in Table 2. It is noted that the peak solution accuracy of the BKM and the
BPM is around 0.0001. It is observed that the BKM seems to perform more stable
than the BPM in this case despite more computing effort.

Table 2: L, norm of relative errors for the 2D inhomogeneous steady convection-
diffusion problem by the BKM and the BPM

BKM | 1.9¢-3 (19+9) | 2.4e-4 (26+9)
BPM | 1.6e-3(19) 2.4e-4 (26)

2.37e-4 (3349)
3.9¢e-3 (33)

Table 3 illustrates the numerical results for the 3D problems by the BKM. Rel-
ative to the previous 2D case, the 3D case requires more nodes due to not only
one more dimension but also larger computational domain and more complicated
boundary surface. It is noted that the solution accuracy for a higher Peclet num-
ber tends to be better. On the other hand, despite the fact that the present BPM
scheme produces very accurate solution of the 2D problems, the method can not
get the correct solution of the 3D problems. The cause of this failure is still under
investigation.

Table 3: L, norm of relative errors for 3D homogeneous Helmholtz and convection-
diffusion problems by the BKM.
Helmholtz

4.6e-3 (298)

1.7e-4 (466)

Convection-diffusion (Pe=24)

9.0e-3 (136)

2.2e-3 (298)

Convection-diffusion (Pe=480)

8.8e-15 (136)

6.8e-15 (178)

Conclusions

The BKM and the BPM circumvent the troublesome singular integral inherent
in the BEM and are very easy to learn and program. For the same applications, both
methods produce the solutions of similar accuracy. In addition, both techniques are
essentially meshfree, spectral convergence and symmetric. It is noted that unlike
the MR-BEM, the BPM does not need to generate more than one interpolation
matrix via the recursive multiple reciprocity technique, which significantly reduces
the computing effort and storage requirements. In some cases, the BPM requires
less computing effort than the BKM thanks to the recursive multiple reciprocity
technique. In addition, the solution accuracy of the BKM also depends largely on
the proper choice of the RBF and the number and the location of inner nodes to
evaluate the particular solution. As of the stability, the BKM performs better than
the BPM in this study. In particular, the BPM has failed to solve the 3D problems
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by now.

Similar to the comparisons between the DR-BEM and MR-BEM[!3), the BKM
may be mathematically more simple and generally more applicable than the BPM,
while the latter has advantage not requiring inner nodes for inhomogeneous prob-
lems and is very suitable for problems whose higher-order homogeneous solution
quickly tends to zero. In contrast, the BKM appear more flexible in general en-
gineering applications. The major drawbacks of both the BKM and the BPM are
severely ill-conditioned and costly full matrix for large discretization equations,
which may significantly be eased by some preconditioning techniques such as the
fast multipole, panel clustering, and H matrix methods, a subject still under inten-
sive investigation.
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