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Normal deflection of a notched plate under uniform tensile
stress

J.W. Choi1, S.H. Yoo1, J.B. Kim1 and E.J. Park1

Summary
A semi-analytical solution by beam theory and finite element solutions are ob-

tained for normal deflection of a plate with a surface crack under tensile stress.
The semi-analytical solution consists of the deflection of a beam and the half-space
or full-space solution. Also finite element solutions are obtained and compared
with these analytical solutions. These solutions can be used as reference data for
non-destructive evaluation of a surface crack.

Introduction
The free-edge effects have been extensively studied in the linear elastic fracture

mechanics. Most of the studies are on the fracture parameter, K, J and COD[1]. The
numerical collocation formulation and weight function technique are the primary
methods to obtain stress intensity factors of the single edge crack problem [2]. The
deformation of crack edge or crack-like notch edge is necessary for crack detec-
tion in MEMS, semiconductor, biomedical applications, etc [3,4]. The theoretical
normal displacements of a free surface were first examined by Steele and Yoo [5].
The vertical displacement combined with those of cracked layer and remaining
half-space solution is the total deflection of the plate.

Governing Equations
A notched plate under remote uniform tension can be modeled as the addition

of plates with notch face traction and remote uniform tension with no notch by
the principle of superposition. The notch face traction is separated into two parts.
One is a beam on rigid foundation having a horizontal stress and the other is half-
space having interacting stresses on surface as shown in Figure 1. The plain strain
condition is assumed and Timoshenko beam theory is adopted for the beam under
horizontal stress as in Figure 1(b). The equilibrium equations are

dQ
dx

= σo (1)

dM
dx

= Q− t
2

τo (2)

dNx

dx
= τo (3)

where Q is a shear stress resultant and σ0,τ0 are interacting normal stress and shear
stress at z = −t/2 respectively. M is a bending moment resultant. Nx is an ax-
ial stress resultant. From the kinematics and constitutive equations, the following
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relations are obtained.

Nx =
Et

(1−ν2)
du0

dx
(4)

M =
Et3

12(1−ν2)
dχ
dx

(5)
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Figure 1: (a) Notched plate subject to uniform tensile stress. (b) Beam model with
shear deformation and stretching of normal for notched layer. (c) Interface stresses
acting on the remaining half-space.

χ is rotation of the plate and u0 is displacements of the mid-surface. By consid-
ering constitutive relations, we obtain σx = Nx/t +z ·12M/t3. The two dimensional
equation of equilibrium for the case in which there are no internal body forces is
considered and substituting into Eq.1, we obtain σz = σo(1/2− z/t). After inte-
grating the strain in z direction for plain strain, we obtain the equation of σ0 in
terms of the displacement of the centerlinew0 as

σ0 =
8E

3t(1−ν2)
[w0 +

ν(1+ν)
2E

(Nx − 3M
t

)] (6)

Substituting Eqs.1, 4 and 5 into Eq.6 and considering boundary condition at z =
−t/2, following non-dimensional equation for rotation is obtained.

d3χ
dξ 3 − ν

(1−ν)
dχ
dξ

=
8w0

t
(7)
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The non-dimensional parameter ξ is ξ = x/t. By considering shear deforma-
tion and boundary condition at z = −t/2, following non-dimensional equation is
obtained.

μ
3(1−ν2)

d2χ
dξ 2 =

d
dξ

w0

t
+ χ (8)

where μ is effective transverse shear modulus. If Poisson’s ratio ν = 0.3 and μ =
2.6, the solution of the rotational equation at the centerline is

χ =
2σe(1−ν2)

E
β1β2

(β2−β1)
[

1

β 2
1

e−β1ξ − 1

β 2
2

e−β2ξ ] (9)

where β1 = 1.077, β2 = 2.624. By integrating the strain in z direction for plain, the
normal displacement, wb at the free surface is

Ewb

σet
=

(1−ν2)β1β2

β2 −β1
[(−β1

6
+

ν
2(1−ν)

1
β1

)e−β1ξ +(
β2

6
− ν

2(1−ν)
1
β2

)e−β2ξ ]

(10)
From Eqs.1, 3, and 9, the interfacing stresses are

σo =
2σeβ1β2

3β2−β1
[−β1e−β1ξ +β2e−β2ξ ] (11)

τo =
σeβ1β2

β2 −β1
[e−β1ξ −e−β2ξ ] (12)

Next, we consider the half-space to the remaining interfacing part of the plate. We
use bi-harmonic equation of a stress function ϕ(ξ ,ζ ) as

ϕ(ξ ,ζ ) =

√
2
π

∫ ∞

0
eλζ (A+Bλ ζ )cosλ ξdλ (13)

where ξ = x/t, ζ = z/t and A,B are constants. By considering σ0, τ0 respectively,
we can determine constants A, B by taking Fourier transform. Normal displace-
ment wn loaded only for the σ0 is

Ewn(ξ ,0)
σet

=− 2β1β2

3β2 −β1

4
π

(1−ν2)
∫ ∞

0

⎡
⎣ β1(β1 cosλδ−λ sin λδ)

β 2
1 +λ 2

−β2(β2 cosλδ−λ sin λδ)
β 2

2 +λ 2

⎤
⎦ cosλ ξ

λ
dλ (14)

where δ = e
2t . Normal displacement ws loaded only for theτ0 is

Ews(ξ ,0)
σet

=
β1β2

β2 −β1
(1+ν)(1−2ν)

2
π
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2 +λ 2

⎤
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(15)
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From Eqs.10, 14 and 15, the total deflection of the plate is the sum of the displace-
ments from beam solution wb and half-space solutions wn ,ws. When we consider
full-space,ws due to shear stress τ0 will be zero by symmetry. wn from full-space
is reduced to 0.398 of the half-space solution. Fig. 2 shows the results of the cases
considered. We consider the half-space solution as the upper limit and the full-
space solution as the lower limit for the real normal deflection as shown in Table
1.

Table 1: Upper and lower limit of the deflection when notch widthδ = 0.
Ewb
tσe

Ewn
tσe

Ews
tσe

EwT
tσe

Half-space 0.623 1.256 0.520 2.399
Full-space 0.623 0.499 0 1.122
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Figure 2: Plain strain normal deflection under uniform tensile stress according to
crack width δ = 0,1

Numerical Model
Figure 3 shows the plate model. The 4-node plane stain CPE4 of the commer-

cial FEM program ABAQUS are used[6]. The model consists of 13,200 elements
and 13,431 nodes. A half model created by taking advantage of symmetry. The
width and depth of the notch are increased δ = e

2t = 0 ∼ 1 and t
H = 0.1 ∼ 0.5.

Results and Discussion
The Figure 4 shows the result of the normal displacements of the notch edge

of the plate by the semi-analytical model and FE analysis. As the notch width is
increased, the normal deflection of the plate is decreased. As the depth is increased,
the normal deflection is increased and the edge effect is shown in the Figure 4(b).
About at two times distance from notch edge, the effect is diminished of which
the normal displacement of the plate is zero. The upper and lower limits are well
compared with the finite element results and can provide good reference for non-
destructive examination.
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Figure 3: (a) Geometry of the notched plate. (b) FEM Model
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Figure 4: (a) Normal displacements according to the notch width. (b) Normal
displacements according to the notch depth
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