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The Theory of Critical Distances and the estimation of
notch fatigue limits: L, a0 and open notches

L. Susmel12, D. Taylor2 and R. Tovo1

Summary
This paper investigates some practical aspects related to the use of the Theory

of Critical Distances (TCD) when employed to estimate notch fatigue limits. The
accuracy of different formalisations of the theory was checked by using experi-
mental data taken from the literature. This exercise allowed us to confirm that the
simplest formalisation of the TCD, in which both critical distance and critical stress
are material constants [1], is also the most accurate one, giving predictions falling
within an error interval of about ±20%. The TCD is also accurate when applied to
notches having large opening angles.
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Figure 1: Notched specimen
under a remote uniaxial fa-
tigue loading.

The TCD postulates that notched components are
in the fatigue limit condition when the effective stress,
Δσe f f , calculated using the linear-elastic stress field in
the fatigue process zone, is equal to the material’s plain
fatigue limit, Δσ0. In more detail, and according to the
most modern formalisations of the TCD, Δσe f f can be
calculated variously, as follows (Fig. 1):

Δσe f f = Δσ1 (θ = 0, r = DPM) = Δσ0 (1)

Δσe f f =
1

DLM

∫ DLM

0
Δσ1 (θ = 0, r)dr = Δσ0 (2)

Δσe f f =
4

πDAM

∫ π/2

−π/2

∫ DAM

0
Δσ1 (θ , r) ·dr ·dθ ∼= Δσ0 (3)

Eq. (1) formalises the Point Method (PM) [1, 2], Eq. (2) the Line Method
(LM) [1, 2, 3]; and Eq. (3) the Area Method (AM) [1]. In these equations DPM ,
DLM and DAM are the critical lengths to be used to apply the PM, the LM and the
AM, respectively.

According to suggestions by Tanaka [2], Lazzarin and co-workers [3] and Tay-
lor [1], these critical lengths take the following values: DPM=L/2, DLM=2L and
DAM=L, where L is the material characteristic length, which is defined as:

L =
1
π

(
ΔKth

Δσ0

)2

(4)
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Here ΔKth is the threshold value of the stress intensity factor range and Δσ0 is the
plain fatigue limit, both determined at the appropriate load ratio, R.

Previously, the accuracy of the above formalisations of the TCD was system-
atically checked, considering both standard notches [4] and real components [5]:
these investigations allowed us to prove that the TCD is successful in estimating
notch fatigue limits, giving predictions falling within an error interval of about
±20%. This raises the simple question: “Why does the TCD work?”. Even though
it is very difficult to answer this question coming to a definitive conclusion, we have
noted that the TCD may work because it is capable of predicting the propagation
(or non-propagation) of cracks initiating at the tip of the stress raiser and having
length equal to 2L [6]. In other words, according to this idea, non-propagating
cracks (NPCs) should have a length equal to 2L when initiated at the apex of crack-
like notches. Though this justification is appealing, it does not explain the reason
why the TCD is successful also in predicting fatigue limits of blunt notches [4, 6].

In any case, assuming that the TCD’s accuracy is due to its capability of pre-
dicting NPC length, one might argue that, according to Yates and Brown’s idea [7],
the critical lengths in Eqs. (1), (2) and (3) are not related to L but to the ElHaddad
parameter a0, which is defined as follows [8]:

a0 =
1
π

(
ΔKth

F ·Δσ0

)2

(5)

Here F is the geometrical correction factor for the LEFM stress intensity factor,
which depends on notch geometry and other factors, thus ao is not a material con-
stant. An alternative formulation of the TCD would use the following three critical
distances DPM=a0/2, DLM=2a0 and DAM=a0. Now the question is: “Are the predic-
tions made using a0 more accurate than the ones obtained using L?”. In order to
answer this question, in the next section the accuracy of these two different ways
of using the TCD will be checked and compared by using experimental data taken
from the literature.

In 1997, Lazzarin, Tovo and Meneghetti [3] argued that, in order to correctly
apply the PM, the range of the maximum principal stress at the point having coor-
dinates (θ=0, r=L) must be corrected by using an adimensional function depending
on both L and the notch root radius, rn. Their LTM-PM was defined:

Δσe f f = Δσ1 (θ = 0, r = L)
1+

√
2 L

rn

1+ L
rn

= Δσ0 (6)

Thus, for these workers, the critical stress range is not a material constant. In the
next section, the selected data will be used also to discover what formalisation
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of the PM is the most accurate one. Furthermore, the accuracy of the TCD will
be checked in the presence of notches characterised by large values of the notch
opening angle; this is an important check because most workers studying notches
have confined themselves to opening angles of less than 90o.

Material Ref. R
Δσ0 ΔKth Fmin Fmax Spec. type Load type
[MPa] [MPa m1/2]

Mild Steel [9] -1 420 12.8
1.12 1.12 DENP AX
1.308 1.308 CNB AX

C45 [10] -1 582 8.1 1.09 1.239 CNB RB
C36 [10] -1 446 7.1 1.09 1.193 CNB RB
6060-T6 [11] 0.1 110 6.1 1.12 1.13 DENP AX
AISI 304 [12] -1 720 12.0 1.308 1.308 CNB AX
EN-GJS-800-8 [13] 0.1 440 8.1 1.13 1.126 DENP AX

Grey Iron [14]

-1 155 15.9

1.28 1.28 CNB AX
0.1 99 11.2
0.5 68 8.0
0.7 48 5.2

AA356-T6 [15] -1 231 4.4 1.141 2.78 CNB RB
Ni-Cr Steel [12] -1 1000 12.8 1.001 1.045 CNP AX
Steel 15313 [16] -1 440 12 1.13 1.4 CNB AX

CNB= circumferential notch cylindrical bar, CNP= center notch in plate,
DENP= double edge notch in plate, RB= rotating bending, AX= push-pull

Table 1: Summary of the experimental data.

Systematic Comparison Using Experimental Data
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Figure 2: Accuracy of the different for-
malisations of the TCD.

In order to answer the questions arising in
the previous section, experimental data were se-
lected from the technical literature. Table 1 sum-
marises the sources of data used. Figure 2a re-
ports the Probability Density Function vs. Er-
ror diagram obtained by applying the three dif-
ferent formulations of the PM considered in the
present study, where the error was calculated
as follows: Error[%] =

(
Δσe f f−Δσ0

Δσ0

)
· 100 This

clearly shows that poor accuracy was obtained
when using ao; the other two methods (using L
with either a constant or varying critical stress
range) gave good accuracy.

Fig.2b compares the LM and AM: again
the use of the material constant L is seen to be
preferable to the use of ao in both cases. This
confirmation that the critical distance is a mate-
rial constant, unaffected by notch geometry, is a

very useful result as it allows the TCD to be applied with confidence to real stress
concentration features on components, which often have very complex geometry.
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Next, the TCD was applied to predict fatigue limits generated by testing sam-
ples having notch opening angles larger than 90˚ (Tab. 2). As an example, the
Δσe f f vs. Δσ0 diagram obtained by applying the L based PM is reported in Figure
3: again the different formalisations of the L-based TCD, that is, the PM, the LM
and the AM, were seen to be successful, giving predictions falling within an er-
ror interval of ±20%, this accuracy being independent of the notch opening angle
value.

Material Ref. R
Δσ0 ΔKth Opening Angle Spec. type Load type
[MPa] [MPa m1/2]

FeP04 [17] 0.1 247 10.0 45˚, 135˚, 160˚ DENP AX

HT 60 (1) [18] 0 580 13.0
90˚, 135˚, 165˚ DENP AX
135˚ BT AX
135˚ CT AX

SS41 [19] 0.05 231 6.4
90˚, 120˚ DENP AX
120˚ SENP AX
135˚ CT AX

HT 60 (2) [20] 0.05 425 6.6
90˚, 120˚ DENP AX
120˚ SENP AX
135˚, 150˚ CT AX

BT= butt type, CT= cruciform type, DENP= double edge notch in plate AX= push-pull

Table 2: Summary of the experimental data generated testing open notches.
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Figure 3: PM and open notches.

The use of the TCD with material-constant
values of critical stress (Δσo) and critical dis-
tance (L) is advocated, as it demonstrates high
predictive accuracy with wide applicability. The
use of a geometry-dependant critical distance
(ao) gives lower accuracy; the use of a geometry-
dependant critical stress (the LTM method) gives
similar accuracy but is more difficult to apply.
Notches with a wide range of opening angles
can be satisfactorily analysed using the TCD.
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