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A Frictionless Contact Algorithm for Meshless Methods
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Summary
An approach to the treatment of contact problems involving frictionless slid-

ing and separation under large deformations in meshless methods is proposed. The
method is specially suited for non-structured spatial discretisation. The contact
conditions are imposed using a contact potential for particles in contact. Inter-
penetration is checked as a part of the neighbourhood search. In the case of con-
ventional SPH contact conditions are enforced on the boundary layer 2h thick while
in the case of the normalized SPH contact conditions are enforced for the particles
lying on the contact surface. The implementation of the penalty based contact
algorithm for the central difference time integration scheme is described and the
performance of the new contact algorithm is illustrated with an example.

Introduction
Contact from a mathematical point of view is a constraint on the solution. The

mathematical expressions for the constraints on the solution by the contact condi-
tion are commonly known as the Kuhn-Tucker conditions. In order to express these
conditions mathematically we introduce a gap function, g, defined using closest
point projection to determine pairs of points in contact that belong to body ΩA and
ΩB and lie on their respective contact surfaces ΓCA and ΓCB (see Figure 1).

g = n̂ΓCA · (xB −xA) , (1)

where xA ∈ ΓCAand

xB = arg min‖xA −x‖ ∀x ∈ ΓCB. (2)

The contact boundary condition has been largely ignored in the conventional Smooth
Particle Method (SPH), with contact between two bodies simply handled

by the conservation equations. Monaghan proposed a modification to the con-
ventional SPH method to prevent the interpenetration, which he called XSPH [7],
where the velocity is single valued. While Monaghan’s modification does prevent
interpenetration it does nothing to solve two other problems with treating contact
through the conservation equations:

• Generation of non-physical tensile forces, resisting separation of two bodies.
• Generation of shear stresses preventing friction-less or low friction sliding.
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Figure 1: Schematic representation of two bodies in contact.

Several contact algorithms have been proposed for treatment of contact particle
to particle and particle to FE mesh contacts [1,2,3,4,6,11,12]. The proposed meth-
ods have limitations and most of them represent extension of methods developed
for FE to meshless methods.

The paper describes a new contact algorithm inspired by Monaghan’s repulsive
stress [10]. The new contact algorithm simplifies the calculation of direction of
contact forces and avoids the problems related to non-uniqueness of the surface
normal at particles. This is achieved by assigning a contact potential to all boundary
particles and defining the contact force for particles in contact as the gradient of this
field.

New Contact Algorithm
The main problem in treating contact between bodies discretised with particles

is defining the location of the boundary of the bodies. In an SPH approximation
the particle position can be regarded as the centre of a sub-domain with radius 2h,

where h is known as the smoothing length. Consequently the boundary is diffused
over the distance of 2h, where density varies smoothly from the material density,
ρ , at the particle position to zero at the limit of the kernel support. In the case
of corrected normalised (CN-SPH) [2] the boundary coincides with the boundary
particle locations.

Consider two particles A and B belonging to two different bodies, ΩAand ΩBrespectively.
Particle Bis the closest member of ΩB to particle A. In this case the gap function
can be defined as:

g =
∥∥∥x(A)−x(B)

∥∥∥− (hA +hB). (3)

Where x(A) and x(B) are position vectors for particles A and B respectively and ‖ · ‖
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is a norm representing the distance between the two particles. In the new contact
algorithm, instead of using the projection onto the direction of the normal which is
typically used in definition of a gap function a simplification is made and the actual
distance between the particles is used to define the gap function,

The contact between two bodies occurs when the penetration g becomes > 0,
i.e. the distance between the particles becomes smaller than two times the smooth-
ing length. This is consistent with the SPH method.

Following the idea of body forces being defined as the gradient of a potential
field [13], a similar approach was used to define contact forces. The contact poten-
tial function had the following properties: it is zero in the interior of the domain, it
is always be positive, it becomes larger as the distance between to points decreases.

Defining the contact forces in this manner removes the need to determine and
define the boundary surfaces of the two or more bodies and is more consistent
with the SPH method. This is a critical consideration as determining boundary
particles has proved to be a tough problem, with no approach developed that works
efficiently and reliably in 3D to track the evolving boundary in problems such as
impact [2,8,11].

The starting point for the derivation of the contact force was the strong form,
i.e. the partial differential equations with the boundary and initial conditions repre-
senting the motion of two deformable bodies A and B in contact. Galerkin method
vas used to derive the week form for the contact problem given by equation (4).

∫
Γt

wσ ·n dΓ−
∫
Ω

∇w ·σ dV =
∫
Ω

wρ(a−b) dV −
∫
Γc

wt̄dΓ. (4)

Where: is w by test/weighting function, σ is Cauchy stress and ρ is current density.

Using w = Nd, u = Nd where Ni j = m j

ρ j

Wj(xi)
np
∑
j=1

Wj(xi)
and the contact potential defined

as φ (xi) =
NCONT

∑
j

m j

ρ j
K

(
W(ri j)

W (Δpavg)

)n

this equation can now be discretised in space

yielding the SPH form for the contact force (for a detailed derivation see [14]):

fc (xi) =
NCONT

∑
j

m j

ρ j

mi

ρi
Kn

W (ri j)
n−1

W (Δpavg)
n ∇xiW (ri j) . (5)

I = particle at which shape function is evaluated, J = particle around which the
shape function is centred, np = number of neighbours for the i particle, d = nodal
displacement vector, W = SPH kernel function (W (xA−xB) = 0if xA and xB belong
to the same body), K is a user defined scalar contact stiffness penalty parameter,
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NCONT defines the list of neighbour particles that belong to a different body to
particle i.

It is important to notice that direction of the contact force is determined by the
SPH approximation of the gradient of the contact potential. For the conventional
SPH method it is acting along the line connecting the pair of particles in contact
and in the case of CN-SPH it has the direction of normal to the contact surface. The
contact force is applied to boundary particles as soon as they get within 2h from
each other, where h is the smoothing distance. The approach is in keeping with the
meshless techniques in general and its implementation in 3D is not complex. The
contact algorithm allows surfaces to come together and separate in a physically
correct manner. Furthermore this approach does not require the identification of
boundary particles (hard to do robustly in 3D). The algorithm is numerically effi-
cient because of its consistency with the general SPH approach and the fact that it
utilizes the already generated existing neighbour lists.

With respect to the variational consistency the contact force itself is derived
using Galerkin method approach. No assumptions were made about the contact
potential function except that it depends on the distance between the two bodies.
The contact constraint is imposed directly through the shape functions of the parti-
cles in contact, which control the penalty stiffness at the same time. Within a time
step contact forces are evaluated at the time of integration of constitutive equation
i.e. t = t

n+ 1
2

.

Numerical Example

Figure 2: Isometric View of 3D Hypervelocity Impact at 0.0 and 0.2μs

Figure 3: Cross Section Plots of 3D Hypervelocity Impact at 0.0, 0.1 and 0.2μs.

In order to demonstrate that this contact algorithm performs correctly in 3D
a hypervelocity impact of a sphere on a plate was simulated. This type of prob-
lem is a severe test for the robustness of the contact algorithm as both objects are
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subjected to extremely large deformations. The radius of the sphere is 0.3mm, the
plate thickness and radius is 0.2mm and 0.15mm. The material of both objects
is aluminium and an elasticplastic hydrodynamic material model with Gruneisen
equation of state was used. The sphere has an initial velocity of 7km/s. Due to
the symmetry of the problem a quarter model was created (see figure 2). Cross
section plots after 0.0, 0.1 and 0.2μs are shown in figure 2 and figure 3. From
these plots it can be seen that the algorithm does not cause any mixing of particles,
even at very large deformations. No experimental data, such as hole diameter or
debris cloud angle, was available to perform a more qualitative validation of the
simulation results.
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