
Copyright c© 2007 ICCES ICCES, vol.1, no.4, pp.133-138, 2007

Numerical Simulation of Dynamic Nonlinear Fracture
based on Various Fracture Path Prediction Theories

T. Fujimoto1 and T. Nishioka2

Summary
In this study, applicability of various fracture path prediction theories into dy-

namic elasto visco-plastic fracture is discussed by the moving finite element analy-
ses. Outline of each fracture path theory and numerical method to predict fracture
path are explained. Fracture path predictions are demonstrated in the numerical
specimen model under mixed mode loading, and numerical results of fracture path
prediction are compared.

Introduction
In some fracture accident, propagating crack tip reaches significant part of

structure and catastrophic damages are caused. To prevent serious fracture acci-
dents, establishment of measures to predict crack propagation path is very impor-
tant in many industrial fields Fractures have been happened in diverse situations and
these phenomena have been classified into some types of fracture. Therefore, var-
ious fracture path prediction theories have been suggested. Some of these theories
were derived based on singular near field of stable crack propagation. Applicability
of some theories was also investigated by using numerical simulation[1][2].

Nishioka classifies significant fracture path prediction theories into implicit
theories and explicit theories[1]. Path predictions for various dynamic elastic frac-
tures using the local symmetry criterion[3] and the maximum hoop stress crite-
rion[4] were reported by Nishioka and co-workers. Each path prediction theory
was introduced into the moving finite element method[5]. In their studies, numer-
ical results were compared with experimental fracture path in three point bending
fracture specimen[1], crack bifurcation specimen[2] and etc., and these results in-
dicates the excellent efficiency of numerical path prediction using the moving finite
element method.

This study focuses the numerical prediction of crack propagation path for dy-
namic elasto visco-plastic fracture. Some of the fracture path prediction theories,
which are able to apply dynamic nonlinear fracture, are introduced into the mov-
ing finite element method. The local symmetry criterion based on the T* integral
(T ∗0

2 = 0 criterion)[6][7], the maximum T ∗0
1 criterion, the maximum second stress

invariant criterion (det. criterion)[8] and maximum hoop stress criterion[4] are in-
troduced into the moving finite element method for dynamic nonlinear fracture[9].
Dynamic elasto visco-plastic fracture path is predicted in numerical specimen un-
der mixed mode dynamic loading.
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The T* integral
In this study, the T* integral[10] is used to evaluate the crack tip condition for

dynamic elasto visco-plastic fracture. For calculation of T* value, near and far
field domains, Vε and VΓ are defined around crack tip, as shown in Fig.1. The
components of T* integral based on the global coordinates system, T ∗

k (k = 1,2)
are calculated from the following path integration:

T ∗
k =

∫
Γε

[(W +K)nk − tiui,k]dS

=
∫

Γ+ΓC

[(W +K)nk − tiui,k]dS +
∫

VΓ−Vε

[
ρ üiui,k −ρ u̇iu̇i,k +σi jui, jk −W,k

]
dV

(1)

where, W and K denote the stress working density and the kinetic energy density,
respectively. nk, ti and ρ are the components of unit outward normal vector on the
integral path, the traction and the mass density, respectively. Γε , Γ and Γc mean
a near-field path, far-field path and crack surface path, respectively. It is assumed
that the near field path Γε and the near-field domain Vε are extended with the crack
propagation process.

Figure 1: Definition of integral paths around crack tip to evaluate T* values

For the curving crack propagation, the crack-axis components of the T* integral
T ∗0
� (� = 1,2) are very useful to evaluate the crack tip condition, because the T*

integral has perfect far-field path independence for dynamic nonlinear fracture. T ∗0
�

(� = 1,2) can be calculated by following coordinate transformation:

T ∗0
� = α�k (θ )T ∗

k (2)

where α�k (θ )is the coordinate transformation tensor and θ is the angle between the
global axis X1 and the crack axis x0

1.

Fracture Path Prediction Theories
In fracture path prediction theories based on mechanics, crack-propagating di-

rection is derived from the near-field condition of crack tip. In some of the theories,
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the specific crack tip condition is prescribed, and this condition has to be always
satisfied during crack propagation. These theories have been classified as the im-
plicit fracture path prediction theories[1]. In the finite element analyses to predict
fracture path with the implicit theory, iterative calculation is required to detect the
crack propagation direction. In the iterative calculation at each time step, crack tip
propagation to tentative direction are assumed. Final crack propagating direction is
obtained from convergence of the iterative calculations.

In the local symmetry criterion[3], local mode I condition near propagating
crack tip is assumed. For linear fracture, the stress intensity factor KII=0 condition
is used as parameter of local symmetry condition. For nonlinear fracture with large
deformation, conventional linear fracture mechanics parameters cannot be used as
the criterion. Some researchers[6][7] suggest the T ∗0

2 = 0 criterion as the local
symmetry criterion for nonlinear fracture.

The T* integral component T ∗0
1 means the energy flow rate into the domain

Vε . Fracture work is supplied by this energy flow. For Vε domain of propagating
crack tip, maximum energy flow rate is caused in the maximum T ∗0

1 criterion. The
T ∗0

2 = 0 criterion and the maximum T ∗0
1 criterion are classified into the implicit

fracture path prediction theories.

In the explicit fracture path prediction theories[1], crack-propagating direction
is determined from the near field distribution of specific parameter at time t. For the
time step increment Δt in finite element analyses, the crack propagating direction
during Δt (from t to t +Δt) can be evaluated based on the near field deformation at
time t. Therefore, iterative calculation is not required in numerical prediction with
the explicit theories.

The maximum second stress invariant criterion (det. criterion) was proposed by
Papadopoulos[8]. In the numerical prediction based on this theory, distribution of
second stress invariant I2 is estimated on the concentric circle line. The concentric
circle is defined around propagating crack tip, and center point of the circle is iden-
tical with crack tip position. Occurrence of maximum I2 value on the concentric
circle line indicates propagation direction from current crack tip.

In the maximum hoop stress criterion[5], hoop stress σθθ is used instead of I2 in
the above mention. The hoop stress σθθ is the stress component, which depends on
positions of the concentric circle and the current crack tip ‘A’. σθθ can be calculated
at a points ‘S’ on the concentric circle by the following equation:

σθθ = σx sin2 θ +σy sin2 θ −τxy sinθ cosθ (3)

where σx, σy and τxy are stress components based on global coordinates. Angle θ
is prescribed by the global axis X1 and line AS.
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Results of Numerical Fracture Path Prediction
The moving finite element method is already developed for dynamic elasto

visco-plastic fracture in author’s previous study[9]. Aforementioned fracture path
prediction theories are introduced into the moving finite element method[6]. At
each time step, the fracture path direction is founded by a fracture path prediction
theory. The moving finite element technique achieves the modeling of newly pre-
dicted crack elongation. Mesh subdivision is re-generated at each time step by the
Delaunay automatic triangulation[11]. In order to simulate dynamic elasto visco-
plastic fracture, the finite element formulation is derived based on the large defor-
mation theory[12] and the special variational principle for nonlinear fracture[13].

 

Figure 2: Numerical fracture specimen under mixed mode loading

Fracture path prediction is demonstrated in the numerical specimen under mixed
mode loading, as shown in Fig.2. It is assumed that the specimen consists of elasto
visco-plastic material and the equivalent stress – visco-plastic strain relation is in-
terpolated by the Malvern type constitutive equation[14] :

ε̄vp = 1000

(
σ̄
σ f

−1

)
, σ f = 300×106 (ε̄ p)0.2 (4)

where σ f , ε̄vp and ε̄ p are quasi-static equivalent stress, equivalent visco-plastic
strain and quasi-static equivalent plastic strain, respectively. Elastic parameters of
the material are shown in Fig.2.

Figure 3(a) shows the mesh subdivision near the fracture path, which is pre-
dicted by the local symmetry criterion. Non-straight fracture path can be expressed
by the moving element technique. To evaluate residual permanent strain distri-
bution, fine mesh subdivision occupies in post crack propagation area. For other
fracture path prediction theories, similar mesh subdivisions are constructed, and
the equivalent visco-plastic strain distributions are shown in Fig. 3(b)-3(d). Dis-
tinct plastic strain are remained near the post crack propagation line. Under the
condition in this study, all theories indicate similar predicted fracture path. Other
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Figure 3: Mesh subdivision and equivalent visco-plastic strain distributions

results will be presented in the conference.

Conclusions
In this study, some fracture path prediction theories are considered for dynamic

elasto visco-plastic fracture. These theories are introduced into the moving finite
element method. Each predicted fracture path are similar in the numerical specimen
under mixed mode loading. This research was supported by the grant from Hyogo
Science and Technology Association (17W114).
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