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Summary
The Meshless Local Petrov-Galerkin (MLPG) Method is applied to solve large

deformation problems of elasto-plastic materials. In order to avoid re-computation
of the shape functions, the supports of MLS approximation functions cover the
same sets of nodes during the deformation; fundamental variables are represented
in spatial configuration, while the numerical quadrature is conducted in the mate-
rial configuration; the derivation of shape function to spatial coordinate is pushed
back to material coordinate by tensor transformation. For simulating both large
strain and large rotation, the multiplicative hyperelasto-plastic constitutive model
is adopted for path-dependent material. Numerical results indicate that the MLPG
method can solve large deformation and large rotation of elasto-plastic materials
accurately. Moreover, it can simulate the strain localization phenomenon induced
by material instability of strain softening materials.

Introduction
The meshless methods have advantages over FEM in solving problems involv-

ing large deformation and discontinuities. Many kinds of meshless methods have
been proposed, but most of those methods are based on global weak form, and the
global domain quadrature needs background cells. In order to eliminate the neces-
sity of introducing background quadrature cells, the meshless local Petrov-Galerkin
(MLPG) method was developed by Atluri et al [1]. The MLPG method construct
weighted residual formulation on local test subdomain, which can overlap each
other. In this paper, the MLPG method is applied to large deformation problems of
hyperelasto-plastic materials. A nonlinear local weak form for these problems is
developed and linearized, and some numerical examples are provided to verify the
efficiency and accuracy.

Nonlinear MLPG formulation for large deformations problems of
elasto-plasticity

The plasticity deformation is path dependent, so usually the rate form of con-
stitutive equation is used and fundamental variables are represented in spatial con-
figuration. Using variables related to the material figuration, the rate

form of equilibrium equations for the solid subjected to finite deformation is

ṖiJ ,J +ḃi = 0 (1)

where ṖiJ and ḃi are the rates of first Piola-Kirchhoff stress and the body force
respectively.
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According to the weak form over a referential local volume ΩX , using the di-
vergence theorem and neglecting the body force, the local weakform can be written
as ∫

ΩX

ṖiJwi,J dΩ−
∫

Γst

˙̄tiwidΓ−
∫

Γsu+ΓLs

ṖiJwinJdΓ = 0 (2)

where wi are the test functions, nJ are the components of a unit outward normal
to the boundary of the local subdomainΩX , Γstand Γsu are the intersection between
local boundary and global boundary with natural boundary conditions and essential
boundary conditions respectively. ΓLsis the part of local boundary totally inside the
domain. Generally, the local boundary ∂ΩX = ΓLs ∪Γsu ∪Γst and ΓLs ∩Γsu ∩Γst =
/0.

In the MLPG method, assume w to be a Heaviside function, the MLPG5 for-
mulation is deduced, ∫

Γsu+ΓLs

ṖiJnJdΓ+
∫

Γst

˙̄tidΓ = 0 (3)

Now we adopt a rate form constitutive equation as

Lvτmn = cklmnvk,l = cklmndkl (4)

where dkl = 1
/

2(vk,l +vl,k) is the spatial rate of deformation tensor, cklin is the
spatial elasticity tensor.

Considering

ṖiJ = ḞiKSKJ +FiK ṠKJ = (vi,m τmn +Lvτin)F−T
nJ (5)

where FiK is the deformation gradient, andSKJis the second Piola-Kirchhoff stress,
vi,m = ∂vi

/
∂xmis the spatial velocity gradient tensor, τmnis the Kirchhoff stress and

Lvτinis the Lie derivative of the Kirchhoff stress with

Lvτin = τ̇in −vi,m τmn −τimvn,m (6)

the weak form of MLPG5 can be rewritten as
∫

Γsu+ΓLs

(∇vimτmn +cklindkl)F−T
nJ nJdΓ+

∫

Γst

˙̄tidΓ = 0 (7)

The derivation of the spatial configuration in this equation can be transformed to
the material configuration by

∂
∂xi

=
∂

∂XJ
F−1

Ji (8)
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Let n, νdenoted time step and iteration counters respectively, introducing essential
BC using penalty factor α , the incremental equation can be written as

ΔT = (R)n − (T )ν
n (9)

where

T = −
∫

Γsu+ΓLs

τinF−T
nJ nJdΓ + α

∫

Γsu

(ui −ui)dΓ, R =
∫

Γst

˙̄tidΓ (9a)

ΔT = −
∫

Γsu+ΓLs

(
Δui,mτmnF−T

nJ nJ +cklinΔuk,lF
−T
nJ nJ

)
dΓ +α

∫

Γsu

ΔuidΓ (9b)

The multiplicative hyperelasto-plasticity model
When large material deformation occurred, classical hypoelasto-plasticity model

made errors more large and made convergence slowly. Simo [2] has presented a for-
mulation of static and dynamic plasticity at finite strains based on the multiplicative
decomposition which inherits all the features of the classical models of infinitesi-
mal plasticity. In this model, the stress is deduced from strain-energy function, so
the principle of frame invariability is satisfied, a drawback of hypoelastoplasticity,
which require objective stress integration, is avoided, and better convergence can
be achieved.

For static problem, if the yield criterion is pressure insensitive, the plastic de-
formation maintain the same volume, the deformation gradient is decomposed into
a product form written as

FiJ = Fe
iKF p

KJ (10)

whereFeis the elastic part and F pis the plastic part. The left Cauchy-Green defor-
mation tensor and the logarithmic strains can be written as:

be
i j = Fe

iKFe
jK = ∑

m
(λ e

m)2 nin j, εm = log(λ e
m) (11)

where λ e
m are principal strain components.

The Neo-Hookean energy function is used as the free energy function φ =
φ (be,ξ ), ξ is the equivalent plastic strain. Accordingly, the hyperelastic stress-
strain relation is

τ = 2
∂φ (be,ξ)

∂be : be (12)

The von Mises yield criterion of isotropic hardening material, and the correspond-
ing flow rule are:

f (τ , ξ ) =
√

3
/

2 [‖dev(τ)‖−k (ξ )] = 0 (13)
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ḃe = (v∇) ·be +be · (∇v)−2λ̇
∂ f
∂τ

: be (14)

where k (ξ )stands for the hardening law, for linear isotropic hardening material
k (ξ ) = σY +Kξ . The plastic deformation satisfies Kuhn-Tucker conditions:

λ̇ > 0, f ≤ 0, λ̇ f = 0 (15)

This form permits a consistent linearization of the algorithm resulting in optimal
performance when Newton-Raphson solution scheme is used. When simulating the
path-dependent material, a secant Newton method is necessary when the algorithm
consistent constitutive modulus is adopted in the computation.

Numerical examples
1. Large deformation bending of a variable-cross-section beam

A variable-cross-section beam with a hole is simulated under the conditions
that left end is fixed and right end with a displacement uy. The material is con-
sidered to be linear hardening with material constants: E = 206.9 GPa, ν =
0.29006, K = E/10, σy = 0.45GPa. The distribution of von Mises stress ob-
tained by FEM and MLPG are shown in Fig. 1. The results show that the nonlinear
MLPG method derived here can solve the problems with large strain and rotation
accurately.

Figure 1: A variable-cross-section beam and node distribution (left), and distribu-
tion of von Mises stress by FEM (middle) and MLPG (right)

2. The necking of a Circular Bar

A circular bar with a radius of 10mm and length of 100mm is subjected to
prescribed tension at the ends. To simulate the necking, a geometric imperfection
is introduced by a linear reduction of radius along the length, with radius at the
center to be 90% of the radius at the end. In the simulation we adopted a mul-
tiplicative hyperelasto-plasticity model with the constants: E = 206.9 GPa, ν =
0.29006,and a general isotropic nonlinear hardening law of the form

k (ξ ) = σY +Kξ +(σ∞
Y −σY ) [1−exp (−δξ )] , δ ≥ 0



Some Application of MLPG 137

where k (ξ )is the yield radius, ξ is the effective plastic strain and σY = 0.45 GPa,
σ∞

Y = 0.715 GPa, K = 0.12924 GPa, δ = 16.93. The initial and deformed shapes
of MLPG model with 213 nodes are shown in Fig. 2, where the necking area is
refined. The analysis proceeds until the ratio of current radius to initial radius at
the necking section reaches 0.133.

Undeformed Model

Deformed Model

 
Figure 2: The initial and deformed shape of MLPG model

Figure 3: Illustration and formation of shear band under uniaxial compression

3. Deformation of the shear band

In strain-softening materials, uniaxial tension and compression can induce a
cross shear band. We have performed MLPG simulation for a square plate of linear
strain-soften material: E = 206.9 GPa, ν = 0.29006, K = −0.2 GPa. The simu-
lated uniaxial compression and tension induced shear band is shown in Fig. 3. Fig.
4 shows the distortion of fictitious “mesh” resulting from large deformation locally
in the material after the formation of shear band. The difficulty of this problem is
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Figure 4: Formation of shear band and the deformation under uniaxial tension

the nearly incompressibility of elastoplastic material and the mesh distortion due
to large deformation and the strain localization resulting from the buckling. The
MLPG method can be applied to simulating such problem successfully.

Concluding remarks
The formulation of the MLPG method for path-dependent materials using stress

and strain components in the space coordinate is presented, and the integration is
computed in the material coordinate. The numerical results have shown that the
presented MLPG scheme can relieve the difficulties resulting from the volume lock-
ing, tolerate larger mesh distortion and avoid the structural instabilities due to the
formation of shear band.
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