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Summary
A framework of applications of multiscale modeling to property prediction of

advanced materials will be briefly presented. A methodology will be shown to
link micro-scale to the continuum scale, integrating micro-scale modeling of mi-
crostructure with the large Thermo-Calc c© database. This paradigm is successfully
applied to the case of Fe-12Ni-6Mn maraging steel. We predict the mechanical
properties of the maraging steel such as hardness. We found that our predictions in
hardness is in agreement with experimental data.

Introduction
Understanding the precise and fundamental manner in which materials struc-

tures (nanostructures or microstructures) and their evolution influences properties
and service lifetimes of advanced materials profoundly impacts material design,
and today materials design plays an increasingly important rôle in many engineer-
ing applications. Linking structures to properties and predicting properties of ma-
terials, however, cover a multitude of length scales, making the applicable physics
often difficult to judge.

Precipitation strengthening remains one of the most effective means for im-
proving ultra-high strength alloys. For example, ultra-high strength steels, such as
maraging steels, have been developed over the past 40 years for aircraft, aerospace,
and tooling applications. Maraging refers to the aging of martensite, which is ob-
tained easily in these steels at ordinary cooling rates due to their high nickel content
[1]. The mechanism thought to be responsible for strengthening is that of second-
phase precipitates acting as a dispersion of obstacles to dislocation movement. Mott
and Nabarro [2] introduced the concept of dislocations to explain the mechanism
of precipitation hardening. Orowan [3] then established the relationship between
the applied stress and the extent of dislocation bowing. Kelly and Nicholson [4] re-
viewed the earlier efforts at formulating models for precipitation hardening. Brown
and Ham [5] reviewed the advances made in understanding the mechanisms of pre-
cipitation hardening based on dislocation interactions with precipitates. Ardell [6]
discussed in detail the progress achieved through the early 1980s with the theory of
precipitation hardening, focusing on the statistical nature of dislocation–precipitate
interactions and the kinetic mechanisms of precipitation. It is now well known
that precipitation kinetics directly affects age hardening phenomena, and the ma-
turity and sophistication of kinetic models describing population dynamics during
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solid-state precipitation have progressed steadily over time. The first statistical me-
chanical formulation of the kinetics of precipitate aging, now called LSW theory,
was published by Lifshitz and Slyozov [7], for diffusion-limited precipitate growth,
and by Wagner [8] for interface-limited growth. These early mean-field formula-
tions are valid only in the limit of a vanishing small volume fraction of precipitates,
where essentially one particle interacts with the mean field of its surrounding ma-
trix. The prediction of LSW theory that the cube of the average length scale of
particles increases linearly with time was validated by numerous experiments, even
in cases where there was a finite volume fraction of the dispersed phase. The most
significant limitation within LSW theory is its neglect of any interactions occurring
among the particles. In LSW theory, the growth rate of a precipitate particle is
given by the linear form
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where r and r� are the radius of the particle, and the critical radius of the precipitate
population, respectively. KLSW is the kinetic rate constant and is independent of
the volume fraction of the precipitates. In real materials, however, the volume
fraction of precipitates,VV , is never zero, so that even in dilute dispersions the mean
separation between precipitates, is typically less than a few particle diameters, so
that interactions normally occur among the individual particles. Our micro-scale
modeling of microstructure, diffusion screening theory, for precipitation kinetics
[9], by contrast, considers many-body interaction and modifies the dependence of
the growth rate of particles in a non-linear form
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where RD is the diffusion screening length which depends on the volume fraction
[9]. Introducing many-body interactions insures that the coarsening rate of pre-
cipitates depends on their volume fraction. Moreover, micro-scale modeling of
microstructure for precipitation kinetics recently yielded predictions that were in
quantitative agreement with experimental kinetic results [9].

In this study, we combine a micro-scale modeling of microstructure with a
macro-scale model for precipitation-enhanced hardening. Specifically, we use: (1)
Thermo-Calc c© coupled to Kaufman’s binary alloy data base to obtain equilibrium
values of the solubility at different temperatures. These data, in turn, are used to
calculate the kinetic coefficients appearing in the theoretical precipitation kinet-
ics during overaging. (2) We use the Ashby–Orowan formulation to develop the
relationship among hardness levels, particle size and spacing. We implement the
overall methodology by applying it to the ternary alloy Fe-12Ni-6Mn. The orga-
nization of this paper is as follows: in section II, we outline briefly the multiscale
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modeling. In section III, the analysis, calculations, and main results for the case of
alloy Fe-12Ni-6Mn are presented.

Multiscale Modeling
In the case of non-zero volume fraction of precipitate, the cubed average radius

of the particles remains proportional to time, but the proportionality coefficient is
different from that indicated in LSW theory. Therefore, three modifications are re-
quired regarding LSW theory to extend its validity to the general case of precipita-
tion hardened alloys. First, the Gibbs–Thomson correction [(1−cα)/(cβ −cα)]ε−1

must be included, particularly when considering the case of precipitates that are
intermetallic compound. When cα , the molar volume of the θ -NiMn precipitate
phase, is small, Darken’s correction factor, ε−1, approaches unity. Second, the
amount of solute needed for precipitate growth, cβ − cα , must also be included,
where cβ is the equilibrium concentration of the elements in the new precipitate
phase also expressed as a mole fraction. Finally, the effect of volume fraction on
coarsening needs to be included by introducing a parameter Kc(VV ), which is a
function of VV . After including each of the modifications mentioned above, the
growth law Eq.(2) in our micro-scale modeling for a non-zero precipitate volume
fraction becomes

〈r(t)〉3−〈r(t0)〉3 = M
D

RgT
(t − t0), (3)

where the coefficient

M =
8
9

σcαV θ
m

cα(1−cα )
(cβ −cα)2 Kc(VV ). (4)

The value of Kc(VV ), however, depends on the specifics of the coarsening kinetics.
Our micro-scale modeling yield Kc(VV ) > 1, which as indicated is a function of the
volume fraction, VV . Values of VV in case of the Fe-12Ni-6Mn alloy considered
here fall between 0 ≤ VV ≤ 0.15 depending on the temperature. The micro-scale
modeling [9] [10] yields a value for the function Kc(VV ) that may be expressed as

Kc(VV ) = 6.4125
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Orowan [11] first studied the mechanism of hardening in a matrix containing a
dispersion of hard particles using the concept of dislocation bowing. He established
a relationship between the applied stress and amount of bowing along the disloca-
tion line, known as Orowan’s equation. Ashby [12] added the effects introduced by
the statistical distribution of particle spacings in Orowan’s equation, and obtained
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the so-called Ashby–Orowan equation, namely,

Δτy = 0.84
1.2Gb
2π〈L〉 ln

〈r〉
b

, (6)

where Δτy, G, and b are the increase in the shear stress, the shear modulus of the
matrix, and the Burgers vector of the dislocation, respectively. 〈L〉 and 〈r〉 are the
average interparticle spacing, and the average particle radius, respectively, both of
which provide key characteristics of the microstructure. Equation (6) is macro-
scale modeling assuming that the precipitates are spheres, the relationship between
the volume fraction of the precipitates and their average spacing and average radius
is given by [13]

〈L〉= p〈r〉, (7)

where the auxiliary function p(VV ) is
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The Johnson–Mehl–Avrami (JMA) equation [14]-[16] may be used to describe
the time dependence of the dispersoid’s volume fraction with time at a given tem-
perature as follows,

VV (t) = VV (0) [1−exp[−(kt)m]] , (9)

where VV (0),k,m, t represent the equilibrium volume fraction of the precipitates,
the JMA reaction rate constant, the Avrami index, and the aging time, respectively.
The increase in yield stress for maraging steels is proportional to its hardness in-
crease, ΔH. The Taylor factor, MT , [13] derived for isotropic polycrystalline ma-
terials relates the increase in the material’s yield stress to the increase in the shear
stress associated with dislocation bowing. Thus, one finds that Δσy,

Δσy = MT Δτy = qΔH, (10)

where q is the conversion constant relating the Vickers hardness to the yield strength.
Combining Eqs.(6) through (10) yields a relationship between the hardness increase
in a precipitation hardened microstructure and the average precipitate radius,

ΔH = 0.84

(
1.2GMT

2πqp

)
b
〈r〉 ln

〈r〉
b

. (11)

Equation (11) demonstrates the link micro-scale (microstructure) to macro-scale
(the mechanical behavior) of a precipitation-hardened material. If the micro-scale
quantities such as volume fraction, VV , of the dispersoid phase changes, both the
average particle size, 〈r〉, and the average inter-particle spacing, 〈L〉 can be calcu-
lated from micro-scale modeling, the hardness can also be predicted by Eq.(11) .
This is main governing equation for multiscale modeling.
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Figure 1: Comparison of hardness calculated from this work to experimental [19]
and Guo and Sha’s previous calculation [18]. Symbols of unfilled diamond, circle
and triangle represent experimental results at temperatures of 400, 450, and 500
◦C, respectively. Solid line represents our results, and dashed line represent Guo
and Sha’ calculation [18].

Application of Multiscale Modeling to Property Predictions
We apply the multiscale modeling to the alloy, Fe-11.9Ni-5.75Mn (wt.%).

The interfacial energy of the NiMn precipitate/matrix interface is estimated to be
750 mJ/m2, which is a reasonable value for an incoherent interface. All other pa-
rameters used in these calculations are summarized in [17]. The JMA reaction rate
parameter, k, in Eq.(9) can be calculated as k0 exp(−Q/RT ), where k0 and Q are
the rate coefficient and its activation energy. Adjustable parameters do not appear
in any of microstructure and hardness calculations presented here. Both cα and cβ
are the sum of atomic fractions of Ni and Mn present in the matrix and precipitate
phases, respectively. Since NiMn only contains Ni and Mn, cβ = 1 always. The
values of cα at different aging temperatures were calculated using Thermo-Calc c©

linked to Kaufman’s binary alloy database [18]. The values of cα and the equilib-
rium amounts of NiMn precipitate at different temperatures are listed in [18]. Note
that cα increases by about 20% as the temperature increases from 400 to 500 C,
so it would be inappropriate to consider cα as constant over this range of aging
temperatures. During aging and overaging, the volume fraction of the precipitate,
VV , also changes with time, a process which is estimated through Eq.(9). Squires
and Wilson [19] measured hardness data for this alloy during overaging. These
investigators measured hardness at different overaging times, from 16.5 to 50.9 hr
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at 400 C, from 1.4 to 14.5 hr at 450 C, and from 0.244 to 5 hr at 500 C. The
quantity M is related to both kinetic and thermodynamic factors. The kinetic factor
Kc(VV ) is a complicated function of the volume fraction of precipitates, which can
be calculated through Eq.(5). The thermodynamic factor, including cα and cβ , is
calculated by Thermo-Calc c© software. Finally, using Eqs.(11), (3)-(5) one can cal-
culate hardness increase of Fe-12Ni-6Mn. Our prediction in the hardness increase
is compared with experimental result and Guo and Sha’ calculation in Fig. 1. Fig. 1
shows that our prediction is in good agreement with experimental result and better
than Guo and Sha’ calculation. In future, we will plan to apply the multiscale mod-
eling to other alloy systems. On the other hand, we will also plan to do multiscale
simulations to predict the hardness increase.
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