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ABSTRACT: Despite extensive prevention efforts and research, dengue hemorrhagic fever (DHF) remains a major
public health challenge, particularly in tropical regions, with significant social, economic, and health consequences.
Statistical models are crucial in studying infectious DHF by providing a structured framework to analyze transmission
dynamics between humans (hosts) and mosquitoes (vectors). Depending on the disease characteristics, different
stochastic compartmental models can be employed. This research applies Bayesian Integrated Nested Laplace Approx-
imation (INLA) to the SIR-SI model for DHF data. The method delivers accurate parameter estimates, improved
computational efficiency, and effective integration with early warning systems. The model compared to existing work
using Markov Chain Monte Carlo (MCMC) using monthly DHF data from 10 districts in Kendari-Indonesia from 2020–
2023. While MCMC requires 10,000 iterations with an 80,000 burn-in, INLA achieves parameter convergence with just
10,000 iterations. The parameter estimation results show that INLA provides a better fit, with the lowest deviance =
105.23, compared to MCMC. Risk analysis using INLA highlights dengue case dynamics from January to May each year.
Kadia and Wua-Wua districts consistently show high case numbers, emphasizing the need for targeted interventions
in Kendari City. Early surveillance and control efforts are essential to curb mosquito breeding in these areas starting
in January. In contrast, the Puuwatu, Kambu, and Kendari Barat districts are sporadic outbreaks, often linked to cases
originating in Kadia and Wua-Wua districts.
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1 Introduction
Dengue Hemorrhagic Fever (DHF) is a more severe variant of dengue fever, transmitted by the bite of

Aedes aegypti mosquitoes. It often develops when an individual is infected with a second, different strain of
the dengue virus, leading to an intensified immune reaction. DHF remains a public health concern, especially
in tropical and subtropical areas, including Southeast Asia (e.g., Indonesia), Latin America, and parts of
Africa. Dengue is endemic in over 100 countries, with approximately 390 million cases annually, of which
about 500,000 progress to DHF [1,2]. The consequences of DHF include high healthcare expenses, loss of
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productivity, and increased pressure on healthcare systems during large outbreaks, especially in low-middle-
income countries. Factors like rapid urbanization, international travel, and climate change are facilitating the
spread of dengue to new areas, further worsening its global impact [3].

For complex and unpredictable diseases such as DHF, precise modeling is essential for optimizing
public health responses, enhancing preparedness, enabling real-time adjustments to intervention efforts, and
mitigating the global disease burden. The SIR-SI model is a fundamental tool for analyzing the transmission
of DHF infectiousness using an ordinary differential equation (ODE) [4,5]. A typical ODE involves integer-
order derivatives, such as first or second derivatives. In fractional calculus, we generalize this idea with a
fractional derivative of order α, where α can be any real or complex number. In this study, we use α = 1 to
describe fractional calculus in SIR-SI to exhibit more complex, history-dependent, or non-local behavior.
Seasonal patterns due to mosquito breeding cycles allow models to predict outbreaks based on climate,
rainfall, and vector data [6]. Disease models also help understand how population density, climate change,
mosquito behavior, and human movement contribute to disease transmission [7–9]. By determining which
actions, such as vaccination, insecticide use, or public awareness campaigns, are most effective, models sup-
port cost-efficient strategies that maximize impact while staying within budget constraints [10]. The Bayesian
approach addresses uncertainty by representing it through appropriate probability distributions [11–13]. This
method uses a prior distribution to describe the uncertainty associated with a parameter before observing
the data. The inferential process combines the prior distribution and observed data to compute the posterior
distribution [12]. For instance, prior distributions can incorporate insights from previous research or expert
knowledge. Additionally, the Bayesian framework adopts a hierarchical structure for modeling data and
parameters, facilitating the prediction of new observations and simplifying the imputation of missing
data [8].

One of the primary challenges in Bayesian statistics is the substantial computational effort involved.
Markov Chain Monte Carlo (MCMC) methods are widely used for Bayesian analysis [6]. Although MCMC
is highly adaptable and capable of handling complex data and models [8,12], it is computationally demanding
and time-intensive [14,15]. The Integrated Nested Laplace Approximation (INLA) was introduced as a more
efficient alternative to MCMC [16,17]. INLA has been successfully applied across various fields and supported
by an R package [18]. Moreover, INLA is integrated with the stochastic partial differential equation (SPDE)
framework to develop spatial-temporal models [19]. In practice, INLA offers efficient computation and
straightforward handling of complex structured models and is particularly effective for large datasets and
quick updates. MCMC, though more resource-intensive, provides greater flexibility for models with unique
or nonstandard distributions. The computational process in INLA effectively achieves a balance between
speed and accuracy when compared to MCMC [20]. INLA and MCMC each have distinct strengths in
estimating uncertainty. INLA provides efficient, somewhat narrower uncertainty bounds, making it well-
suited for structured models, while MCMC produces broader, more comprehensive intervals. These methods
complement one another, with INLA excelling in efficiency and quick updates and MCMC offering deeper
insights for complex scenarios [17,18]. These tools facilitate data-driven decisions, ensuring that interventions
are timely, precisely focused, and responsive to real-time shifts and long-term uncertainties in dengue
transmission patterns [20,21].

This paper focuses on presenting the key features of the INLA method in analyzing dengue transmission
dynamics. It underscores the importance of understanding the complex interactions between hosts (humans)
and vectors (mosquitoes) [22–25]. Dengue Hemorrhagic Fever (DHF) continues to pose a major public
health challenge, leading to substantial social, economic, and health-related impacts [25]. Consequently,
early prevention efforts, including predictive modeling, are vital for developing and implementing targeted
intervention strategies [24]. Bayesian inference provides a powerful method for estimating parameters in
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the SIR-SI (susceptible, infected, recovered of human-susceptible, infected of mosquitoes) or cross-infection
model, offering a thorough framework for integrating prior knowledge and assessing uncertainty. The INLA
is a highly effective Bayesian technique designed for latent Gaussian models, making it well-suited for
handling intricate epidemiological models [18]. The INLA method improves the efficiency, accuracy, and
practicality of applying models to real-world disease dynamics [19]. We apply our model based on a monthly
DHF dataset of 10 districts in Kendari-Indonesia from 2022–2023.

2 Related Works

2.1 Stochastic SIR-SI Model Compartment
Bayesian inference provides a versatile and robust framework for parameter estimation and predic-

tion in complex models. By integrating prior knowledge, updating it with new data, and accounting for
uncertainty, Bayesian methods are particularly effective at handling high-dimensional, hierarchical, and
non-linear systems across various disciplines [12]. The Bayesian approach in this model provides enhanced
flexibility, improved computational efficiency, and effective uncertainty handling, making it particularly
suitable for modeling complex epidemiological systems such as dengue transmission. While computationally
demanding, advancements in techniques like Markov Chain Monte Carlo (MCMC) and variational inference
have made these methods more practical for real-world applications. The INLA is an incredibly efficient
approach for Bayesian inference in complex spatial-temporal models. It takes advantage of the sparsity
in Gaussian Markov random fields and uses deterministic Laplace approximations, allowing it to process
large datasets and intricate dependencies quickly and precisely. The INLA offers several notable advantages
over MCMC methods for Bayesian inference, particularly in models involving complex spatial-temporal
dependencies [15].

The intricate relationships between the dengue virus, Aedes mosquitoes, and human populations drive
the spread of DHF. The transmission cycle involves viral replication in humans and mosquitoes, with factors
such as mosquito behavior, environmental conditions, and human actions influencing the process. The virus
enters the digestive system when a female Aedes mosquito bites an infected person. The virus replicates and
moves to the mosquito salivary glands over 8–12 days (extrinsic incubation period) [2]. When this infected
mosquito bites another individual, the virus is transmitted through its saliva, initiating a new infection. Once
the mosquito bites a dengue-infected individual, it becomes a virus carrier. Infected humans are viremic (the
virus circulates in the bloodstream) for around 4–5 days, giving mosquitoes multiple chances to acquire the
virus if they bite during this period [1]. Aedes aegypti mosquitoes thrive in urban areas, especially around
stagnant water sources like containers and poorly drained locations. They are primarily active during the day
and have a limited flight range of 50–100 m, making outbreaks more likely in areas where infected people
and mosquito breeding grounds are nearby [3].

The SIR-SI model is based on the following assumptions: (1) susceptible individuals become infected and
either recover; (2) susceptible Aedes mosquitoes become infected but do not recover; (3) the infection rate is
proportional to the susceptible number; and (4) the recovery rate is proportional to the infected number. The
compartmental framework depicted in Fig. 1 is frequently applied in studies investigating the transmission
dynamics of DHF within human populations. The susceptible, infected, and recovered host are denoted by
S(h)

s ,t , I(h)
s ,t , R(h)

s ,t , respectively. For S(v)s ,t and I(v)s ,t denote as susceptible and infective vector, respectively. The
parameters μ(h) and μ(v) denote the human birth rates and mosquito death rates, respectively. Additionally,
γ(h) represents the human recovery rate, b indicates the biting rate per unit of time, and m represents the
alternative human blood source. Transmission probabilities from mosquitoes to humans and from humans
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to mosquitoes are denoted by β(h) and β(v), respectively. Finally, N(h)
s ,t and N(v)s ,t , at time t = 1, 2, . . . , T , region

s = 1, 2, . . . , S represent human and mosquito populations, respectively (see Fig. 1).

Figure 1: Epidemiological compartment of SIR-SI model

The SIR-SI framework illustrated in Fig. 1 converted into a system of differential equations. These
equations establish the stochastic process (refer to Eq. (1)). The N(h)

s ,t , N(v)s ,t are assumed to be constant, then
S(h)

s ,t + I(h)
s ,t + R(h)

s ,t = N(h)
s ,t and S(v)s ,t + I(v)s ,t = N(v)s ,t .

dS(h)
s ,t

dt
= μ(h)N(h)

s ,t − μ(h)S(h)
s ,t −

β(h)bI(v)s ,t

N(h)
s ,t +m

S(h)
s ,t ,

dI(h)
s ,t

dt
=

β(h)bI(v)s ,t

N(h)
s ,t +m

S(h)
s ,t − μ(h)I(h)

s ,t − γ(h)I(h)
s ,t ,

dR(h)
s ,t

dt
= γ(h)I(h)

s ,t − μ(h)R(h)
s ,t , (1)

dS(v)s ,t

dt
= μ(v)N(v)s ,t − μ(v)S(v)s ,t −

β(v)bI(h)
s ,t

N(v)s ,t +m
S(v)s ,t ,

dI(v)s ,t

dt
=

β(v)bI(h)
s ,t

N(v)s ,t +m
S(v)s ,t − μ(v)I(v)s ,t



Intell Autom Soft Comput. 2025;40 181

The equilibrium points are obtained by setting all derivatives (1) to zero

S∗(h), I∗(h), R∗(h), S∗(v), I∗(v))

=
⎛
⎜⎜⎜
⎝

μ(h)N(h)

μ(h) + β(h)bI(v)

N(h) +m

,

β(h)bI(v)

N(h) +m
S(h)

μ(h) + γ(h) , γ(h)I(h)

μ(h) , μ(v)N(h)

μ(v) + β(v)bI(h)

N(v) +m

,

β(v)bI(h)

N(v) +m
S(v)

μ(v)

⎞
⎟⎟⎟
⎠

(2)

The Jacobian matrix is composed of (2), obtained

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ(h) − β(h)bI(v)

N(h) +m
0 0 0 −β(h)bS(h)

N(h) +m
β(h)bI(v)

N(h) +m
−(μ(h) + γ(h)) 0 0 β(h)bS(h)

N(h) +m
0 γ(h) −μ(h) 0 0

0 β(v)bS(v)

N(v) +m
0 −μ(v) − β(v)bI(h)

N(v) +m
0

0 β(v)bS(v)

N(v) +m
0 β(v)bI(h)

N(v) +m
−μ(v)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The stability analysis of system (1) on the Jacobian matrix is sufficient. In this research, we do not describe
the details of the Jacobian matrix and only focus on estimating model parameters.

2.2 Approximation Bayesian Inference with INLA
The INLA algorithm provides a deterministic method for Bayesian inference, distinguishing it

from simulation-based approaches such as Monte Carlo (MC) and MCMC methods [19,26]. The
primary goal of Bayesian computation is to determine the marginal posterior distributions for
the parameter vector p (θi ∣y) = ∫ p (ϕ∣y) p (θi ∣ϕ, y)dϕ and the hyperparameter vector p (ϕk ∣y) =
∫ p (ϕ∣y)dϕ−k . The INLA approach utilizes the Laplace approximation to approximate these posterior
distributions. Approximating the posterior marginal distribution involves defining p (ϕ∣y) = p(θ ,ϕ∣y)

p(θ∣ϕ ,y) ∝
p(φ)p(θ∣ϕ)p(y∣θ)

p(θ∣ϕ ,y) ≅ p(ϕ)p(θ∣ϕ)p(y∣θ)
p̃(θ∣ϕ ,y) ∣

θ=θ∗(ϕ)
def= p̃ (ϕ∣y), θ∗(ϕ) as its mode, with related components θ =

{μ(h), μ(v), β(h), β(v), γ(h)}, and ϕ = {μh , δ2
μh

, μv , δ2
μv

, βh , δ2
βh

, βv , δ2
βv

, γh , δ2
γh
}. A straightforward strat-

egy involves estimating the posterior conditional distributions p (θi ∣y) directly from p̃ (θ∣ϕ, y). The
parameter vector is denoted as θ = (θi , θ−i), with the Laplace approximation applied to derive the results
p (θ i ∣φ, y) = p(θ i ,θ

−i ∣ϕ ,y)
p(θ

−i ∣θ i ,ϕ ,y) ≅
p(θ ,ϕ∣y)

p(θ
−i ∣θ i ,ϕ ,y) ∣θ

−i=θ∗
−i(θ i ,ϕ)

def= p (θi ∣ϕ, y). This approximation is sufficiently accu-
rate for many practical applications and significantly reduces computation time [20].

3 Methodology

3.1 DHF Data Description
The dataset used for model validation includes monthly DHF case reports from 10 sub-districts in

Kendari City, the capital of Southeast Sulawesi Province, Indonesia. This area faces an annual risk of DHF
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outbreaks (see Fig. 2). The sub-districts covered in the analysis are Mandonga, Baruga, Puuwatu, Kadia, Wua-
Wua, Poasia, Abeli (including Nambo), Kambu, Kendari, and Kendari Barat. The data was collected by the
Kendari Health Office for the period from 2020 to 2023.

Figure 2: Research sites, 10 districts, in Kendari City (red color)

Data from 2020 to 2023 reveals a notable rise in monthly DHF cases in January, peaking in February
and gradually declining through May. The highest number of cases during this period are in the Kadia,
Kambu, and Wua-Wua districts, with these areas showing consistent trends each year. Other areas, such
as Baruga and Kendari Barat, also experienced high cases during this timeframe. However, they were less
consistent than the three main districts (see Fig. 3). The dynamics and consistency of dengue fever cases
require statistical modeling.

Probabilistic techniques can effectively manage issues such as missing data, outliers, inconsistencies,
and normalization or aggregation through a Bayesian framework. The flexibility of Bayesian methods, such
as imputation, robust likelihood functions, hierarchical structures, and prior distributions, allows addressing
these data challenges to improve accuracy. These methods help ensure the model can generate reliable
predictions even when working with incomplete or noisy data.

Based on the Kendari Central Bureau of Statistics data, Kadia district holds the highest population
density, with Wua-Wua district ranking second. Meanwhile, information from the Kendari Meteorology,
Climatology, and Geophysics Agency indicates that the heaviest rainfall, usually between December and July,
ranges from 67 to 238.6 mm3 (Fig. 4).
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Figure 3: Monthly DHF data for Kendari City by district from 2020 to 2023

Figure 4: population density, climate, and rainy days of Kendari. (a) number of populations per district of Kendari
(km2); (b) population density per district of Kendari; (c) climate (○C); (d) rainy Days (mm3)
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The modelling framework (1) for dengue fever transmission across human and vector populations is
visible, including key variables as predictors or latent factors, and accounts for climate variability phenomena
like El Niño or La Niña. Climate factors like temperature, rainfall, and humidity are essential predictors
of dengue transmission, as they affect the life cycle of the vector (mosquitoes) and the probability of
transmission. Significant climate phenomena such as El Niño and La Niña may significantly influence
temperature and rainfall patterns, affecting transmission dynamics. These events introduce climate-driven
factors that modulate the associated transmission rates. These could affect vector survival rates, mosquito
reproduction rates, and overall transmission dynamics. The latent variable is a time-varying factor that
influences key parameters; however, in this work, it has yet to be accommodated in the model (1) and is an
open issue for researchers. Including climate variability allows the model to capture feedback loops between
climate and disease transmission. For example, warmer temperatures might increase mosquito populations,
leading to higher infection rates, which could influence future mosquito dynamics (as human population
immunity or behaviour changes). The model can integrate these changes into its predictions as climate
change alters the frequency and intensity of events such as El Niño and La Niña. By analyzing the long-term
impacts of shifting climate patterns, the model could pinpoint emerging areas at risk for dengue outbreaks,
including those previously unaffected. Incorporating climate variables like temperature, rainfall, and climate
phenomena, e.g., El Niño or La Niña, as dynamic predictors or latent factors significantly enhances the
model’s accuracy and long-term relevance. This capability enables the model to adapt to climate variability,
deepen insights into disease transmission dynamics, and deliver more dependable forecasts to support public
health interventions.

3.2 Model Fitting Using INLA
The calculation of infected mosquito data relies on the newly infected mosquitoes in the SIR-SI

framework and is based on the findings of [2,3], expressed as N(v)s ≈ 8.6892 × N(h)
s . Some of these estimates

are based on the study referenced in [3], for example, I(v)s (0) = 0.0557 × S(h)
s (0). The number of alternative

hosts serving as blood sources (m) is assumed to be zero, and the biting rate (b) is set at 2.33, as noted
in [2]. Constant parameters such as biting and mosquito death rates simplify modelling but may reduce
accuracy in capturing dynamic transmission patterns. Validation through empirical data, sensitivity analysis,
and calibration ensures these assumptions are reasonable. Parameter prioritization during sensitivity analysis
systematically focuses on key uncertainties, enhancing the applicability to real-world dengue dynamics
while maintaining computational efficiency. In epidemiological models, simplifying assumptions about
constant parameters such as biting and mosquito death rates is often necessary to make the system tractable.
However, these assumptions can oversimplify real-world dynamics, where environmental and biological
factors introduce variability over time and space.

Empirical data and literature reviews of parameters such as biting and death rates are derived from
empirical studies or established literature. Validation involves comparing these values against observed
field data specific to the study region. For example, prior entomological surveys may inform average
mosquito lifespans and feeding frequencies in tropical climates (e.g., Kendari, Indonesia). Constant biting
and death rates can overlook the effects of weather, seasonality, and mosquito population fluctuations,
potentially underestimating or overestimating disease transmission risk during specific periods. Over-
simplification can lead to inaccuracies when projecting future outbreaks, especially in scenarios with abrupt
environmental changes, like heavy rainfall or extreme temperatures. Incorporating stochastic terms or time-
varying functions to represent biting and death rates can improve the robustness model without sacrificing
computational efficiency.
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4 Results
The INLA and MCMC methods provide unique benefits for the Bayesian analysis of a dengue

transmission SIR-SI model. Incorporating stochastic processes into human-mosquito interactions allows the
SIR-SI model to capture the variability inherent in real-world dengue transmission. Bayesian estimation uses
flexibility by addressing parameter uncertainty, which contributes to generating more realistic projections
of outbreak patterns. MCMC is known for its flexibility and precision. However, it can be computationally
intensive, while INLA provides faster and more efficient results, particularly for larger models, albeit with an
approximate trade-off. One drawback of MCMC is the selection of unsuitable prior values, which can lead to
issues like getting stuck during the iteration process. This problem often requires repeated attempts and may
take days or weeks to achieve convergence. MCMC also requires careful convergence diagnostics, whereas
INLA, a deterministic approximation method, does not face this issue and can yield parameter estimates
in seconds or minutes. For instance, MCMC requires 10,000 iterations with a burn-in of 80,000 (Table 1),
whereas INLA only needs 10,000 to obtain converged parameters (see Algorithm 1). The sensitivity analysis
demonstrates highly precise parameter estimates. In a Bayesian framework, sensitivity is assessed through
95% credible intervals or trace plots. Selecting parameter values outside the credible interval decreases the
accuracy of the outcome. For instance, the parameter β(h) has a mean value of 0.4280, which falls within its
95% credible interval of (0.348, 0.518). Similar evaluations are performed for other parameters (see Table 2).
A sample iteration history for β(h) and β(v) using INLA is shown in Fig. 5. The parameter estimation results
in Tables 1 and 2 also show that the best fit is using INLA because it gives the smallest deviance value, 105.23,
compared to MCMC [4].

Table 1: A summary of parameters estimation using MCMC [4], 80,000 iterations with a burn-in period of 10,000
times. The time required is about two days due to inappropriate prior selection or trapping problems

Node Mean SD 2.5% Median 97.5%
β(h) 0.457 0.536 0.378 0.464 0.508
β(v) 0.002 0.001 0.319 0.002 0.005
μ(h) 0.003 0.002 0.330 0.003 0.006
μ(v) 0.520 0.040 0.450 0.520 0.580

Deviance 106.5

Algorithm 1: INLA-based parameter estimation procedure for the SIR-SI model
1. Define the SIR-SI dynamics model

Transitions of SIR-SI model between states:
• Humans (host): S (Susceptible), I (Infected), R (Recovered)
• Mosquitoes (vector): S (Susceptible), I (Infected)

2. Discretize the system (1)
Backward Euler method the SIR-SI model into time steps

S(h)
s (t + 1) = S(h)

s (t) + μ(h)N(h)
s − μ(h)S(h)

s (t)Δt − β(h)bI(v)s (t)
N(h)

s +m
S(h)

s (t)Δt

I(h)
s (t + 1) = I(h)

s (t) + β(h)bI(v)s (t)
N(h)

s +m
S(h)

s (t)Δt − μ(h)I(h)
s (t)Δt − γ(h)I(h)

s (t)Δt

(Continued)
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Algorithm 1 (continued)

R(h)
s (t + 1) = R(h)

s (t) + γ(h)I(h)
s (t)Δt − μ(h)R(h)

s (t)Δt

S(v)s (t + 1) = S(v)s (t) + μ(v)N(v)s − μ(v)S(v)s (t)Δt − β(v)bI(h)
s (t)

N(v)s +m
S(v)s (t)Δt

I(v)s (t + 1) = I(v)s (t) +
β(v)bI(h)

s (t)
N(v)s +m

S(v)s (t)Δt − μ(v)I(v)s (t)Δt

3. Specify likelihood for observed data
Specify the likelihood function for the observed data
I(h)obs

s (t) ∼ LogNormal (I(h)
s (t)) and I(v)obs

s (t) ∼ LogNormal(I(v)s (t))
4. Define priors for parameters

μ(h) ∼ LogNormal (μh , δ2
μh
) , μ(v) ∼ LogNormal (μv , δ2

μv
) ,

β(h) ∼ LogNormal (βh , δ2
βh
) , β(v) ∼ LogNormal (βv , δ2

βv
) ,

γ(h) ∼ LogNormal(γh , δ2
γh
)

5. Fit the model using INLA
(a) Initialize vectors

S(h)
s (1) < S(h)

s (0), I(h)
s (1) < I(h)

s (0), R(h)
s (1) < S(h)

s (0), S(v)s (1) < S(v)s (0),
and I(v)s (1) < I(v)s (0)

(b) Combine the data into a data frame
data <- data.frame()
head(data)

(c) prepare the data for INLA
data$log_population <- log(Num.pop)

(d) Fit the model
Approximating p (ϕk ∣θ , y): inla(..., control.inla = list(strategy = ‘laplace’), ...)
Exploring p̃ (θ∣y): inla(..., control.inla = list(int.strategy = ‘grid’), ...)

(e) Mapping relative risk from posterior mean

Table 2: Summary of parameters estimation using INLA, 80,000 iterations. The time required is about 65 s

Node Mean SD 2.5% Median 97.5%
β(h) 0.4280 0.045 0.348 0.428 0.518
β(v) 0.122 0.0314 0.0621 0.1214 0.185
μ(h) 0.325 0.0984 0.147 0.3189 0.5439
μ(v) 0.518 0.0123 0.495 0.5176 0.5407

Deviance 105.23

The provided visualization compares the uncertainty bounds (posterior distributions) of individual
parameters between INLA (blue) and MCMC (red). The dots represent the estimated posterior means for
INLA and MCMC methods. The vertical lines (error bars) represent the 95% credible intervals, showing
each uncertainty parameter range. The visualization effectively highlights differences in uncertainty and
convergence precision for each parameter under the two methodologies, which is critical for understanding
the robustness of the parameter estimates in a modelling context (see Fig. 6).
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Figure 5: Estimation of SIR-SI model parameters using INLA, β(h) and β(v) samples. (a) density of β(h); (b) trace of
β(h); (c) quantile of β(h); (d) density of β(v); (e) trace of β(v); (f) quantile of β(v)

Figure 6: Comparison of uncertainty bound between INLA and MCMC
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INLA precision is preferable for quicker, actionable insights. The MCMC uncertainty might be
attributed to difficulties in estimating the parameters, especially if the data weakly inform the parameter.
The INLA provides a more reliable and narrower estimate, which is advantageous for decision-making.
The INLA generally produces narrower uncertainty bounds for most parameters. The INLA makes it more
suitable for applications requiring quick and precise parameter estimates than the MCMC. The central
tendencies (posterior means) differ slightly between the two methods because they combine over the
posterior distribution or handle parameter correlations. The INLA result indicates better precision than the
MCMC and explores a broader range of the posterior distribution. For computational efficiency, the INLA
converges faster than the MCMC (especially for complex models), making it an attractive option for real-
time decision-making. The comparison underscores the trade-offs between MCMC and INLA for parameter
estimation in epidemiological models.

The incidence rate in Fig. 7 represents the number of DHF cases per 10,000 people, calculated based
on the total population exposure time. This rate illustrates the trends and risks of DHF in each district of
Kendari City. For instance, the Kadia district experienced an average of 25 cases per 10,000 people in January
2020–2023, gradually decreasing to nearly zero by December. In contrast, Puwatu District had an average
of 7 cases per 10,000 people in January, with a sharp increase to about 21 cases in March before dropping to
zero from April to December. Overall, DHF cases in all districts of Kendari City fluctuated between January
and May during this period. While the incidence rate reflects these trends, it does not fully capture the
overall DHF risk, serving as an initial indicator for more detailed risk analysis. The Wua-Wua district requires
targeted efforts to reduce the DHF transmission rate in Kendari City. Early intervention and monitoring
should commence in January to prevent the breeding of mosquito larvae in these areas. In the Puuwatu,
Kambu, and Kendari Barat districts, DHF cases tend to emerge sporadically, influenced by outbreaks in Kadia
and Wua-Wua Districts. Since the parameters are expressed as proportions, they are dimensionless constants.
The relative risk analysis indicates that DHF cases vary annually from January to July, with monthly incidence
rates from 2020 to 2023 (see Fig. 7). This period highlights the annual fluctuations of dengue transmission,
with a consistent occurrence of DHF cases from January to May. The study highlighted Kadia and Wua-Wua
districts with persistently high case rates.

Figure 7: Monthly DHF incident rates by sub-district in Kendari city for the period of 2020–2023
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The DHF is a critical complication of dengue virus infection that necessitates focused and proactive
control measures. Insights from models built on statistical and computational methods can significantly
contribute to these efforts, enhancing the ability to predict, prevent, and manage DHF outbreaks with
greater precision. Geospatial models are helpful in pinpointing regions at high risk for DHF outbreaks by
analyzing historical data and environmental conditions, enabling timely interventions. These models can
detect areas where mosquito populations are increasing rapidly or where human-mosquito interactions are
most frequent, allowing mosquito control efforts like larviciding, insecticide spraying, and public education
to be concentrated in these zones. By forecasting the likely timing and locations of outbreaks, these models
also help optimize the distribution of resources such as mosquito nets, insecticide-treated materials, and
trained personnel, ensuring that high-risk areas are prioritized.

Models can identify high-risk areas, enabling targeted public health campaigns to educate communities
on DHF prevention and promote behaviors like eliminating stagnant water and wearing protective clothing.
Moreover, behaviors models can predict how community participation, such as involvement in clean-up
activities or adherence to preventive measures, affects the overall effectiveness of DHF control programs.
Insights from models enable ongoing monitoring of the effectiveness of interventions, such as vector control
measures, offering real-time feedback to adjust strategies as needed. As new data emerges, whether related
to climate changes or viral mutations, models can evolve and provide updated recommendations for disease
control, ensuring a dynamic and adaptable approach to managing DHF. By integrating these model-based
insights into DHF control strategies, health efforts become more data-driven, proactive, and scalable, helping
to prevent outbreaks and reduce the impact on affected communities. Predicting DHF outbreaks through
models incorporating environmental, epidemiological, and behaviors data can significantly enhance the
efficiency and effect of resource distribution. Accurate forecasts enable early intervention, focusing efforts
on high-risk areas, optimizing vector control measures, and ensuring healthcare resources are directed
where they are most needed. This data-driven approach to managing DHF provides a proactive strategy for
controlling the disease, limiting its spread, and ultimately saving lives.

The updated risk map for January provides valuable insights into the distribution of dengue risk across
Kendari and can serve as a decision-making tool for resource allocation. Kambu and Wua-Wua districts were
identified as high-risk zones. These districts should be a priority for larvicide applications to reduce mosquito
populations in breeding sites such as stagnant water bodies. Increase larvicide spraying frequency and
mobilize teams to inspect and treat breeding grounds in these neighbourhoods. Kadia, Kendari Barat, and
Baruga districts should targeted as secondary priorities. While more urgent than high-risk zones, preventive
measures are necessary to stop potential escalation. Conduct surveillance and larvicide applications but at a
slightly reduced frequency compared to high-risk areas. Then, the Mandonga, Puuwatu, and Abeli districts
may require minimal larvicide application, primarily serving as monitoring zones to ensure no significant
increase in risk (Fig. 8). These areas are control points to detect early warning signs of increasing risk.
Intensify education campaigns in high-risk areas, focusing on:

1. Removing standing water (mosquito breeding sites).
2. Encouraging the use of mosquito nets and repellents.
3. Raising awareness of early symptoms of dengue to ensure timely medical attention.

Partner with local leaders or community organizations to ensure grassroots-level outreach. For
medium-risk areas, target messaging toward prevention and preparedness. Residents in medium-risk regions
must know how to prevent escalation into high-risk zones. Then, for low-risk areas, conduct awareness
sessions in schools, markets, and places of worship to reinforce preventive habits, such as proper waste
disposal and water storage practices.
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Figure 8: Dynamic DHF risk map utilizing Bayesian INLA SIR-SI models for the period from January to May annually

5 Conclusion and Future Works
This study applies Bayesian INLA to estimate the parameters of the SIR-SI stochastic model, comparing

it with previous research that used MCMC. Monthly dengue fever data from 10 districts in Kendari,
Indonesia, from 2020 to 2023 is used. The INLA method delivers accurate parameter estimates, greater
computational efficiency, and smooth integration with early warning systems. In contrast to MCMC,
which requires 10,000 iterations with an 80,000 burn-in, INLA achieves parameter convergence with just
10,000 iterations. The results show that INLA offers a superior fit, with a lower deviance value of 105.23,
outperforming MCMC. Risk analysis using INLA reveals consistent dengue case patterns from January to
May in the Kadia and Wua-Wua districts, indicating a need for targeted interventions in Kendari City. Early
surveillance and control measures are crucial for reducing mosquito breeding in these areas starting in
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January. Sporadic outbreaks in Puuwatu, Kambu, and Kendari Barat districts are often linked to cases in
Kadia and Wua-Wua.

The Bayesian INLA SIR-SI model is a valuable tool for simulating infectious disease outbreaks, but
it depends on assumptions about disease dynamics, population behavior, and data quality. Overcoming
these challenges requires refining data collection, improving model accuracy, and incorporating real-world
complexities. Enhancements like better handling time-varying dynamics and spatial variability, integrating
real-time data and human behavior, and optimizing computational efficiency will lead to more practical
and adaptable models. Such improvements will offer more robust tools for outbreak forecasting and public
health interventions.

Future works on the Bayesian INLA SIR-SI model for DHF should improve prediction accuracy by
including more diverse data, such as vector surveillance and mobility patterns, and enhancing real-time
forecasting capabilities. Developing dynamic models that integrate environmental, seroprevalence, and
socioeconomic data will strengthen the ability of the model to predict DHF transmission. Optimizing
computational efficiency and enhancing the model to real-time early warning systems will help public
health authorities respond more quickly and effectively to DHF outbreaks. In fractional and spatiotemporal
modeling, the nonstandard finite difference method is crucial for preserving the dynamics of stochastic
dengue models. Moving mobility data into a model entail collecting anonymous and aggregated movement
information to develop movement matrices and track temporal trends. The method supports targeted public
health interventions by directing resources toward areas and periods with higher risk associated with human
mobility. Incorporating real-time data into dengue transmission models allows for adaptive updates that
align with current conditions, enhancing forecast accuracy and supporting timely interventions. Public
health agencies can use disease, environmental, and mobility data to adjust intervention strategies based on
current risk assessments, optimizing resource allocation to mitigate dengue outbreaks better. This responsive,
data-driven approach ensures that interventions are timely, targeted, and practical, contributing to improved
dengue control and prevention outcomes.
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