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Ultra High-speed Observation of Dynamic Fracture using
C. G.S. Methods under Mix-mode Impact Load

T. Nishioka1, M.Kogame2, T. Fujimoto1 and G. Okamoto1

Summary
In this study, we observed C.G.S. fringe pattern of dynamic fracture under im-

pact load by an ultra high-speed CCD video camera, and stress intensity factors
KI , KII are evaluated from the experimental measurements. From the evaluation of
stress intensity factors, local mode I condition is observed during crack propaga-
tion. On the other hand, concentrated load is obtained by the experimental devices
in this study. We suggest the least square method to estimate loading value based
on the C.G.S. fringe pattern analyses.

Introduction
The clarification of mechanism for the shear dominated fracture is one of very

important problems in the fracture mechanics field. The contact of crack surfaces
may be caused in this type of fracture. In our previous study[1], we observed dis-
tributions of principal stress sum gradient near crack tip by the Coherent Gradient
Sensing (C.G.S.) method[2]. The stress intensity factor KI evaluated for high-speed
straight crack propagation under mode I load. However, the measurement method
to evaluate KI and KII was not established for nonstraight crack propagation.

In this study, we observe C.G.S. fringe patterns for mix-mode fracture under
impact load method using ultra high-speed video camera. The measurement of
stress intensity factors is restricted for straight crack propagation in our previous
study. And more, to measure load value, we focused on C.G.S. fringe pattern near
loading point.

Estimate of Stress Intensity Factor Based on C.G.S. Method
We use the C.G.S. method[2] to visualize principal stress sum gradient distri-

bution near the crack tip. The C.G.S. fringe pattern is equivalent to contour lines
of principal stress sum gradient distribution on the specimen. The equation (1)
expresses the relation between fringe order ‘n’ in the C.G.S. images and stress gra-
dient:

∂ (σ1 +σ2)
∂Xi

=
np

cotΔ
(1)

where, co, t, σ1, σ2, p, Δ, and Xi denote optical constant of specimen’s material,
thickness of specimen, principal stress components, pitch of grating, distance of
two grating planes, and grid direction, respectively.
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In the case of stationary crack tip, under mix-mode load the equation (2) shows
the relation between the principal stress sum gradient and stress intensity factors:
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where, r and θ denote the near field point location based on the crack tip polar
coordinate system.

From the equation (1) and (2), we can derive the equation (3) which shows
relation between C.G.S. fringe pattern and the stress gradient:
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In the case of propagating crack tip, we formulate the relation between the
principal stress sum gradient near the crack tip and the C.G.S. fringe pattern. The
equation (4) is a sum of principal stresses σ1 + σ2 which considered influence of
crack propagating velocity was provided by T.Nishoka and et.al. [3]:
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where, c, cd and cs denote crack propagation velocity, dilatational wave speed and
shear wave speed. x and y denote the near field point location based on the crack
tip orthogonal coordinate system. The equation (5) is obtained by differentiating
the equation (4) in X coordinate.
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(5)

where, θx denotes an angle with a direction of propagating crack tip and X coordi-
nate.
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From the equation (1) and (5), we can derive the equation (6) which shows
relation between the C.G.S. fringe pattern and the stress intensity factor.
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where, unknown values are n, KI and KII. These parameters are evaluated by the
least square method, in which data at many measurement points is used.

Experimental Setup and Measurement of Stress Intensity Factors
Fig.1 shows the specimen geometry. The specimen’s material is PMMA, which’s

Young’s modulus is 2.948 [GPa], Poisson’s ratio is 0.329 and mass density is 1190
[kg/m3].
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Figure 1: specimen geometry

As a dynamic loading fracture experimental, we dropped a striker so that striker’s
speed became 5 [m/s]. We observed dynamic stress gradient distributions near
crack tip and the C.G.S. method. In order to recording the C.G.S. images, we used
the ultra high-speed CCD camera and the argon pulse laser, which are synchro-
nized. This camera can record 102 images with maximum recording velocity of
one million frames per second. Pitch of gratings ‘p’ is 0.025 [mm/line] and dis-
tance of gratings ‘Δ’ is 70 [mm].

Fig.2 shows C.G.S. images on dynamic crack propagating. A photography
range is located on the lower left part of the specimen. The image recording started
when the striker contacts the specimen. Fig.3 shows stress intensity factor histories.
Mode II condition dominates the near-field deformation of the stationary crack tip.
For the propagating crack tip, mode II effect is disappeared and mode I condition
is observed from the measurement of stress intensity factors. This phenomenon
indicates the local symmetry.

Next, we focused on near loading point. At first, we considered on static load.
For pure bending of straight bars without cracks, the equation (7) shows principal
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(a) 58μsec. (b) 114μsec. (c) 170μsec. (d) 226μsec.(a) 58μsec. (b) 114μsec. (c) 170μsec. (d) 226μsec.

(d) 282μsec. (d) 338μsec. (d) 394μsec. (d) 450μsec.(d) 282μsec. (d) 338μsec. (d) 394μsec. (d) 450μsec.

Figure 2: High-speed photographs of dynamically fracturing specimen
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Figure 3: Stress intensity factors history

stress sum that provided by M.M.Frocht [4]:

σ1 +σ2 =
−2F

πt

{
xy2 +x3

(x2 +y2)
+

3π
8C3 (S−|y|)(x−C)

}
(7)

where, F denotes concentrated load. c, s and t are defined in fig.1. We got equation
(8) by differentiating equation (7) in x coordinate.

∂ (σ1 +σ2)
∂X

=
−2F

πt

{ −x2 +y2

(x2 +y2)2 +
3π
8C3 (S−|y|)

}
(8)



Ultra High-speed Observation of Dynamic Fracture 117

From the equation (1) and (8), we can show the equation (9) which is the equation
to evaluate the load value from C.G.S. fringe pattern.

F = [
−2
πt

{ −x2 +y2

(x2 +y2)2 }+
3π
8C3 (S−|y|)]−1× np

cotΔ
(9)

where, unknowns values are n, and F, likewise stress intensity factor measure-
ment, we used least square method.

  

(a) Non crack specimen  (b) Crack specimen 

Figure 4: Comparison of analytical and experimental C.G.S. fringe pattern near
loading point
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Figure 5: measurement load error

Fig.4 shows comparison of analytical and experimental C.G.S fringe pattern
near loading point. In fig.4, quasi-static load 3924[N] is provided by the loading
device, as an example. From the experimental measurements, load values ‘Fc’ are
estimated by using the least square method based on eq.(9). ‘F’ is the exact load
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value, which is indicated by the loading device. Good agreements of Fc and F are
shown in fig.5. Fig.5 shows that we can measure load value with approximately
10% error from the C.G.S. fringe pattern.

Conclusions
Based on the theory of C.G.S. method, we formulate the least square method

to evaluate stress intensity factor KI and KII for stationary and propagating crack
tip. These do not ask it whether it is mix-mode, going strait propagating and prop-
agating or stationary. Mix-mode condition is dominated for the stationary crack
tip. During crack propagating, mode I condition is observed from the measurement
of stress intensity factor, and these results indicate the local symmetry condition
for the propagating crack tip. Next, we measure loading value from C.G.S. fringe
pattern.
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