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New Basis Functions and Their Applications to PDEs
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Summary
We introduce a new type of basis functions in this paper to approximate a scat-

tered data set. We test our basis functions on recovering the well-known Franke’s
function given by scattered data. We then use these basis functions in Kansa’s
method for solving Helmholtz equations. To demonstrate our proposed approach,
we compare the numerical solutions with analytic solutions. The numerical results
show that our approach is accurate and efficient.

Introduction
The main goal of our paper is to present a new type of basis functions for

solving various types of science and engineering problems. These basis functions
can be used for the following two purposes: 1) to approximate scattered data on
regular or irregular domains; 2) to be used as basis functions in solving partial
differential equations (PDEs). Let us briefly review both approaches.

We consider the boundary value problem,

L [u] = f (x), x =(x1,x2) ∈ Ω ⊂ R
2,

B [u] = g(x) , x ∈ ∂Ω, (1)

where Ω is a simply connected domain bounded by a simple closed curve ∂Ω, L
and B are the differential operators on u over the interior of Ω and the boundary ∂Ω
respectively. We assume that the operator L is of the elliptic type.

In the framework of boundary methods the influence of the solution by the in-
homogeneous term f in (1) can be transferred to boundary and the problem then can
be solved by standard boundary techniques (see [1], [2], [3] for more detailed in-
formation). Following this approach both the accurate approximation of the source
term f and the easiness of the derivation of a close form particular solution are
important.

Recently, a new approach called Embedded Boundary Method (cf.[10], [11]) is
developed for the same purpose. Suppose the following linear differential operator
is considered:

L =
k

∑
k1,k2=0

Ak1,k2

∂ k1+k2

∂xk1
1 ∂xk2

2

,

where Ak1,k2 are constants. We assume that the solution domain Ω is embedded
in a rectangle D. If the inhomogeneous term f (x1,x2) can be extended from Ω
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to the rectangle D so that the extended function f̃ (x1,x2) is spatially periodic and
belongs to the C∞ class of functions everywhere within and on the rectangle, then
a particular solution can be found in the form of the Fourier series. The paper is
focused on the approximation problems where f is given at some irregular set of
data points X ⊂ Ω. We have "the extension of the third kind" when f is not known
outside Ω, according to Boyd’s classification [10].

The basis functions IM,χ(x,ξ) suggested in [5] have the form of the truncated

series IM,χ(x,ξ) =
M
∑

n=1
cn(ξ )ϕn(x) over an orthogonal system ϕn(x) defined on

some rectangle D. In particular the trigonometric functions and their products can
be used for this purpose. In this way, we can extend f from Ω to D. This is exten-
sion of the third kind because we use the data from the initial domain only.

The basis functions IM,χ(x,ξ) essentially differ from zero only inside some
neighborhood of the center point ξ . The size of this neighborhood depends on the
parameters M,χ . From this point of view they are similar to the compact supported
radial basis functions (CS-RBF) [4] and they can be used for solving PDEs in the
framework of Kansa’s or straight collocation method [12]. To examine such appli-
cation of IM,χ(x,ξ ) is the second purpose of our paper. In the second half of this
paper, we solve a Helmholtz equation using such approach.

The outline of this paper is as follows: we begin with a brief description of the
basis functions IM,χ(x,ξ) in Section 2. In Section 3, We utilize the basis functions
IM,χ(x,ξ) to approximate some given scattered data on an irregular domain Ω and
obtain an extension over a square D. The Franke’s function is reconstructed and
extended from a star shaped region to a squared region. In Section 4, a set of the
basis functions IM,χ(x,ξ ) is used in Kansa’s method for solving PDEs. We solve a
Helmholtz equation to demonstrate the effectiveness of our proposed approach.

Delta-shaped Basis Functions
For simplicity, let us dwell on the 1D case and assume that all the functions

considered are defined in the interval [−1,+1].
Let {ϕn(x),μn} be a solution of the Sturm−Liouville problem on the interval

[−1,+1] :

−d2ϕ/dx2 = μϕ, ϕ (−1) = ϕ (+1) = 0, (2)

The solutions {ϕn(x),μn} of (2) are ϕn(x) = sin(nπ(x+1)/2) μn = (nπ/2)2. They
satisfy the following conditions: 0 < μ1 < μ2 < ... < μn → +∞; the eigenfunctions
{ϕn(x)}∞

n=1 form an orthogonal system on [−1,+1] with a scalar product,

∫ +1

−1
ϕn(x)ϕm(x)dx =

{
1, if n = m,

0, if n �= m.
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According to the algorithm presented in [5] we get the basis function:

IM,χ(x,ξ) =
M

∑
n=1

[
1−

(
n

M +1

)2
]χ

ϕn(ξ )ϕn (x) ≡
M

∑
n=1

cn (ξ )ϕn (x) , (3)

where

cn(ξ ) = rnϕn(ξ ), rn =

[
1−

(
n

M +1

)2
]χ

ϕn(ξ ),

and χ is an integer for the purpose of regularization. Notice that IM,χ(x,ξ) is a
Delta-shaped function.

The multi–dimensional Delta-shaped basis functions can be obtained as prod-
ucts of the 1D Delta-shaped functions (3). For example, the 2-D Delta-shaped
functions are defined as,

IM,χ(x,ξ ) = IM,χ (x1,ξ1)IM,χ(x2,ξ2).

In Fig. 1 we show the graphs of the 2D Delta-shaped functions I20,6(x,ξ ) and
I40,12(x,ξ ) with the first centered at ξ1 = (−0.25,−0.25) and the second centered
at ξ2 = (0.25,0.25). We note that for the basis functions IM,χ(x,ξ ) the parameter
M plays the role of the scaling factor. When we increase M, the support of the basis
function decreases as is shown in Fig. 1.
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Figure 1: The functions I20,6(x,ξ ) and I40,12(x,ξ ) centered at (−0.25,−0.25) and
(0.25,0.25) respectively

We note that IM,χ(x,ξ ) satisfy the same boundary conditions as the eigenfunc-
tions {ϕn(x)} which form it,

IM,χ(±1,ξ ) = IM,χ(x,±1) = 0. (4)

The regularizing method described above can be applied to any solution of a
Sturm−Liouville problem.
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Approximation
We approximate the scattered data {xi, fi} by the linear combination

f̃ (x) =
K

∑
j=1

p jIM,χ(x,ξ j)

of basis functions IM,χ with fixed value for each of the parameters M and χ . We get

the following system to determine the unknowns
{

p j
}K

j=1 .

fi =
K

∑
j=1

p jIM,χ(xi,ξ j), xi ∈ X ⊂ R
d, 1 ≤ i ≤ N, (5)

where d is either 1 or 2.

Due to the condition (4) the functions IM,χ(x,ξ ) vanish on the boundary of
the square Ω0 = [−1,1]× [−1,1]. Neither the data points {xi} nor the centers{

ξ j
}

can be placed close to ∂Ω0. Thus we assume that the set of the data points
{xi}N

i=1 is embedded in the square D = [−0.5,0.5]× [−0.5,0.5]. If this is not the
case originally, appropriate translation and scaling operations may be performed to
make it so.

Solving the linear system we let the number of centers K be approximately
twice as small as the number of collocation points N and use the least squares
method to solve the resulting overdetermined system. In particular the algorithm
of Housenholder transformation is used to transform the matrix of Equation (5) to
upper triangular form. See [6] for more details.

We would like to draw the reader’s attention to the following property of the
approximation with the basis functions described. When the unknown coefficients{

p j
}

in (5) are determined, we can re-write the approximation in the form of series
over the trigonometric functions {ϕn(x)}:

f̃ (x) =
M

∑
n1,n2=1

Fn1,n2ϕn1(x1)ϕn2(x2),

where

Fn1,n2 =
K

∑
j=1

p j

[
1−

(
n1

M +1

)2
]χ [

1−
(

n2

M +1

)2
]χ

ϕn1(ξ1, j)ϕn2(ξ2, j).

EXAMPLE 1. In this example, we reconstruct the Franke’s function which is widely
used as a test function for surface reconstruction in radial basis functions [7]. The
Franke’s function was defined initially on the rectangle [0,1]× [0,1]. However, for
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our purposes it should be re-scaled to D = [−0.5,0.5]× [−0.5,0.5] which can be
expressed as follows:

F (x) = 3
4 exp

(
− (9x1+2.5)2+(9x2+2.5)2

4

)
+ 3

4 exp
(
− (9x1+5.5)2+(9x2+5.5)2

49

)
+1

2 exp
(
− (9x1−2.5)2+(9x2+1.5)2

4

)
− 1

5 exp
(
−(9x1 +0.5)2 − (9x2 −2.5)2

)
.

The function F(x) is approximated in a star shaped region Ω. The parametric
equation of boundary curve ∂Ω is given by

x1 = 0.25(cos t)
(
1+cos2 4t

)
, x2 = 0.25(sint)

(
1+cos2 4t

)
, t ∈ [0,2π ].

The data points {xi}N
i=1 ,the centers

{
ξ j

}K
j=1, and the test points {tk}Nt

k=1 are chosen
with the help of SOBSEC{} routine [8] which generates pseudorandom numbers.
We use the center points of the type I30,9(x,ξ ) , I40,12(x,ξ ) and I50,14(x,ξ ) for
N = 500 , N = 1000 and N = 2000 data points correspondingly. The squared error

Esq =

√√√√ 1
Nt

Nt

∑
k=1

[
F (tk)− f̃ (tk)

]2
(6)

is computed with the total number of test points Nt = 500. The results are placed in
Table 1.

N K F
500 250 1.0 ·10−4

1000 500 6.5 ·10−7

2000 1000 2.1 ·10−8

Table 1: The squared error Esq in the approximation of Franke’s function.

Straight Collocation (Kansa’s Method)
The basis functions IM,χ(x,ξ ) can be used for solving PDEs in the framework

of the Kansa’s approach [12]. We consider using a set of center points
{

ξ j
}K

j=1

that corresponds to the basis functions
{

IM,χ(x,ξ j)
}K

j=1 . Let {xi}N
i=1 be a set of

collocation points in Ω of which {xi}N1
i=1 are interior points and {xi}N

i=N1+1 are
boundary points. An approximate solution ũ(x) of the boundary value problem (1)
is looked for in the form:

ũ(x) =
K

∑
j=1

p jIM,χ(x,ξ j). (7)
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K Esq EXsq EYsq

50 2.8E-03 3.7E-03 4.3E-03
100 1.5E-05 6.4E-05 7.2E-05
200 1.3E-05 6.2E-05 6.4E-05
400 1.1E-05 5.3E-05 5.2E-05
500 9.0E-06 4.4E-05 4.3E-05
600 6.8E-06 3.2E-05 3.2E-05

Table 2: The squared error of the computed solution and its first order derivatives

The collocation system arises when satisfying the governed equation and the bound-
ary conditions at the collocation points:

K

∑
j=1

p jL(x)
[
IM,χ(xi,ξ j)

]
= f (xi) ,1 ≤ i ≤ N1 (8)

K

∑
j=1

p jB(x)
[
IM,χ(xi,ξ j)

]
= g(xi) ,N1 +1 ≤ i ≤ N. (9)

We denote by L(x) and B(x) the operators acting on IM,χ viewed as a function of
the first argument. In general K ≤ N and the least squares method could be used
to solve it. Thus the basis functions are just

{
B(x)

(
IM,χ(x,ξ j)

)}K
j=1

for boundary

points and
{

L(x)
(
IM,χ(x,ξ j)

)}K
j=1

for interior points from (8) and (9).

We demonstrate the effectiveness of the proposed algorithm by carrying out a
numerical test with the following modified Helmholtz equaiton.

EXAMPLE 2. We consider the modified Helmholtz equation

Δu− pu = f (x) , x ∈Ω
u(x) = g(x) , x ∈ ∂ Ω

with Ω = [−0.5,0.5]× [−0.5,0.5]. Let p = 10, the functions f (x) and g(x) be
chosen such that the exact solution of the problem is u = 1

3 exp(−81
(
x2 +y2

)
/16).

We use the set of center points corresponding to IM,χ = I10,4. We randomly
choose K center points of this type inside the square Ω. We also choose N1 =
600 collocation points randomly inside the square and Nb = 100 collocation points
equally spaced on the boundary, with a total of collocation points N = 700 not less
than the total K of the center points of the basis functions.

The squared error (6) is computed with the total of Nt = 200 randomly chosen
test points inside Ω. The results are shown in Table 2. Note that in this Table, Esq

is the squared error of the approximate solution ũ, EXsq is the squared error of ũx,
and EYsq is the squared error of ũy.
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