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A Meshless Regularized Integral Equation Method
(MRIEM) for Laplace Equation in Arbitrary Interior or

Exterior Plane Domains
Chein-Shan Liu1

Summary
A new method is developed to solve the interior and exterior Dirichlet prob-

lems for the two-dimensional Laplace equation, namely the meshless regularized
integral equation method (MRIEM), which consists of three parts: Fourier series
expansion, the second kind Fredholm integral equation and an analytically regular-
ized solution of the unknown boundary condition on an artificial circle. We find
that the new method is powerful even for the problem with very complex boundary
shape and with boundary noise.

keywords: Laplace equation, Meshless method, Regularized integral equa-
tion, Artificial circle, Arbitrary plane domain.

Introduction
The Dirichlet problem of Laplace equation in the plane domain is a classical

one. Although the exact solutions have been found for some simple domains like
as circle, ellipse, rectangle, etc., in general, for a given plane domain the finding of
closed-form solutions is not an easy task.

Indeed, the explicit solutions are the exception, and if one were to choose an
arbitrary shape of the domain, the geometric nonlinearity commences and then
typically the numerical solution would be required.

The most widely used numerical methods are finite difference, finite element
and boundary element methods. For a complicated shape of the domain they usu-
ally require a large number of nodes and elements to match the geometrical shape.
In order to overcome these difficulties, the meshless numerical methods are pro-
posed, which are meshes free and only boundary nodes are necessary.

Recently, the meshless local boundary integral equation (LBIE) method (Atluri,
Kim and Cho, 1999), and the meshless local Petrov-Galerkin (MLPG) method
(Atluri and Shen, 2002) are proposed. Both methods use local weak forms and
the integrals can be easily evaluated over regularly shaped domains, like as circles
in 2D problems and spheres in 3D problems.

In this paper we are going to propose a new meshless method to treat the Dirich-
let problem of Laplace equation in the interior or exterior domain:

Δu(X) = 0, X ∈ Ω or X ∈ R
2/Ω̄, (1)

u(P) = h(P), P ∈ Γ, (2)
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where Ω is a simply connected region in R
2 with a contour shape Γ.

It is known that to treat the Dirichlet problem a standard tool is the boundary
integral equation (Atkinson, 1997; Kress, 1989). It represents u as a double layer
potential:

u(X) =
∫

Γ
ρ(Y)

∂
∂nY

log |X −Y |dSY , X ∈ Ω, (3)

in which nY is the unit normal at Y ∈ Γ. The density function ρ satisfies

πρ(X)+
∫

Γ
ρ(Y)

∂
∂nY

log |X −Y |dSY = h(X), X ∈ Γ. (4)

If we can parameterize the contour Γ by r(t) = (x(t),y(t)), t ∈ [0,2π ], we can
obtain

πρ(t)+
∫ 2π

0
ρ(s)K(t, s)ds = h(t), 0 ≤ t ≤ 2π , (5)

where

K(t, s) =

⎧⎨
⎩

y′(s)[x(s)−x(t)]−x′(s)[y(s)−y(t)]
[x(s)−x(t)]2+[y(s)−y(t)]2 t �= s,

y′′(t)x′(t)−x′′(t)y′(t)
2[x′(t)2+y′(t)2] t = s.

(6)

The various numerical methods for solving the Laplace equation are rapidly de-
veloped in the last three decades. Recently, Young, Chen and Lee (2005) have
proposed a novel meshless method for solving the Laplace equation in the arbi-
trary domain through a rather complicated desingularization technique, and Chen,
Shen and Chen (2006) utilized the null-field method to calculate the torsion Laplace
problem with many holes.

The other parts of the present paper are arranged as follows. In Section 2 we
derive the first kind Fredholm intergral equation along a given artificial circle. In
Section 3 we consider a direct regularization of the first kind Fredholm intergral
equation. Then we derive a two-point boundary value problem, which helps us to
derive a semi-analytical solution of the second kind Fredholm intergral equation in
Section 4. In Section 5 we use some examples to test the new method, and then,
we give some remarkable conclusions in Section 6.

The Fredholm integral equation
In this paper we consider a new meshless method to solve the Dirichlet problem

which consists of the Laplace equation and the Dirichlet boundary condition given
at a non-circular boundary:

Δu = urr +
1
r

ur +
1
r2 uθθ = 0,

r < ρ or r > ρ , 0 ≤ θ ≤ 2π , (7)

u(ρ ,θ ) = h(θ ), 0 ≤ θ ≤ 2π , (8)
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where h(θ ) is a given function, and ρ = ρ(θ ) is a given contour describing the
boundary shape of the interior or exterior domain. The contour Γ in the polar
coordinates is given by Γ = {(r,θ )|r = ρ(θ ), 0 ≤ θ ≤ 2π}.

We replace Eq. (8) by the following boundary condition:

u(R0,θ ) = f (θ ), 0 ≤ θ ≤ 2π , (9)

where f (θ ) is an unknown function to be determined, and R0 is a given positive
constant, such that the disk D = {(r,θ )|r ≤ R0, 0 ≤ θ ≤ 2π} can cover Ω for the
interior problem, or is inside in the complement of Ω, that is, D ∈ R

2/Ω̄ for the
exterior problem. The advantage of this replacement is that we have a closed-form
solution in terms of the Poisson integral:

u(r,θ ) = ± 1
2π

∫ 2π

0

r2 −R2
0

R2
0 −2R0r cos(θ −ξ )+ r2

f (ξ )dξ . (10)

Here, R0 can be viewed as the radius of an artificial circle, and f (θ ) is an unknown
function to be determined on this artificial circle. In the above, the positive sign is
used for the exterior problem, and conversely the minus sign is used for the interior
problem.

By utilizing the technique of separation of variables we can write a Fourier
series expansion of u(r,θ ) satisfying Eqs. (7) and (9):

u(r,θ ) =
a0

2
+

∞

∑
k=1

[
ak

(
R0

r

)±k

coskθ

+bk

(
R0

r

)±k

sinkθ

]
, (11)

where

a0 =
1
π

∫ 2π

0
f (ξ )dξ , (12)

ak =
1
π

∫ 2π

0
f (ξ )coskξdξ , (13)

bk =
1
π

∫ 2π

0
f (ξ ) sinkξdξ . (14)

Similarly, in Eq. (11) the positive sign before k is used for the exterior problem,
and conversely the minus sign before k is used for the interior problem.
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By imposing the condition (8) on Eq. (11) we obtain

a0

2
+

∞

∑
k=1

[
ak

(
R0

ρ

)±k

coskθ

+bk

(
R0

ρ

)±k

sinkθ

]
= h(θ ). (15)

Substituting Eqs. (12)-(14) into Eq. (15) leads to the first kind Fredholm inte-
gral equation: ∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ ), (16)

where

K(θ ,ξ ) =
1

2π
+

∞

∑
k=1

{
Bk [coskθ coskξ + sinkθ sinkξ ]

}
(17)

is a kernel function, and

Bk(θ ) :=
1
π

(
R0

ρ(θ )

)±k

. (18)

Our starting point in Eq. (11) is similar to the Trefftz method. However, the
Trefftz method expands the solution by using the following T-complete basis func-
tions:

{1, r∓k coskθ , r∓k sinkθ , k = 1,2, . . .},
which just merely satisfy the governing equation and the unknown coefficients are
determined by satisfying the boundary conditions in some manners as by means of
the collocation, the least square or the Galerkin method, etc. (Kita and Kamiya,
1995). Huang and Shaw (1995) have derived an integral representation of the Tre-
fftz method on the so-called embedding surface. However, as remarked by Huang
and Shaw (1995) their method is simply an alternative derivation of the Trefftz
method, and their approach is still in a conceptual level. On the other hand, the
method of fundamental solution (MFS), also called the F-Trefftz method, utilizes
the fundamental solutions as basis functions to expand the solution. In spite of the
minor and major differences between the Trefftz and MFS methods, Chen, Wu, Lee
and Chen (2006) have proved the equivalence of these two methods for Laplace and
biharmonic equations.

Basically, these methods are of the too-early discretized method, of which the
governing equations are discretized into a linear equation system in a rather ear-
lier stage, and not to be continued into the integral equation as we will do in this
paper. Therefore, many inherent drawbacks of these methods as explained by Liu
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(2005) can be avoided here by the new method, of which we would provide a
semi-analytical solution of the unknown data on the artifical circle in the next two
sections.

The Trefftz method is a special case of our method with R0 = 1. In a forthcom-
ing paper we will develop a modified Trefftz method, which improves the stability
problem of the Trefftz method.

Two-point boundary value problem
In order to obtain f (θ ) we have to solve the first kind Fredholm integral equa-

tion (16). However this integral equation is known to be ill-posed. We assume that
there exists a regularized parameter α , such that Eq. (16) can be regularized by

α f (θ )+
∫ 2π

0
K(θ ,ξ ) f (ξ )dξ = h(θ ), (19)

which is known as one of the second type Fredholm integral equation. The above
regularization method to obtain a regularized solution by solving the singularly
perturbed operator equation is usually called the Lavrentiev regularization method
(Lavrentiev, 1967).

Up to this point we can remark the differences between Eqs. (19) and (5). In
Eq. (5) the kernel function requires the contour curve to be twicely differentiable,
which is however a rather stringent constraint. But in Eq. (19) the kernel function is
well-defined for all contour curves. The kernel function in Eq. (6) is not separable,
but the kernel function in Eq. (17) is separable, which makes an easier solution of
the integral equation (19) than Eq. (5).

Our method is different from the the other boundary-type solution procedure,
which is used as a general terminology to include the boundary element method,
the Trefftz method, the method of fundamental solution, as well as different type
meshless methods. The new method is more easy to handle because it is an integral
equation on a given artificial circle, instead of on the contour Γ. As we know that in
the open literature there has no report to connect the Laplace problem to this type
integral equation.

We assume that the kernel function can be approximated by m terms with

K(θ ,ξ ) =
1

2π
+

m

∑
k=1

{
Bk [coskθ coskξ + sinkθ sinkξ ]

}
. (20)

This assumption is for the convenience of our derivation but is not an essential one.
Moreover, the numerical solutions are usually dominated by the first few leading
terms.

By inspection we have

K(θ ,ξ ) = P(θ ) ·Q(ξ ), (21)
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where P and Q are 2m+1-vectors given by

P :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2π

B1 cosθ
B1 sinθ

B2 cos2θ
B2 sin2θ

...
Bm cosmθ
Bm sinmθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Q :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
cosξ
sinξ

cos2ξ
sin2ξ

...
cosmξ
sinmξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

and the dot between P and Q denotes the inner product, which is sometime written
as PTQ, where the superscript T signifies the transpose.

With the aid of Eq. (21), Eq. (19) can be decomposed as

α f (θ )+
∫ θ

0
PT(θ )Q(ξ ) f (ξ )dξ

+
∫ 2π

θ
PT(θ )Q(ξ ) f (ξ )dξ = h(θ ). (23)

Let us define

u1(θ ) :=
∫ θ

0
f (ξ )Q(ξ )dξ , (24)

u2(θ ) :=
∫ θ

2π
f (ξ )Q(ξ )dξ , (25)

and then Eq. (23) can be expressed as

α f (θ )+PT(θ )[u1(θ )−u2(θ )] = h(θ ). (26)

Taking the differential of Eqs. (24) and (25) with respect to θ we obtain

u′
1(θ ) = Q(θ ) f (θ ), (27)

u′
2(θ ) = Q(θ ) f (θ ). (28)

Inserting Eq. (26) for f (θ ) into the above two equations we obtain

αu′
1(θ ) = Q(θ )PT(θ )[u2(θ )−u1(θ )]+h(θ )Q(θ ), (29)

αu′
2(θ ) = Q(θ )PT(θ )[u2(θ )−u1(θ )]+h(θ )Q(θ ), (30)

u1(0) = 0, u2(2π) = 0, (31)

where the last two conditions follow from Eqs. (24) and (25) immediately. The
above equations constitute a two-point boundary value problem.
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Semi-analytical solution
In this section we will find a semi-analytical solution of f (θ ). From Eqs. (27)

and (28) it can be seen that u′
1 = u′

2, which means that

u1 = u2 +c, (32)

where c is a constant vector to be determined. By using the final condition in
Eq. (31) we find that

u1(2π) = u2(2π)+c = c. (33)

From Eqs. (24) and (33) it follows that

c =
∫ 2π

0
f (ξ )Q(ξ )dξ . (34)

The mathematical meaning of c is that it is a vector of the Fourier coefficients of
the unknown function f (θ ).

Substituting Eq. (32) into (29) we have

αu′
1(θ ) = −Q(θ )PT(θ )c+h(θ )Q(θ ). (35)

Integrating and using the initial condition in Eq. (31) it follows that

u1(θ ) =
−1
α

∫ θ

0
Q(ξ )PT(ξ )dξc+

1
α

∫ θ

0
h(ξ )Q(ξ )dξ . (36)

Taking θ = 2π in the above equation and imposing the condition (33) one obtains
a governing equation for c:

Rc =
∫ 2π

0
h(ξ )Q(ξ )dξ , (37)

where

R := αI2m+1 +
∫ 2π

0
Q(ξ )PT(ξ )dξ . (38)

It is straightforward to write

c = R−1
∫ 2π

0
h(ξ )Q(ξ )dξ . (39)

By Eq. (34) we have

∫ 2π

0
f (ξ )Q(ξ )dξ = R−1

∫ 2π

0
h(ξ )Q(ξ )dξ , (40)
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which describes the relation between the Fouier coefficients vectors of two bound-
ary functions f (θ ) and h(θ ).

On the other hand, from Eqs. (26) and (32) we have

α f (θ ) = h(θ )−P(θ ) · c. (41)

Inserting Eq. (39) into the above equation we obtain

α f (θ ) = h(θ )−P(θ ) ·R−1
∫ 2π

0
h(ξ )Q(ξ )dξ . (42)

Then, the conjugate gradient method is used to solve the following normal
equation:

Ac = b, (43)

where

A := RTR, b := RT
∫ 2π

0
h(ξ )Q(ξ )dξ . (44)

Inserting the calculated c into Eq. (41) we thus have a semi-analytical solution
of f (θ ), upon substituting which into Eqs. (12)-(14) we can easily evaluate all
the integrals over the circular domain to obtain the semi-analytical solution of u.
Because in these processes we do not require any domain or surface meshing, the
new meshless method would be very convenient for the engineering application in
the computation of complex boundary shape problems.

If we do not want to know the boundary data f (θ ) on the artificial circle, we
can directly skip to the solution of u given by

u(r,θ ) =
c1

2π
+

m

∑
k=1

[
c2k

π

(
R0

r

)±k

coskθ

+
c2k+1

π

(
R0

r

)±k

sinkθ

]
, (45)

after solving c from Eq. (43), where (c1, . . .,c2m+1) are the components of c. The
above equation can be derived immediately by comparing Eq. (34) with Eqs. (12)-
(14) and using Eq. (22) and Eq. (11) with ∞ replaced by m.

Numerical examples
Before embarking the numerical study of the new method, we are concerned

with the stability of MRIEM, in the case when the boundary data are contaminated
by random noise, which is investigated by adding the different levels of random
noise on the boundary data. We use the function RANDOM−NUMBER given in



A Meshless Regularized Integral Equation Method 65

Fortran to generate the noisy data R(i), where R(i) are random numbers in [−1,1].
Hence we use the simulated noisy data given by

ĥ(θi) = h(θi)+εR(i), (46)

where θi = 2iπ/nb, i = 0,1, . . .,nb, and ε is defined as

ε = max|h(θ )|× s
100

, (47)

where s is the percentage of additive noise on the data.

Example 1 (exterior problem)
In this example we investigate a discontinuous boundary condition on the unit

circle:

h(θ ) =
{

1 0 ≤ θ < π ,

−1 π ≤ θ < 2π .
(48)

For this example an analytical solution is given by

u(x,y) =
2
π

arctan

(
2y

x2 +y2 −1

)
. (49)

We have applied the new method to this example by fixing R0 = 1, m = 20 and
α = 10−10. In Fig. 1 we compared the exact solution with numerical solutions with
s = 0,5 along a circle with radius 2.5. It can be seen that the numerical solutions
are very close to the exact solution.

Example 2 (exterior problem)
In this example we consider a complex epitrochoid boundary shape

ρ(θ ) =
√

(a+b)2 +1−2(a+b)cos(aθ/b), (50)

x(θ ) = ρ cosθ , y(θ ) = ρ sinθ (51)

with a = 3 and b = 1. The analytical solution is given by

u(x,y) = exp

(
x

x2 +y2

)
cos

(
y

x2 +y2

)
. (52)

The exact boundary data can be easily derived by inserting Eqs. (50) and (51) into
the above equation.

We have applied the new method to this example by fixing R0 = 3, m = 20
and α = 10−5. In Fig. 2 we compared the exact solution with numerical solution
along a circle with radius 10. It can be seen that the numerical solution is almost
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coincident with the exact solution, of which the L2 error is about 10−4. Also we are
imposed a random noise with intensity σ = 0.003 by

ĥ(θi) = h(θi)[1+σR(i)] (53)

on the exact boundary data, of which the numerical solution was shown in the
same figure by the dashed-dotted line. The new method is robust to against the
disturbance on the boundary data.

Example 3 (interior problem)
In this example we consider another epitrochoid boundary shape with a = 4

and b = 1; see Fig. 3. The analytical solution is given by

u(x,y) = x2 −y2. (54)

The exact boundary data can be easily derived by inserting Eqs. (50) and (51) into
the above equation.

In the numerical computation we have fixed R0 = 6, m = 5 and α = 10−15.
In Fig. 3 we compared the contour levels of potential u = −4 and u = 2 for exact
solutions and numerical solutions. It can be seen that the numerical results are
almost coincident with the exact ones. The accurcay of the numerical solutions are
found to be good with the L2 error about 1.36×10−13.

Conclusions
In this paper we have proposed a new meshless method to calculate the so-

lutions of Laplace equation in the arbitrary plane domains. It was demonstrated
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Fig. 3. Com paring the num erical and exact contour lines for exam ple 3.
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that in the regularized sense we can find a semi-analytical solution of the boundary
condition on an artificial circle, and thus by the Poisson integral we can calcu-
late the solution at any point inside the domain. The numerical examples show
that the effectiveness of the new method and the accuracy is very good. The new
method possesses several advantages than the conventional boundary-type solution
methods, including mesh-free, singularity-free, non-illposedness, semi-analyticity
of solution, efficiency, accuracy and stability.

References

1. Atkinson, K. (1997): The Numerical Solution of Integral Equations of the
Second Kind. Cambridge University, Cambridge, UK.

2. Atluri, S. N.; Kim, H. G.; Cho, J. Y. (1999): A critical assessment of the
truly meshless local Petrov-Galerkin (MLPG), and local boundary integral
equation (LBIE) methods. Comp. Mech., vol. 24, pp. 348-372.

3. Atluri, S. N.; Shen, S. (2002): The meshless local Petrov-Galerkin (MLPG)
method: a simple & less-costly alternative to the finite element and boundary
element methods. CMES: Comp. Model. Engng. Sci., vol. 3, pp. 11-51.

4. Chen, J. T.; Shen, W. C.; Chen, P. Y. (2006): Analysis of circular torsion
bar with circular holes using null-field approach. CMES: Comp. Model.
Engng. Sci., vol. 12, pp. 109-119.

5. Chen, J. T.; Wu, C. S.; Lee, Y. T.; Chen, K. H. (2006): On the equivalence
of the Trefftz method and method of fundamental solutions for Laplace and
biharmonic equations. Comp. Math. Appl., in press.

6. Huang, S. C.; Shaw, R. P. (1995): The Trefftz method as an integral equa-
tion. Adv. Engng. Software, vol. 24, pp. 57-63.

7. Kita, E.; Kamiya, N. (1995): Trefftz method: an overview. Adv. Engng.
Software, vol. 24, pp. 3-12.



68 Copyright c© 2007 ICCES ICCES, vol.3, no.2, pp.57-68, 2007

8. Kress, R. (1989): Linear Integral Equations. Springer, Berlin.

9. Lavrentiev, M. M. (1967): Some Improperly Posed Problems of Mathemat-
ical Physics. Springer, New York.

10. Liu, R. F. (2005): On the Ill-Posed Behavior and its Remedy of the Tre-
fftz Type Boundary Element Method. Ph.D. Dissertation, National Taiwan
Ocean University, Keelung, Taiwan.

11. Young, D. L.; Chen, K. H.; Lee, C. W. (2005): Novel meshless method for
solving the potential problems with arbitrary domain. J. Comp. Phys., vol.
209, pp. 290-321.


