
Copyright c© 2007 ICCES ICCES, vol.3, no.3, pp.145-150, 2007

A Numerical Method Based On Element Free Galerkin
Method For Lower Bound Limit Analysis

S.S. Chen1, Y.H. Liu1 and Z.Z. Cen1

Summary
A solution procedure for lower bound limit analysis is presented making use

of the element free Galerkin (EFG) method rather than of the traditional numerical
methods such as finite element method and boundary element method. A reduced
basis technique is adopted to solve the mathematical programming iteratively in a
sequence of reduced self-equilibrium stress subspaces with very low dimensions.
Numerical example in this paper shows that it is feasible and efficient to solve the
problems of limit analysis by using the EFG method.

Introduction
The design of engineering structures subjected to external loads demands a re-

alistic assessment of the limit load-carrying capacities, which is a basic requirement
for an economical design. In comparison with elasto-plastic analysis, linear elas-
tic analysis always gives conservative results of engineering problems so that the
load-carrying capacities of the structures cannot be brought into play effectively.
So, elasto-plastic analysis method is more and more widely applied to engineering
problems.

It is worth noting that, to many practical engineering problems, only limit load
and collapse mode are needed. This fact suggests that limit analysis, intended
to determine the load-carrying capacities, is more practical than the elasto-plastic
incremental analysis. Up to now, most of numerical methods for solving limit
analysis problems are based on traditional numerical methods such as finite ele-
ment method [1] and boundary element method [2]. In addition, The element free
Galerkin (EFG) method [3,4] has achieved remarkable progress in recent years and
offers tremendous potential in industrial applications because it requires only nodal
data. Therefore, it is feasible and reasonable to carry out the fictitious elastic stress
field analysis and the elasto-plastic equilibrium iteration by the EFG method.

In this study, a solution procedure is established by using the EFG method
based on the static theorem of limit analysis. A reduced basis technique is adopted
to solve the mathematical programming iteratively in a sequence of reduced self-
equilibrium stress subspaces with very low dimensions. A numerical example is
solved and comparisons with other available solutions are made.

Lower bound theorem of limit analysis
A load set does not exceed the carrying capacity (i.e., the load factor β is not

greater than the safety factor β s, β ≤ β s) if, only if, there exists a stress field that
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simultaneously satisfies equilibrium with the loads and complies with the yield
conditions of the material. Precisely,

β s = maxβ (1a)

s.t. ϕ[β σE
i j (x)+ρi j(x)]≤ 0 ∀x ∈ Ω (1b)

ρi j, j = 0 ∀x ∈ Ω, (1c)

ρi jn j = 0 ∀x ∈ Γt . (1d)

Here β is the load factor, σE
i j (x) the fictitious elastic stress field under the basic

load, ρi j(x) the self-equilibrium stress field and ϕ[·] is the yield function. The con-
straint condition (1b) denotes the yield function, conditions (1c) and (1d) represent
the relations that self-equilibrium stress field ρi j(x) must satisfy within the domain
Ω and on its boundary Γt , respectively.

The element free Galerkin method
The EFG method has been found to be attractive, mainly due to the possibility

of overcoming the drawbacks of mesh-based methods, such as the labor-intensive
process of mesh-generation, locking, poor derivative solutions, etc. Applications
of the EFG method are presented for solving a wide variety of academic and engi-
neering problems [4]. The moving least squares (MLS) approximation employed
to appropriate u(x) in the EFG method can be written as

ΦT (x) = pT (x)A−1(x)B(x) (2)

with the matricesA(x)andB(x)being defined by

A(x) =
n

∑
i=1

wi(x)p(xi)pT (xi) (3)

B(x) =
[

w1(x)p(x1), w2(x)p(x2), · · · , wn(x)p(xn)
]

(4)

where pT (x) is a complete monomial basis function, wi(x) is the weight function
associated with node xi. The commonly used quartic spline function is chosen to
approximate u(x) in this paper.

In the elasto-plastic incremental analysis, the load level when plastic state be-
ginning is first calculated, and this step is completely elastic. After that, plastic will
happen and an incremental loading scheme is adopted with equilibrium iterations
performed for each increment. A step-by-step description of the computational
procedure that is employed for each load increment is as follows:
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1. The incremental displacement Δû(n) for current iteration at loading step
t +Δt can be obtained by solving the incremental form of the equilibrium equation
given as

KepΔû(n) = ΔQ(n) (n = 0,1,2, · · ·) (5)

where
Kep =

∫
Ω

BT DepBdΩ (6)

ΔQ(n) =
∫

Ω
ΦT t+Δt F̄dΩ+

∫
Γt

ΦT t+Δt T̄dΓ−
∫

Ω
BT t+Δt σ (n)dΩ (7)

Here, Dep is the elasto-plastic matrix. It should be mentioned that the essential
boundary conditions are imposed by penalty method in this paper because the MLS
shape functions do not, in general, satisfy the Kronecker delta condition. Then the
incremental strain Δε (n) is computed using the strain-displacement matrix B.

2. The incremental stress Δσ (n) for current iteration at loading step t + Δt can
be given by [5]

Δσ (n) = mDeΔε (n) +
∫ (1−m)Δε (n)

0
Depdε (8)

where De is the elastic matrix. In this paper, the tangent predictor-radial return
algorithm is employed to perform the integration in Eq.(8). Finally, the stress state
can be obtained as

t+Δt σ (n+1) = t+Δtσ (n) +Δσ (n) (9)

3. Check the solutions obtained against a selected tolerance to see if a conver-
gence has occurred. If the solutions of this step touch the convergence condition,
go to next loading step; else go to next iteration step of current loading.

Numerical implementation
According to the reduced-basis technique [6], the resulting mathematical pro-

gramming of the discretized body is as follows

β s = maxβ (10a)

s.t. ϕ[β σE
i +C1ρ1

i +C2ρ2
i + · · ·+CRρR

i ] ≤ 0; i = 1−NG (10b)

Here, R is the number of basis vectors, ρ1
i ,ρ2

i , · · · ,ρR
i are the selected self-

equilibrium stress basis vectors, and C1 −CR are the parameters to be determined,
NG is the total number of Gaussian points of the discretized body.

The whole process of solving this problem can be divided into some sub-
problem. Through computing the equivalent stress at every Gaussian integration
point, we can get the elastic limit load amplifier β E of the body. Then adding a
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load increment Δβ 1 to the body and the body will yield further. After performing
R+1 different equilibrium iterations based on the initial stress method, the R basis
vectors can be obtained as

ρq(1)
i = σ (q−1)

i +DeΔε (q)
i −σ (q)

i −DeΔε (q+1)
i i = 1−NG,q = 1−R (11)

Applying the Complex method to solve the nonlinear programming problem, the
first approximate solution β (1)

max and the corresponding self-equilibrium stress field
ρ (1)

i can be obtained. Then adding the second load increment Δβ 2 to the body, we

can get a group of new basis vectors (i.e. ρ1(2)
i ,ρ2(2)

i , · · ·ρR−1(2)
i ) in the same way.

Then take the self-equilibrium stress field ρ (1)
i of last solution as one basis vector

ρR(2)
i to supplement the above new basis vectors. Through the Complex method,

we also can get the second approximate solution β (2)
max and the corresponding self-

equilibrium stress field ρ (2)
i . Repeating the above solving process, the computation

will be terminated until the following convergence criterion is satisfied

β (n)
max−β (n−1)

max

β (n−1)
max

≤ ε , n ≥ 2 (12)

Here ε is a given error tolerance. Our numerical experiences show that, in general,
when n ≥ 5, β (n)

max is already a very good approximate solution to the actual limit
load factor. According to the numerical experiment, the value of R can be chosen
between 4 and 6, in general.

Numerical example
A classical problem in numerical limit analysis has been chosen to demonstrate

the accuracy and computational effectiveness of the proposed method. This is a
square plate with a central circular hole subjected to biaxial uniform loads P1 and
P2, as shown in Fig.1. The ratio between the diameter of the hole and the length
of the plate is 0.2. Let the yield stress σs = 200MPa, Young’s modulus E = 2.1×
105MPa, Poisson’s ratio v = 0.3.

During the computation, a discretization with 289 EFG nodes is adopted and
the quadratic basis functions are used. The support radius ri is set to be αd9

i , where
α taken as 3.0 in this example is a scaling factor and d9

i is the distance to the ninth
closet neighboring node from node i. In Fig.2, the numerical results by the present
method show reasonable agreement with the lower bound of [7] and slightly lower
than the upper bound of [8].

Conclusions
A numerical solution procedure is proposed for lower bound limit analysis by

the EFG method. A reduced basis technique and the Complex method are adopted
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Figure 1: A square plate with a central circular hole
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Figure 2: The limit load domains of the plate computed by different methods

herein. By doing these, the proposed numerical method yields good results and
reduces the computational cost. A numerical example is given to demonstrate the
efficiency and accuracy of the present method. The extension of present numerical
procedure to shakedown analysis is in progress.
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