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Summary
In this paper the reverberation ray matrix method, which was developed re-

cently by Professor Pao and his colleagues for analyzing dynamic response of elas-
tic trusses or frames, is extended and used to solve the transient response of frames
made of viscoelastic bars. Originally for the solution of elastic structure the matrix
(I-R)−1 is expanded into Neumann series to circumvent the difficulty of singular-
ity in reversing the matrix in frequency domain. However, it is not necessary to
expand this matrix since there is no singularity problem for viscoelastic frame due
to viscous damping. The accuracy and effectiveness of applying reverberation ray
matrix method is verified by two examples: (1) a fix-free bar subjected to step-like
axial load and (2) a viscoelastic frame made of nine members, also subjected to
step-like load.

Introduction
The response of a structure subjected to dynamic load, especially impact load

is much more complex than that of static load. As the advance of science and tech-
nology, polymeric materials and composites have been more and more introduced
in, such as civil, aeronautical and astronautical engineering. This type of materials
exhibit viscoelastic characteristics. The solution of initial response of trusses or
frames made of viscoelastic members is worth attention for engineering applica-
tion.

There are generally two approaches for dynamic analysis of trusses or frames:
One is to treat the structure as a distributive system of multi-connected bars or
beams which can be solved by, for instance, transfer matrix method, direct stiffness
method, compliance method etc[1]. The other one is to discretize every member of
the structure into a number of elements, i.e. finite element method. However, the
transcendental function appeared in the matrix of the former approach often results
in difficulty of solution, while the latter needs numerous elements to get relatively
accurate result. It is likely applicable for low frequency and long term response.

An alternative approach is using wave propagation theory to obtain the re-
sponse of the structure. Recently, based on the theory of wave propagation Pao
[2] proposed the method of reverberation ray matrix (MRRM). The present study
extends the reverberation ray matrix method to investigate the transient response
of frames made of viscoelastic material. The application of MRRM is verified by
examples of a fix-free bar and a frame made of nine viscoelastic beams.
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Basic equations
Without loss of generality, we use the three

parameter viscoelastic solid model to represent
properties of the bar (Fig. 1). The stress-strain
relation of this material can be expressed by the
following differential equation:
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Figure 1: Three parameter viscoelastic
solid

σ + p1σ̇ = q0ε +q1ε̇ (1)

where p1 = η
(E1+E2)

, q0 = E1E2
E1+E2

, q1 = E2η
E1+E2

The complex modulus is

Ê(ω) =
q0 + iωq1

1+ iω p1
(2)

If Poisson ratio is assumed as constant, then the shear modulus is

Ĝ(ω) =
Ê(ω)

2(1+ μ)
(3)

where the top-script ‘∧’ means the variable in frequency domain.

According to the theory of linear viscoelasticity[3], in frequency domain the
governing equation of linear viscoelastic material can be obtained by replacing
the elastic modulus in the governing equation of corresponding elastic material
with the complex modulus. The differential equations for Timoshenko’s beam of
viscoelastic material can be written as:

∂ 2û(x,ω)
∂x2

+
ρ

Ê(ω)
ω2û(x,ω) = 0 (4)

for axial movement and{
κĜ(ω) ∂2 v̂s(x,ω)

∂x2 +ρω2v̂(x,w) = 0

Ê (ω)I ∂3 v̂b(x,ω)
∂x3 +κAĜ(ω) ∂ v̂s(x,ω)

∂x +ρIω2 ∂ v̂b(x,ω)
∂x = 0

(5)

for flexural movement. In the above equations û,v̂b , v̂s are axial, flexural bending
and flexural shear displacement (v̂ = v̂b + v̂s), I, A, κ , ρ are second moment, area,
shear coefficient of the cross section and density respectively. The amplitudes of
axial wave a1, d1 and that of flexural waves a2 , d2, a3, d3 are assumed as basic
unknowns, where ‘a’ means incident wave while ‘d’ means departing wave. The
axial and flexural displacements can be expressed as[2]

û(x,ω) = a1 (ω)eik1x +d1 (ω)e−ik1x (6)
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{
v̂b (x,ω) = a2 (ω)eik2x +d2 (ω)e−ik2x +a3 (ω)eik3x +d3 (ω)e−ik3x

v̂s (x,ω) = χ2a2 (ω)eik2x + χ2d2 (ω)e−ik2x + χ3a3 (ω)eik3x + χ3d3 (ω)e−ik3x

(7)
where k1 ∼ k3are wave numbers, χ2, χ3 are coefficients of deflection ratio. The
axial force F̂ , shear force V̂ , bending moment M̂ and rotation φ̂ are

F̂ = ÊA
∂ û
∂x

, V̂ = κAĜ
∂ v̂s

∂x
, M̂ = −ÊI

∂ 2v̂b

∂x2 , φ̂ =
∂ v̂b

∂x
(8)

The conditions of momentum equilibrium as well as compatibility of node Jof
the frame can be written in matrix form as[4]

[
D11 D12

D21 D22

]J {
dJ

HJ

}
=

[
A1

A2

]J{
aJ

}
−

{
0
f J

}
(9)

where D and A are coefficient matrixes with material constants and geometric pa-

rameters, H is displacement vector and f is load vector of the node.
{

dJ
}

and{
HJ

}
can be solved from Eq.(9), and

{
dJ

}
can be reduced as:

dJ = SJaJ + sJ (10)

where SJ is the scattering matrix, sJ is the source vector of the node. Because the
incident wave of a node is just the departing wave of a neighboring node, taking
the whole structure of all nodes into consideration, a can be expressed with d as
a = PUd, where P is named as phase shift matrix and U as permutation matrix.
Equation (10) can be further reduced as[2]

d =
s

[I−R]
(11)

in which R = SPU is named as the reverberation ray matrix of the structure. As
far as elastic structure is concerned, the matrix [I −R]−1 contains infinite poles in
frequency complex plane. It is impractical to directly reverse the matrix. In order
to circumvent this difficulty, Ref.[2] proposes expanding [I−R]−1 into a Neumann
Series:

[I −R]−1 = I +R+R2 + ...+RN + ... (12)

Once d is solved, the stress, strain and displacement of all members as well as dis-
placements or constraint forces of every node can be calculated. These variables
can be transformed back to time domain by the inverse fast Fourier procedure.
However, for a structure made of viscoelastic materials, there is no singularity prob-
lem in the denominator of Eq. (11). The matrix [I −R]−1 can be reversed directly
so that calculation is reduced dramatically.
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Verification of MRRM in viscoelastic problem
Shown in Fig.2 is a fix-free bar with square cross section (0.1×0.1m2) sub-

jected to suddenly applied step-like stress at the
right end. The boundary condition is: σ (l, t) =
σ0h(t), h(t) is the Heaviside function, and σ0 =
100MPa. The length of the bar is l=0.75m. The
material properties are E1 = 16GPa, E2 = 20GPa,
η = 8.062×107Pa · s, κ=0.833, ρ =6500Kg/m3.
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Figure 2: A fix-free bar subjected to
suddenly applied axial load

As shown by Christenson[3]the stress in Laplace domain can be written as

σ̄ (x, s) =
σ0

s
+

∞

∑
n=1

8ρσ0l3 (−1)n cos
[
(2n−1)πx

/
2l

]
(2n−1)π

[
(2n−1)2 π2Ē (s)+4l2ρs

] (13)

where Ē(s) = Ā(s)
/

B̄(s) , Ā(s) = q0 + sq1, B̄(s) = s+ s2 p1

Denote the polynomial of the denominator of Eq.(13) multiplied by B̄(s) as

P̄n(s) = (2n−1)2π2Ā(s)+4ρ l2sB̄(s) = Dn

N+2

∏
j=1

(s−a jn) (14)

For the three parameter viscoelastic solid, Pn is a cubic polynomial of s.Dn is the
coefficient ofP̄n. After inverse Laplace transformation, we have

σ (x, t) = σ0h(t)
{

1+ 8ρl3

π

∞
∑

n=1

(−1)n cos[(2n−1)πx/2l]
Dn(2n−1)

×
N+2
∑

k=1

(ak,neak,nt)
lim
s → ak,n

N+2
∏
j=1

(s−a j,n)
/

(s−ak,n)

⎫⎪⎪⎬
⎪⎪⎭

(15)

Shown in Fig.3 is the axial stress of
the mid-point C obtained from MRRM
compared with solution of Eq.(15). The
unit time is t0 = 0.403×10−3s. The two
curves coincide well. The amplitude of
the axial stress reduces with time due to
viscous damping of the material and ap-
proaches quasi static value σ0. It is veri-
fied that MRRM can be applied to solve
the transient response of frames made
of viscoelastic materials (such as poly-
mers, composites).
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Figure 3: Christenson’s solution compared with
MRRM for the fix-free bar
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Transient response of a nine member plane frame
In order to verify that the response of a viscoelastic structure can be ob-

tained by direct inverse of Eq.(11) , the strain re-
sponse of a plane frame made of nine viscoelas-
tic members (Fig.4) is analyzed with Neumann
series expansion of Eq.(12) as well as direct in-
verse of Eq.(11). The nine member frame has
the same material properties and cross-section
as the fix-free bar, except η = 4.031×108Pa · s,
subjected to a step-like load (800N) at the node
4. The transient response of axial strain and
bending strain (the normal strain at the top or
bottom surface due to flexural deformation of
Timoshenko’s beam) at the mid-point of mem-
ber 34 are plotted and compared in Figures 5∼6.
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Figure 4: Nine member plan frame

As shown in Eq.(12) direct inverse of matrix [I −R]−1is equivalent to infinite
number of terms of Neumann series expansion. It is time saving and accurate.
The results from the two methods coincide very well in initial stage, however, they
depart from each other after a period of time, especially for bending strain as shown
in Fig.6.
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Figure 5: Axial strain at the mid-point of
member 34
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Figure 6: Bending strain at the mid-point
of member 34

Conclusion
The MRRM which is originally developed for analysis of dynamic response

of elastic trusses or frames is extended to viscoelastic frames. The feasibility of
this extension is verified first with an example of a fix-free viscoelastic bar sub-
jected to a suddenly applied tensile load, by comparing with the result obtained
with Christensen’s method. Then a plane frame of nine viscoelastic members is
solved to demonstrate that the MRRM is efficient in analyzing dynamic problem of
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viscoelastic structures.
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