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Solving Partial Differential Equations With Point
Collocation And One-Dimensional Integrated

Interpolation Schemes
N. Mai-Duy1 and T. Tran-Cong1

Summary
This lecture presents an overview of the Integral Collocation formulation for

numerically solving partial differential equations (PDEs). However, due to space
limitation, the paper only describes the latest development, namely schemes based
only on one-dimensional (1D) integrated interpolation even in multi-dimensional
problems. The proposed technique is examined with Chebyshev polynomials and
radial basis functions (RBFs). The latter can be used in both regular and irregular
domains. For both basis functions, the accuracy and convergence rates of the new
technique are better than those of the differential formulation.

Introduction
Point collocation is the simplest way to discretize PDEs (e.g. no mesh and no

integration associated with this process are required). However, in general, this
approach is seen not to be as stable as those associated with the weak form and the
inverse statement.

For the conventional collocation techniques, the construction of the approxi-
mations for the field variables is based on differentiation. For example, an approx-
imate solution can be sought in RBF or truncated Chebyshev series forms which
are then differentiated to obtain expressions for derivative functions. It was proved
that there is a reduction in accuracy for derivative functions [1],[2].

To enhance the stability and accuracy of a collocation scheme, it was proposed
in [3],[4] that the expressions for the variables are constructed based on integration
(the integral formulation). In this paper, numerical collocation schemes, which are
based on 1D integrated RBF and Chebyshev polynomial schemes, are considered
and presented in detail through fourth-order PDEs, which have double boundary
conditions.

One-dimensional integrated interpolation schemes
Consider the biharmonic equation

∇4u = b(x,y), (1)

subject to Dirichlet boundary conditions u and ∂u/∂n (b−a driving function and
n−the direction normal to the local boundary). For brevity, only the case of rectan-
gular domains is detailed here. The problem domain can be discretized by using a
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uniform/nonuniform Cartesian grid for RBFs and a tensor product grid formed by
the Gauss-Lobatto points for Chebyshev polynomials.

The variable u and its derivatives along a grid line that run parallel to the x−axis
can be approximated by

∂ 4u(x)
∂x4 =

Nx

∑
i=1

w(i)H(i)
[4] (x), (2)

∂ 3u(x)
∂x3 =

Nx

∑
i=1

w(i)H(i)
[3] (x)+c1, (3)

∂ 2u(x)
∂x2 =

Nx

∑
i=1

w(i)H(i)
[2] (x)+c1x+c2 , (4)

∂u(x)
∂x

=
Nx

∑
i=1

w(i)H(i)
[1] (x)+c1

x2

2
+c2x+c3, (5)

u(x) =
Nx

∑
i=1

w(i)H(i)
[0] (x)+c1

x3

6
+c2

x2

2
+c3x+c4, (6)

where H[4](x) is a radial basis function or a Chebyshev polynomial, Nx the num-
ber of grid points in the x−direction, H[3](x) =

∫
H[4](x)dx, H[2](x) =

∫
H[3](x)dx,

H[1](x) =
∫

H[2](x)dx and H[0](x) =
∫

H[1](x)dx, and w unknown weights.

It is more convenient to work in the physical space than in the spectral space.
The presence of four integration constants in (6) allows one to add four extra equa-
tions to the conversion system. These equations can be chosen to be the governing
equation and normal derivative boundary conditions at both ends of the line. The
conversion system can thus be given by(

û
f̂

)
=

[
H
K

](
ŵ
ĉ

)
, (7)

where

ŵ =

⎛
⎜⎜⎝

w(1)

w(2)

· · ·
w(Nx)

⎞
⎟⎟⎠ , ĉ =

⎛
⎜⎜⎝

c1

c2

c3

c4

⎞
⎟⎟⎠ , û =

⎛
⎜⎜⎝

u(1)

u(2)

· · ·
u(Nx)

⎞
⎟⎟⎠ ,

H =

⎡
⎢⎢⎢⎢⎣

H(1)
[0] (x(1)) · · · H(Nx)

[0] (x(1)) x(1)3/6 x(1)2/2 x(1) 1

H(1)
[0] (x(2)) · · · H(Nx)

[0] (x(2)) x(2)3/6 x(2)2/2 x(2) 1

· · · · · · · · · · · · · · · · · · · · ·
H(1)

[0] (x(Nx)) · · · H(Nx)
[0] (x(Nx)) x(Nx)3/6 x(Nx)2/2 x(Nx) 1

⎤
⎥⎥⎥⎥⎦ ,
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K =

⎡
⎢⎢⎢⎢⎢⎣

H(1)
[1] (x(1)) · · · H(Nx)

[1] (x(1)) x(1)2/2 x(1) 1 0

H(1)
[1] (x(Nx)) · · · H(Nx)

[1] (x(Nx)) x(Nx)2/2 x(Nx) 1 0

H(1)
[4] (x(1)) · · · H(Nx)

[4] (x(1)) 0 0 0 0

H(1)
[4] (x(Nx)) · · · H(Nx)

[4] (x(Nx)) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

f̂ =

⎛
⎜⎜⎜⎝

∂u
∂x (x(1))

∂u
∂x (x(Nx))

b(x(1))−2 ∂4u
∂x2y2 (x(1))− ∂4u

∂y4 (x(1))

b(x(Nx))−2 ∂4u
∂x2y2 (x(Nx))− ∂4u

∂y4 (x(Nx))

⎞
⎟⎟⎟⎠ .

Solving (7) yields

(
ŵ
ĉ

)
=

[
H
K

]−1 (
û
f̂

)
= C−1

(
û
f̂

)
, (8)

where C is the conversion matrix.

Substitution of (8) into (2)-(5) yields

∂ 4u(x)
∂x4 =

(
H(1)

[4] (x),H(2)
[4] (x), · · · ,H(N)

[4] (x),0,0,0,0
)
C−1

(
û
f̂

)
, (9)

∂ 3u(x)
∂x3 =

(
H(1)

[3] (x),H(2)
[3] (x), · · · ,H(N)

[3] (x),1,0,0,0
)
C−1

(
û
f̂

)
, (10)

∂ 2u(x)
∂x2 =

(
H(1)

[2] (x),H(2)
[2] (x), · · · ,H(N)

[2] (x),x,1,0,0
)
C−1

(
û
f̂

)
, (11)

∂u(x)
∂x

=
(

H(1)
[1] (x),H(2)

[1] (x), · · · ,H(N)
[1] (x),

x2

2
,x,1,0

)
C−1

(
û
f̂

)
. (12)

It is noted that normal derivative boundary conditions are imposed in (9)-(12).

The values of the ith-order derivative of u (i = {1,2,3,4}) at the grid points
along a horizontal line can be computed by

∂̂ iu
∂xi = D̂ix

(
û
f̂

)
, i = {1,2,3,4}, (13)

where ∂̂ iu
∂xi =

(
∂ iu
∂xi

(1)
, ∂ iu

∂xi

(2)
, · · · , ∂ iu

∂xi

(Nx)
)T

and D̂ix is a known Nx× (Nx +4) matrix.

Expression (13) can be rewritten as ∂̂ iu
∂xi = D̂1ixû+D̂2ix f̂ , where D̂1ix and D̂2ix

are matrices that are formed by the first Nx columns and the last four columns of
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the matrix D̂ix, respectively. The extra information vector f̂ (components f3 and
f4) contains some unknown values—the mixed partial derivative ∂ 4u/∂x2∂y2 at
the two boundary points. Fortunately, these unknown values can be replaced with
linear combinations of nodal values of the variable u (the detailed expression of
∂ 4u/∂x2∂y2 will be given later on). As a result, one can express (13) in terms of
nodal variable values only. The values of the ith-order derivative of u with respect
to y along a vertical line will be obtained in the same way.

The approximations for derivatives over 2D grids can be conveniently con-
structed by means of Kronecker tensor products. Assuming that the grid points are
numbered from bottom to top and from left to right, the values of derivatives of u
at the grid points can be computed by

∂̃ iu
∂xi =

(
D̂ix ⊗Iy

)
ũ + k̃ix,

∂̃ iu
∂yi =

(
Ix ⊗ D̂iy

)
ũ+ k̃iy, (14)

where Ix and Iy are the identity matrices of dimension Nx ×Nx and Ny ×Ny, re-

spectively, k̃ix and k̃iy are known vectors and and ũ =
(
u(1),u(2), · · · ,u(NxNy)

)T
. The

mixed fourth-order partial derivative can be computed according to the following
relation

∂ 4u
∂ 2x∂ 2y

=
1
2

[
∂ 2

∂x2

(
∂ 2u
∂y2

)
+

∂ 2

∂y2

(
∂ 2u
∂x2

)]
, (15)

where relevant second-order derivatives are decomposed into RBFs or Chebyshev
polynomials with the extra information being the values of the first-order deriva-
tives at the boundary points. In the case of irregular domains, the extra information
vector f̂ in (7) and (15) needs to be modified and the assembly process is similar to
that of finite element methods. Further details will be presented at the meeting.

Numerical examples
In the case of RBFs, the width of the ith RBF (a(i)) is simply chosen to be

the minimum distance from the ith centre to neighbouring centres. When com-
pared with the case of using 2D integrated RBF interpolation schemes, the present
technique requires much less computational work because the construction of RBF
approximations involves only Nx or Ny points instead of the total number of points.
As a result, larger numbers of nodes can be employed (e.g., up to about 6400 nodes
employed here). In addition to the results shown below, further examples will be
presented at the meeting.

Example 1 Consider a square domain −1 ≤ x,y ≤ 1. The driving function and
the exact solution are given by

b(x,y) = 16(π2−1)2 [sin(2πx)cosh(2y)−cos(2πx) sinh(2y)] , (16)

u(e)(x,y) = sin(2πx)cosh(2y)−cos(2πx) sinh(2y). (17)
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Table 1: Example 1, Chebyshev polynomials. A comparison of accuracy and convergence
speed between the differential (DF) and integral (IF) formulations. Both formulations use
the same discretizations and they result in the systems of algebraic equations of the same
number of unknowns. The order of accuracy is measured for the first eight sets (N =
Nx −1 = Ny −1).

Nx = Ny Ne(u)
DF IF

6 1.39×100 8.25×10−1

8 3.48×10−1 5.03×10−2

10 6.78×10−2 1.71×10−3

12 6.92×10−3 5.33×10−5

14 4.78×10−4 1.54×10−6

16 2.40×10−5 3.88×10−8

18 9.19×10−7 8.37×10−10

20 2.76×10−8 1.55×10−11

22 6.87×10−10 2.67×10−12

24 2.96×10−10 4.21×10−12

O(N−13.02) O(N−18.42)

Results concerning the discrete relative L2 error (Ne) of the solution u obtained by
the integral and differential collocation formulations with Chebyshev polynomials
are shown in Tables 1. The integral formulation outperforms the differential one
regarding accuracy and convergence speed. For example, for the first eight sets,
the integral and differential formulations converge as O(N−18.42) and O(N−13.02),
respectively (N = Nx −1 = Ny −1).

Example 2 Consider the thermally-driven cavity flow in a square slot. For this
problem, the governing equation presents the coupling of momentum (fourth-order
PDE, streamfunction formulation) and energy (second-order PDE) equations. Very
thin boundary layers are formed at high values of the Rayleigh number, thereby
making the numerical simulation difficult. This problem provides a good means
for testing and validating numerical methods. From the literature, a range of the
Rayleigh number from 103 to 106 is usually employed for the verification of nu-
merical methods. Table 2 and Figure 1 show that the present RBF method is able
to produce highly accurate results for higher values of the Rayleigh number (e.g.
Ra = 107).

Conclusion
In this paper, the integral collocation formulation is employed with 1D Cheby-

shev and RBF interpolation schemes for solving high-order PDEs. The conver-
gence rates obtained are faster than those of the conventional differential formula-
tion. In the case of RBFs, the computational costs of constructing the RBF approx-
imations are significantly reduced when compared with the case of 2D integrated
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Table 2: Example 2, RBFs, Natural convection, Ra = 107. A comparison of the present maxi-
mum horizontal and vertical velocities on the vertical and horizontal mid-planes of the cavity (umax

and vmax) and their locations, and the average Nusselt number throughout the cavity (Nu) with the
corresponding benchmark results [5].

Grid umax(error %) y vmax(error %) x Nu(error %)

51×51 143.9(3.16) 0.885 680.8(2.63) 0.021 16.126(2.40)
61×61 146.9(1.14) 0.881 693.1(0.87) 0.021 16.370(0.93)
71×71 148.2(0.27) 0.879 698.0(0.17) 0.021 16.463(0.36)
81×81 148.8(0.13) 0.878 699.7(0.07) 0.021 16.499(0.15)

Benchmark [5] 148.6 0.879 699.2 0.021 16.523
Streamlines Iso-vorticity lines Isotherms

Figure 1: Natural convection: flow at Ra = 107 using 81×81.

RBF schemes, and hence larger numbers of nodes are able to be employed. More-
over, the condition numbers of the system matrix are also significantly improved.
Finally, it is noted that the technique is also applicable for 3D problems which will
be considered in future works.
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