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Automated Segmentation of Atherosclerotic Plaque Using
Bayes Classifier for Multi-Contrast In Vivo and Ex Vivo
MR Images
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Summary
Atherosclerotic plaques may rupture without warning and cause acute car-
diovascular syndromes such as heart attack and stroke. Accurate identification
of plaque components will improve the accuracy and reliability of computational
models. In this article, we present a segmentation method using a cluster analy-
sis technique to quantify and classify plaque components from magnetic resonance
images (MRI). 3D in vivo and ex vivo multi-contrast (T1-, proton density-, and
T2-weighted) MR Images were acquired from a patient of cardiovascular disease.
Normal distribution Bayes classifier was performed on ex vivo and in vivo MR
Images respectively. The resulting segmentation obtained from cluster analysis
showed very good agreement with histological data. 3D visualization of the plaque
was presented. Combination of in vivo and ex vivo MRI data enabled us to quantify
the shrinkage between the ex vivo plaque sample and its in vivo state. For this pa-
tient, the average shrinkage is 9.14% at cross section and 33.33% in axial direction.
This information is essential to determining proper initial stress/strain conditions
for computational plaque models.

Introduction
Cardiovascular disease (CVD) is the No. 1 killer in the western world [1].

Many critical cardiovascular events such as stroke and heart attack are related to
rupture of a vulnerable atherosclerotic plaque in diseased arteries. It is of great
importance that non-invasive methods be developed to assess and identify vulner-
able atherosclerotic plaques and predict possible plaque rupture before it actually
happens. MRI-based computational models can be used to perform mechanical
analysis non-invasively to identify critical flow and stress/strain conditions which
may be related to possible plaque rupture [4-5]. Plaque morphology is the most
basic element needed to construct computational models.

High resolution MRI is capable of quantify plaque morphology and plaque
components. Most of these are generally based on a manual extraction of numerous
contours. Automated segmentation procedure would permit combination of multi-
contrast weighting MR Image. It was hypothesized that multi-contrast MR images
could enhance the differentiation of various tissue components based on their signal
intensities in different MR Weightings. In this paper, an automated multi-contrast
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plaque segmentation method using Bayesian Classifier with Normal distribution
probability is introduced. Results from in vivo and ex vivo MRI of a patient were
obtained and validated by histological data. Artery shrinkage in cross-section and
axial direction were quantified by comparing in vivo and ex vivo MRI data.

Materials and Method

3D in vivo, ex vivo MRI, and histological images of a patient were provided
by Dr. Zheng’s group using protocol approved by Washington University Institu-
tional Review Board with informed consent obtained. The in vivo imaging data
set included multi-contrast weighting images with T1-, T2- and proton density
(PD) weightings. Each contrast weighting session consists of 14 2D slices with
high resolution (200x200 pum?, slice thickness=3mm). The ex vivo imaging data
set included T1-, T2-, gradient-echo (GRE) and proton density(PD) weighted MR
Images. Each contrast weighting session has 30 2D slices with high resolution
(109x 109 ,umz, slice thickness=1mm).

The intensity of each image was not uniform due to the effects of coil inho-
mogeneity and was adjusted (see Fig. 1). A 14mmx14mm region was selected
as the region of interest (ROI). The contrast of the images was increased by linear
transformation. The effect of this pre-processing is shown by Fig. 1.

() Original T2-weighted MRI

(b1 Resultant images after contrast increase
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Figure 1: Pre-Processing results of selected slices from all 32 slices of ex vivo MR
Images: (a) original T2-weighted MR images; (b) resultant images after contrast
increase.

From ex vivo MRI slices with matching histological slices, slices 14 and 26
were selected to generate the training set for segmentation. Images of those two
slices were manually segmented based on registered histological results and rela-
tive intensity. A total of 573 pixels (each pixel contains 4 densities representing
all 4 different contrast weightings) were selected randomly for study. From these
segmentation results, each location was determined to belong to one of the 4 issue
types including lipid (denoted as Z;), normal issue (denoted as Z,), calcification
(denoted as Z3) and others (including lumen or outer issue, denoted as Z;). The
training set was used to generate the probability function which was used to deter-
mine the probability of tissue type for each pixel.

The most important part of the segmentation algorithm is to determine the prob-
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abilities of each pixel. These probabilities represent the likelihood that the tissue
at the location of the pixel is lipid, calcification, normal issue or others. We de-
termine those probabilities base on all the intensity of each weighting MR Images.
The intensity vector] = (I, b, 13,14) is used to represent the intensity of the pixel
in one of the contrast weighting MR Images and Z;, i=1, 2, 3, 4, corresponds to
the label of the issue. We usedP(Z;|I)to represent the probability of I belongs to
Z;. Assume that J; is conditional independent of /;, (i # j), that is, the intensity of
one of the contrast weighting MRI do not depend on other contrast weighting MRI.
This assumption allows us to calculate the posterior probability using naive-Bayes
decision theory [2],

P(Z)P(1|Z;)

P(Zi|T) = (1)

é P(Z))P(I1|Z;))P(L|Z)P(I:|Z;) P (14| Z;)

The prior probability P(Z;) was estimated by the frequency of each of the 4 tissue
from the training set. Assume that the conditional probability density function
(pdf) is a normal distribution, denoted by P(/;|Z;) ~ N(l;i,0ji), whereptjjandoj;is
the unbiased estimation of mean value and standard deviation respectively of ith
issue type for jth contrast weighting images.

Maximum classifier was used to determine which issue type the pixel be-
longs to. Fig. 2 gives the flowchart of our maximum decision probability func-
tional classifier. Wherel is multi-contrast weighting MR Images transformed by
preprocessing,g;(I) is the decision function pdf P(Z]|I). If g;(I) is the maximum
value, then pixel I belongs to Z; and be labeled i.
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Figure 2: Flowchart of maximum decision probability functional classifier.

Result

Fig 3 shows the results of segmentation of slice 24 of ex vivo MR images based
on probabilities. Fig 3(a) gives the results of classifier with lipid in red, calcification
in yellow, normal issue in blue, and others (including lumen) in green. Fig 3(b)
gives the contour result based on 3(a). Fig 3 (c)-(f) gives the segmentation result
on all different contrast weighting MR Images. Fig 3 (g) shows the corresponding
histological images, C, L represent calcification, lipid respectively. The results
match pathology well. Fig 4 shows contour results of all ex vivo MR Images.

Applying the method to in vivo MR Images, the contours obtained from S1-S9
is given by Fig 5 (b). In vivo, ex vivo, and histologic images were registered to
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Figure 3: A segmentation example of selected slice using multi-contrast MR Im-
ages. (a) Automatic segmentation result of classifier process; (b) Segmented con-
tour result; (c)-(f) give segmentation results on T1, PD, T2, GRE weighting images
respectively; (g) shows corresponding histological images. Our contour results
show excellent agreement with hlstopathologlcal data
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Figure 4: Segmented contour plots of all ex vivo MRI slices showing plaque com-
ponents

match each other. Fig.5 shows the corresponding slices of ex vivo, in vivo MRI and
histology. 3D reconstruction geometry was shown on Fig 6.

Since 1983, when the significance of the zero-stress state of living tissues was
recognized, many experiments have been done using 2D artery rings ex vivo to
quantify the zero-stress state [3]. However, to our knowledge, there has been no
report demonstrating the shrinkage (which is by nature 3D) of the artery using ex
vivo and in vivo MR images. Inner circumferences of plaque samples (diameter
is not used since plaques are normally very asymmetric) and axial length will be
used as the two measures to compute shrinkage rate based on accurate automatic
identification of lumen in both in vivo and ex vivo MRI. Table 1 shows the inner
circumferences in same cross section and shrinkage between ex vivo and in vivo
state. The average shrinkage is 9.14%. The inner circumferences did not change
too much. Since the slice thickness is Imm and 3 mm of 3D in ex vivo and in vivo
MRI data set respectively, the length of the specific part of carotid artery is 16mm
(S3-S19) at ex vivo state and 24 mm (S1-S9) at in vivo state. The stretch ratio of
length is 33.33%. The shrinkage rate in length of artery is significant. Axial stretch
has to be taken into consideration for 3D fluid-structural interaction (FSI) models.

Conclusion
A method to automatically segment ex vivo and in vivo MRI data set is in-
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Figure 5: Compare in vivo, ex vivo, and histological images and the result of seg-
mentations for in vivo and ex vivo MR Images. (a) Segmentation results on 9 in vivo
MRI (T1W) slices (S1-S9); (b) Segmented contour plots for (a) showing plaque
components; (c) Segmentation results on 17 ex vivo MRI (T1) slices (S3-S19); (d)
Segmented contour plots for (c) showing plaque components.

Figure 6: 3D reconstructed geometry of in vivo MRI with contour lines.

T vovo S1 S2 S3 S4 S5 S6 S7 S8 S9

Cifcm) 1977 1.908 1.896 2205 1876 1.049 0.984 0947 1.092

Cex(cm) 1.797 1.765 1.892 2.033 1494 1.066 0947 0.890 0.774
shrink mte$ 911 750 024 7 80 2037 -1.63 3.84 595 2910

Table 1: Circumferences and shrinkages of lumen measured from segmented con-
tours of in vivo and ex vivo MRI. Cin and Cex is the circumference of lumen of in
vivo and ex vivo MRI respectively.

troduced. The maximum decision probability functional classifier was applied to
multi-contrast weighted MR image processing. Histological images were used to
validate the reliability of the segmentation method for multi-contrast weighting in
vivo and ex vivo MR Images. By comparing in vivo and ex vivo MR images, the
shrinkage of artery was calculated. A 9.14% shrinkage in circumferential dimen-
sion and 33.33% shrinkage in axial dimension were observed. The combination
of in vivo, ex vivo MRI and Histology may be an important research tool in future
studies. Large-scale patient studies are needed to further validate our method and
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findings.
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