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Evaluation of T-Stress for an Interface Crack Lying
Between Dissimilar Anisotropic Solids Using BEM
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Summary
The path-independent mutual- or M-integral for the computation of the T-stress

for interface cracks lying between dissimilar anisotropic, linear elastic solids is de-
veloped in this paper. For the numerical stress analysis, the Boundary Element
Method (BEM) is employed and special crack-tip elements with the proper oscilla-
tory traction singularity are used. The successful implementation of the scheme for
evaluating the T-stress of an interface crack between anisotropic bi-materials with
BEM is demonstrated by numerical examples.

Introduction
The study of cracks along the interface between dissimilar anisotropic materials

is important in understanding the structural integrity of many modern engineered
materials such as composites, thin-film coatings and bi-crystals. At the tip of such
a crack, the stresses have an oscillatory singularity; this and the associated stress
intensity factor K has been a subject of extensive study over the years. Recent
studies have established that in addition to K, the elastic T-stress is also important in
fracture mechanics analysis and fracture assesments. The T-stress, T, is the leading
non-singular term of the William’s eigenfunction series for the stress solution near a
crack tip. It represents the stress acting parallel to the crack plane and quantifies the
degree of constraint at the crack tip. Over the years, several numerical approaches
have been developed to extract this quantity in homogenous isotropic bodies. For
cracks in non-isotropic bodies, similar studies are more recent and are quite limited.

Works on the determination of T-stress in bimaterial interface crack are also
very scarce indeed. For isotropic bodies, these studies include the M-integral ap-
proach in conjunction with BEM developed by Sladek and Sladek [1]; Moon and
Earmme [2] studied such cracks between semi-infinite strips using an analytical
approach with the M-integral; while Fett and Rizzi [3] employed the weight func-
tion approach. Kim, Moon and Earmme [4] extended their analytical work men-
tioned above to an interface crack between dissimilar anisotropic bodies of infinite
and semi-infinite extents using M-integral. In a recent contribution, Song [5] has
also presented a relatively new approach based on scaled boundary finite element
method (SBFEM) to obtain T-stress values for cracks in isotropic and non-isotropic
bimaterial interfaces. However, no numerical solutions for a generally anisotropic
bimaterial interface crack were presented in above-mentioned papers. There is in-
deed paucity of numerical T-stress solutions for the interface crack problem in such
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materials and to authors’ knowledge, the use of the BEM to this end has hitherto
also not been reported in the open literature until the study presented by the present
authors very recently [7]. This paper reviews the key developments reported in that
study and the reader is referred to that reference for additional details. In essence,
the M-integral approach implemented by Sladek and Sladek [1] to obtain T-stress
in isotropic bimaterial interface cracks in conjunction with BEM is extended to the
generally anisotropic case. Unlike several other schemes, the M-integral approach
does not rely on the field solutions near the crack tip, thus minimizing the effect of
singularity in its vicinity. A relatively simpler approach to obtain M-integral will be
described here and its successful implementation in conjunction with BEM stress
analysis is illustrated by some numerical examples.

M-integral for T-stress Evaluation
The stress field σi j near a crack tip along an interface between dissimilar anisotropic

materials can be generally written as

σ (m)
i j = f (K, r,γ ,θ)+C(m)δi1 j1T +O(rα) (1)

where r, θ are polar coordinates with origins at crack tip, γ is the bimaterial con-
stant, m is 1 for material (1) or 2 for material (2) and α > 0. The material specific

coefficient C(m) are C(2) = 1 and C(1) = a
′(2)
11 /a

′(1)
11 where a

′(m)
11 is the first element of

the compliance matrix of the constitutive equations in the direction parallel to the
crack plane in material m.

Consider two independent equilibrium states, A and aux, of a bi-material solid
with an interface crack. The mutual integral, also commonly referred to as the M-
integral, about the contour Γo, as given in Fig. 1a, is expressed in terms of the path
independent J-integral as,

M = J(A+aux)−J(A)−J(aux)=
∫

Γ0

(
σA

i jεaux
i j n1 −σA

i jn juaux
i,1 −σaux

i j n juA
i,1

)
dΓ (2)

where εi j and ui are the strains and displacements, respectively, and ni is the out-
ward normal at the contour Γo. The first state A corresponds to the boundary value
problem being analysed. The second state aux, also called the auxiliary field, is
chosen to be the solution of a semi-infinite crack loaded by a point (line) force f
applied at the crack tip in the direction parallel to the crack plane as shown in Fig.
1b; it can be derived from the solution of an anisotropic composite wedge subjected
to a point force at its apex [6]. The M-integral is path independent and can be ex-
pressed in terms of an arbitrary circular contour with radius ε shrunk to zero as
follows,

M = lim
ε→0

∫

Γe

(σA
i jεaux

i j n1−σA
i j n ju

aux
i,1 −σaux

i j n ju
A
i,1)dΓ (3)
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(a)                                                     (b) 

Figure 1: (a) Contour Γ0 around the crack tip of bimaterial interface crack, (b) a
composite wedge and a point force f acting on the apex.

Equation (3), after integration along the contour Γε yields the relationship be-
tween T -stress (along material 2) and M-integral in local coordinates as,

T = M/(a
′(2)
11 f ) (4)

A detailed derivation of the auxiliary fields and T -stress and M-integral relations is
given in [7].

Numerical Results
The M-integral formulation to obtain the T-stress for a crack at an interface

between dissimilar anisotropic materials outlined above has been implemented into
a BEM code based on the quadratic isoparametric element formulation with special
crack-tip elements representing the proper oscillatory stress singularity for the bi-
material interface crack. Three examples are presented here to demonstrate the
veracity and capability of the developed formulations.

For the purpose of verification, the first problem investigated (Example 1) was
a bi-material rectangular plate comprising of dissimilar isotropic materials 1 (E1,
ν1) and 2 (E2, ν2) with a central interface crack and subjected to a uniform tensile
stress σo. It is as shown in Figure 2. The cases considered were a/W = 0.5 and H/W
= 2; E1/E2 was varied as 1, 2, 5 and 10 with ν1 = ν2= 0.3. Plane strain conditions
were assumed. The normalized results of T/σo obtained in the present work are
listed in Table 1 and compared with those obtained by Sladek and Sladek [1] and
Song [5], where it can be seen that there is excellent agreement.

In the second example, Example 2, the T-stress for an interface crack between
dissimilar orthotropic materials was obtained for the same CCP specimen under
remote tension, σo as in the previous example, but for relative crack lengths as a/W
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Figure 2: (a) A centre cracked plate (CCP) under remote load σo.(b) BEM mesh

Table 1: Normalised T -stress (T/σo) for Example 1.

E1
E2

T/σo

Present Song [9] % Δ Sladek &
Sladek [5]

% Δ

1 -1.257 -1.260 0.2 -1.272 1.2
2 -0.846 -0.847 0.1 -0.861 1.7
5 -0.436 -0.437 0.2 -0.450 3.1
10 -0.244 -0.244 0 -0.260 6.2

= 0.1, 0.2, 0.3, 0.4 and 0.5. The material properties chosen in the analysis were
E11= 1000; E22= 500, G12=100.1, ν12= 0.3 for material 1 and E11= 200, E22= 60,
G12= 15.7, ν12= 0.3 for material 2. Plane stress conditions were assumed here. The
numerical results of the normalized T -stress, T/σo, are shown in Table 2 for the
range of crack lengths considered along with the values for the corresponding case
of isotropic bimaterials with E1/E2= 500/60 and ν= 0.3. It is evident that material
orthotropy has quite a significant influence on the value of the T-stress.

Table 2: The normalized T -stress, T/σo, for Example 2.
T/σo

a/W 0.1 0.2 0.3 0.4 0.5
Orthotropic -0.522 -0.534 -0.556 -0.591 -0.651
Isotropic -0.222 -0.227 -0.238 -0.255 -0.283

Finally, a cracked anisotropic bi-material disc subjected to uniform radial ten-
sion σo, as shown in Fig. 4 was investigated (Example 3). The material chosen
was single crystal silicon in the [110] plane with the following properties [8]: E11=
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Figure 3: Example 3: (a) Cracked silicon [110] disc (b) BEM mesh.
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Figure 4: Variation of the normalised T -stress, T /σo, with angle ψ in centrally
cracked interface silicon [110] disc at (a) crack tip A (b) crack tip B.

169.1 GPa, E22= 130.1 GPa, μ12=79.6 GPa and ν12 = 0.362. The angles of orien-
tation of the material principal axes with the global Cartesian axes, ψ , for material
1 and -ψ for material 2, were varied together from 0o to 90o. The relative crack
lengths analyzed were a/r = 0.1 to 0.5 and plane stress conditions were assumed.
The effect of ψ on the normalized T-stress values (T/σo) for both crack tips are
presented in Fig. 6. The degree of anisotropy clearly has a significant effect on the
value of the T-stress.
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