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A New Collocation Method for Motz’s Problem
Chein-Shan Liu1, Yung-Wei Chen2 and Jiang-Ren Chang2

Summary
A new collocation method is developed here to solve the elliptic boundary value

problems with singularities. Specifically, we consider the Motz problem as a test
of the performance of the new method, which is found accurate and effective.

keywords: Singularity, Motz problem, Collocation method, Linear interpo-
lation

Introduction
Proves ineffective when one uses the classical numerical methods, like as finite

difference, finite element or boundary element, to treat the elliptic boundary value
problems with singularities. The singularity often arises in engineering problems
when there is a sudden change in the boundary conditions or the boundary itself.
In order to achieve a satisfactory solution near to the singular point, some special
techniques are usually required as that given by Li (1996, 1998), Georgiou, Olson
and Smyrlis (1996), Georgiou, Boudouvis and Poullikkas (1997), Yosibash, Arad,
Yakhot and Ben-Dor (1998), Arad, Yosibash, Ben-Dor and Yakhot (1998), Huang
and Li (2003, 2006), Dosiyev (2004), and Lu, Hu and Li (2004).

Among the many singular problems, the Motz problem was first studied by
Motz (1947) for the relaxation method. Since there is a strong singularity O(r

1
2 )

at the original point, the Motz problem has become a benchmark of singularity
problems [Li (1998)], which solves the Laplace equation

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0, (x,y) ∈ S := {(x,y)|−1 < x < 1,0 < y < 1}, (1)

under the following boundary conditions:

∂u
∂y

∣∣∣∣
y=1

=
∂u
∂x

∣∣∣∣
x=−1

= 0, u|x=1 = 500, (2)

u|x<0∧y=0 = 0,
∂u
∂y

∣∣∣∣
x>0∧y=0

= 0. (3)

The collocation method
By utilizing the technique of separation of variables we are easy to write a

series expansion of u(x,y) satisfying Eqs. (1) and (2):

u(x,y) = 500−
∞

∑
k=1

4ak cosh[(2k−1)π(1−y)/4]
(2k−1)π sinh[(2k−1)π/4]

sin
(2k−1)π(1−x)

4
. (4)
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The above series expansion is well suited to the entire solution domain. Hence, the
admissible functions with finite terms

u(x,y) = 500−
m

∑
k=1

4ak cosh[(2k−1)π(1−y)/4]
(2k−1)π sinh[(2k−1)π/4]

sin
(2k−1)π(1−x)

4
, (5)

where ak are unknown coefficients to be determined below, are most efficient nu-
merical solutions of Motz’s problem.

By imposing the first condition in Eq. (3) on Eq. (5) it follows that

m

∑
k=1

4ak

(2k−1)π tanh (2k−1)π
4

sin
(2k−1)π(1−x)

4
= 500. (6)

Taking the differential of Eq. (5) with respect to y, we obtain

∂u(x,y)
∂y

=
m

∑
k=1

ak sinh[(2k−1)π(1−y)/4]
sinh[(2k−1)π/4]

sin
(2k−1)π(1−x)

4
. (7)

Similarly, by imposing the second condition in Eq. (3) on Eq. (7) one has

m

∑
k=1

ak sin
(2k−1)π(1−x)

4
= 0. (8)

Eqs. (6) and (8) are imposed at different collocated points on two different
intervals with −1 ≤ xi < 0 and 0 < x̄ j ≤ 1:

m

∑
k=1

4ak

(2k−1)π tanh (2k−1)π
4

sin
(2k−1)π(1−xi)

4
= 500, (9)

m

∑
k=1

ak sin
(2k−1)π(1− x̄ j)

4
= 0. (10)

It can be seen that the basic idea behind the collocation method is rather sim-
ple, and it has the great advantages of the flexibility to apply to different geometric
shapes and different elliptic equations, and the simplicity of computer program-
ming as shown below.

Let

xi = −1+(i−1)Δx, x̄ j = 1− ( j−1)Δx, i, j = 1, . . . ,n, (11)

where Δx = 1/n and m = 2n. We call xi the collocated points on the left-hand side,
and conversely, x̄ j the collocated points on the right-hand side. When the indices
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i, j in Eqs. (9) and (10) run from 1 to n we obtain a linear equations system with
dimensions m = 2n:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4sin π(1−x1 )
4

π tanh π
4

4sin 3π(1−x1 )
4

3π tanh 3π
4

. . .
4sin (2m−3)π(1−x1 )

4

(2m−3)π tanh (2m−3)π
4

4sin (2m−1)π(1−x1 )
4

(2m−1)π tanh (2m−1)π
4

...
...

...
...

...
4sin π(1−xn )

4
π tanh π

4

4sin 3π(1−xn )
4

3π tanh 3π
4

. . .
4sin (2m−3)π(1−xn )

4

(2m−3)π tanh (2m−3)π
4

4sin (2m−1)π(1−xn )
4

(2m−1)π tanh (2m−1)π
4

sin π(1−x̄1)
4 sin 3π(1−x̄1)

4 . . . sin (2m−3)π(1−x̄1)
4 sin (2m−1)π(1−x̄1)

4
...

...
...

...
...

sin π(1−x̄n)
4 sin 3π(1−x̄n)

4 . . . sin (2m−3)π(1−x̄n)
4 sin (2m−1)π(1−x̄n)

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

an
an+1

...
am

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

500
...

500
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

We denote the above equation by

Ra = b1,

where a = [a1,a2, · · · ,am]T is the vector of unknown coefficients. The conjugate
gradient method can be used to solve the following normal equation:

Aa = b, (13)

where
A := RTR, b := RTb1. (14)

Inserting the calculated a into Eq. (5) we thus have a semi-analytical solution of
u(x,y).

Linear interpolation
The present computation based on the equation which automatically satisfies

the governing equation (1) and the boundary conditions in Eq. (2). But the bound-
ary conditions in Eq. (3) are achieved by imposing them on the collocated points.
In Figs. 1(a) and 1(b) we display the data of u(x,y) and uy(x,y) at y = 0 on all collo-
cated points by using n = 200 and thus m = 400. It can be seen that both u(x,0) =
0, −1 ≤ x < 0 and uy(x,0) = 0, 0 < x ≤ 1 are satisfied very well. However, this
is not true for the points which are not the collocated points. In order to show this
phenomena, we have calculated u(x,0) on the points xi = −1 + i(1− 0.05)/260
and uy(x,0) on the points xi = 1− i(1−0.05)/260. The numerical results as shown
in Figs. 1(c) and 1(d) cannot satisfy both the two conditions in Eq. (3) obviously.
Moreover, when the points are near to the singular point x = 0, the errors are largely
increased.

In order to overcome this trouble, we can employ the linear interpolation method
to calculate u(x,y) and uy(x,y). For each given y0, we use Eq. (5) to generate a se-
quence of u(i) on xi, i = 1, . . .,m+1, which including xn+1 = 0, are the collocated
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Figure 1: By applying the collocation method on the Motz problem we displaying
the numerical results of u at y=0, which is zero on the boundary and uy at y=0,
which is zero on the boundary. In (g) we plotting the ak.

points. Similarly, we use Eq. (7) to generate a sequence of uy(i) on the collocated
points xi. Then, we can calculate u(x0,y0) and uy(x0,y0) at any point (x0,y0) in the
problem domain by

u(x0,y0) = u( j)+
x0 −x j−1

x j −x j−1
[u( j)−u( j−1)], (15)

uy(x0,y0) = uy( j)+
x0 −x j−1

x j −x j−1
[uy( j)−uy( j−1)], (16)
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where j is determined by x j−1 < x0 ≤ x j .

In order to show the improvement of this technique, we have calculated u(x,0)
on the points xi = −1 + i/260 and uy(x,0) on the points xi = 1− i/260. The nu-
merical results are shown in Figs. 1(e) and 1(f). Obviously, the data satisfy the
condition (3) very well. They are also better than that on the collocated points as
shown in Figs. 1(a) and 1(b). Especially, when comparing with Figs. 1(c) and 1(d),
at the points which are near to the singular point x = 0, the errors are largely re-
duced. It can be seen that the first condition in Eq. (3) is fulfilled within the error
smaller than 6×10−9, while the second condition in Eq. (3) is fulfilled within the
error smaller than 3×10−11.
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Figure 2: For the Motz problem (a) plotting the contour levels of u, (b) plotting the
contour levels of uy.
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According to the above method we have calculated the Motz problem by us-
ing m = 400. In Fig. 1(g) we have plotted the Fourier coefficients. The amplitude
of ak converges very rapidly as k increases. When we plotted the different con-
tour levels of u = 50,100,150,250,350 in Fig. 2(a), the different contour levels of
uy = 2,5,20,30,50,100,150,250 are also plotted in Fig. 2(b). It can be seen that
there has a narrow region near to the singular point that the solution has a high
gradient with uy very large. In a practical calculation we found that uy ≈ 3976 at
the point (x,y) = (−0.003846155,0). Therefore, along the x-axis, uy undergoes a
large variation from a very large value to zero, when x passes the singular point
x = 0. This fact makes the Motz problem not easy to handle by the conventional
numerical methods.

Because in our numerical method it does not require any domain or surface
meshing, the new meshless method would be very convenient for the engineering
application in the computation of singular Motz’s problem.

Conclusions
We have employed a new idea to treat the Motz problem by a collocation

method, which is supplemented with a linear interpolation technique to enhance
the accuracy. Even we were only considered the singular problem in a rectangle,
the idea used here can be extended to other singular problem in a more complex
region. The new method developed here provids us a semi-analytical solution in
terms of the Fourier series, which renders a rather compendious numerical imple-
mentation to solve the singular problems. The new method was found to be accurate
and effective.
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