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ABSTRACT

This study rigorously evaluates the potential of transfer learning in diagnosing retinal eye diseases using advanced
models such as YOLOv8, Xception, ConvNeXtTiny, and VGG16. All models were trained on the esteemed RFMiD
dataset, which includes images classified into six critical categories: Diabetic Retinopathy (DR), Macular Hole
(MH), Diabetic Neuropathy (DN), Optic Disc Changes (ODC), Tesselated Fundus (TSLN), and normal cases.
The research emphasizes enhancing model performance by prioritizing recall metrics, a crucial strategy aimed
at minimizing false negatives in medical diagnostics. To address the challenge of imbalanced data, we implemented
effective preprocessing techniques, including cropping, resizing, and data augmentation. The proposed models
underwent fine-tuning and were evaluated using established metrics such as accuracy, precision, and recall. The
experimental results are compelling, with YOLOv8 achieving the highest recall rates for both normal cases (97.76%)
and DR cases (87.10%), demonstrating its reliability in disease screening. In contrast, Xception showed a decline
in recall after fine-tuning, particularly in identifying DR and MH cases, highlighting the need for a careful
balance between sensitivity and specificity in model training. Notably, both ConvNeXtTiny and VGG16 exhibited
significant improvements post-fine-tuning, with VGG16’s recall for normal conditions increasing dramatically
from 40.30% to an impressive 89.55%. These findings clearly underscore the potential of utilizing pre-trained
models through transfer learning for the effective detection of retinal eye diseases, ultimately contributing to
improved patient outcomes in medical diagnostics.
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1 Introduction

Vision impairment and blindness are significant global public health issues, affecting an estimated
2 billion people worldwide, which makes up around 26% of the global population [1]. The retina, a
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vital part of vision, can be impacted by various disorders such as age-related macular degeneration
(AMD), diabetic retinopathy (DR), glaucoma, and cataracts, leading to vision loss or blindness in
millions of individuals [2]. Recent reports from the World Health Organization (WHO) indicate that
refractive errors, cataracts, glaucoma, AMD, and DR account for over 75% of global distance vision
impairment or blindness cases, affecting more than 1.5 billion people worldwide [3]. These statistics
highlight the enormity of the challenges posed by ocular diseases on a global scale. Additionally,
there are concerns about the increasing burden of ocular diseases in the coming decades due to
factors such as population growth, aging demographics, rapid urbanization, and lifestyle changes,
particularly in low- and middle-income countries [3]. By 2050, the global prevalence of vision
impairment is expected to increase by 20%, affecting over 2.4 billion people [4]. Early diagnosis
and timely intervention are crucial in preventing irreversible vision loss and slowing the progression
of degenerative retinal diseases. However, the manual interpretation of retinal images by healthcare
professionals can be time-consuming and prone to variability, leading to delayed diagnosis and treat-
ment [5,6]. In response to these challenges, computer-aided diagnosis (CAD) systems have emerged as
promising tools to enhance clinical decision-making in ophthalmology. These systems utilize advanced
technologies, such as deep learning (DL) techniques, to automate the analysis and interpretation
of retinal images, aiding in early disease detection and intervention [7]. DL methods, including
Convolutional Neural Networks (CNNs) and transformer architectures, have shown remarkable
efficacy in automated disease diagnosis, achieving sensitivity and specificity rates exceeding 90% in
some cases [8–10]. Recent research efforts have focused on leveraging DL models and transfer learning
paradigms to improve the detection and classification of prevalent retinal diseases, such as AMD, DR,
and glaucoma.

A brief review of the literature highlights a concerning trend: most studies concentrate solely
on the detection and classification of individual diseases. These investigations often utilize binary
classification (presence or absence) and multi-class classification to evaluate disease severity. However,
research into multiple retinal eye diseases is notably scarce, especially within the Kingdom of Saudi
Arabia. The existing studies that do address multiple retinal eye diseases typically show inadequate
performance and demand significant improvements. Alarmingly, the WHO’s survey reveals that retinal
eye diseases are rapidly increasing globally, as depicted in Fig. 1 [1]. This underscores the urgent need
for comprehensive research efforts to tackle this growing health concern.

Figure 1: Eye diseases causing visual impairment (2020) [1]
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This study introduces a new multi-label classification system based on multi-label classification
and transfer learning for detecting five critical retinal diseases simultaneously: DR, media haze,
tessellation disease, drusen disease, and optic disc cupping. These diseases collectively contribute to
over 60% of global vision impairment cases caused by retinal disorders [3]. The selection of these
diseases is based on their clinical significance and prevalence, with DR alone affecting nearly 93
million individuals worldwide [11]. The study uses Xception, VGG16, ConvNeXtTiny, and YOLOv8
models. The system aims to address the challenges associated with early detection and accurate
diagnosis of vision-threatening conditions. The primary motivation for this research is the efficient
and accurate multi-disease detection in retinal images. Many patients may have multiple co-occurring
retinal diseases, requiring a multi-label classification approach for a comprehensive diagnosis. Early
detection and monitoring of these conditions are crucial for timely intervention and prevention of
permanent vision loss [12]. Moreover, the study is among the preliminary studies in the Kingdom of
Saudi Arabia and a potential contribution towards the Kingdom’s Vision 2030.

The main contributions of this work are:

• Development of a multi-label classification framework based on DL for the simultaneous
diagnosis of interleaved retinal diseases from color fundus images.

• Evaluation of the proposed framework’s effectiveness using a recent publicly available multi-
label dataset containing a wide variety of challenging retinal diseases.

• Comparison of the proposed framework’s performance with state-of-the-art methods and built-
in models using various evaluation metrics.

• Extension of the proposed framework’s capability to detect a broader range of retinal diseases.

The rest of the paper is organized as follows: Section 2 contains background and a review of the
literature. Section 3 is dedicated to comprehensive methodology while Section 4 provides the results
of experiments. Section 5 discusses the findings of the study while Section 6 concludes the paper.

2 Background and Review of Literature

DR is a complication of diabetes that damages retinal blood vessels, leading to vision loss
[13]. Early detection is crucial for preventing vision loss. Media haze (MH) refers to haziness or
distortion in the eye’s cornea and lens and can indicate various eye conditions [14]. Optic disc cupping
(ODC) helps diagnose glaucoma, which causes nerve damage and vision loss [15]. Tessellation disease
(TSLN) is often associated with myopia and appears as a pattern in retinal pigmentation, while
drusen diseases (DN) involve yellow deposits beneath the retina and are linked to age-related macular
degeneration (AMD) [16,17]. Although articles employing machine-learning techniques to predict
certain eye conditions using retinal data were found, specialized articles addressing Tessellation or
Drusen Diseases were not identified in our search.

In a recent study [18], authors developed a model to identify 45 eye diseases by analyzing color
fundus images from the retinal fundus multi-disease image dataset (RFMID) [19]. The model was
built using a multi-label convolutional neural network (ML-CNN). The ensemble network achieved an
area under the receiver operating characteristic curve (AUROC) score of 0.9613 for disease screening
(healthy vs. pathologic). The SE-ResNeXt architecture achieved the highest single network score of
0.9586. The average AUROC score for each class in individual disease classification was 0.9295. In
[20], researchers developed a deep-learning model to detect early signs of 20 diseases in fundus images.
The study involved using various deep learning models, including MobileNetV2, EfficientNetV2M,
ResNet125V2, EfficientNet-B7, DenseNet-201, and XceptionNet, along with ensemble learning
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techniques investigated on RFMID [19]. The results obtained by the researchers showed a significant
accuracy rate, specifically 76.92% for multi-disease detection and 96.98% for risk classification.

In a study [21], researchers developed a model to detect retinal diseases early on and differentiate
among 27 different conditions from RFMID [19]. The model was built using ensemble learning
and transfer learning techniques, and various architectural frameworks were used to create mul-
tiple models, resulting in the following AUROC scores: Logistic Regression achieved an AUROC
of 0.999, EfficientNetB4 achieved an AUROC of 0.993, DenseNet201 recorded an AUROC of
0.980, InceptionV3 exhibited an AUROC of 0.932, ResNet151 attained an AUROC of 0.970, and
DenseNet201 registered an AUROC of 0.973. In a recent study [22], the researcher’s model successfully
identified 45 eye diseases by analyzing color fundus images from RFMID [19]. The model used
a machine learning convolutional neural network (ML-CNN) for its construction. Other models
such as InceptionresNetv2, DenseNet201, MobileNetV2, InceptionV3, and SeResNext50 were also
developed. However, the ML-CNN outperformed these models, achieving an accuracy (ACC) of
94.3%, a precision of 91.5%, a recall rate of 80%, an area under the curve (AUC) of 96.7%, and a
Dice similarity coefficient (DSC) of 99%.

In a study [23], the authors focused on identifying four common eye diseases in healthy individ-
uals: glaucoma, maculopathy, pathological myopia, and Retinitis pigmentosa. They suggested using
MobileNetV2, a deep learning architecture that leverages transfer learning. MobileNetV2 is designed
to reduce network size while maintaining prediction accuracy by focusing on minimizing the network’s
size and addressing the gradient vanishing issue through residual connections. To extract features,
TensorFlow was used, with each block containing ReLU6 activation and batch normalization.

In [24], the authors described a method for predicting DR using pre-trained ConvNets like
VGG16, NASNet, Xception Net, and Inception ResNetV2. The experimental study evaluates the
performance of a model built using blended feature representations on retinal images from the
Kaggle APTOS 2019 challenge [25]. This challenge involves a diverse set of retinal images captured
through fundus photography in various imaging conditions. The results demonstrate that the proposed
model outperforms existing methods. The images are rated on a scale from zero to four to identify
different severity levels (0—no DR, 1—mild, 2—moderate, 3—severe, and 4—proliferative DR). Each
experiment involved training with 80% of the data and validation with the remaining 20%. The research
also indicates that the most effective method for DR recognition involves cross-mean pooling-based
fusion of features from Xception and VGG16. The proposed model can predict severity levels with an
accuracy of 81.7% and a kappa value of 71.1%. Additionally, it can recognize DR with an accuracy
of 97.41% and a kappa statistic of 94.82. In their research, the authors used a deep neural network
model with the Grey Wolf Optimization (GWO) algorithm to analyze characteristics extracted from
the Diabetic Retinopathy Debrecen dataset. They selected the ideal training parameters for the model
using GWO and utilized the dataset from the UCI machine learning library. The dataset consists of
1151 cases and 20 attributes. The study divided the dataset, using 20% for validation and testing, and
the remaining 80% for training. The researchers converted, standardized, and eliminated misfits in
the dataset using the standard scaler approach. They then employed Principal Component Analysis
(PCA) to extract relevant features. The researchers compared their model with other classifiers such as
Support Vector Machine (SVM), Naïve Bayes Classifier, Decision Tree, and XGBoost, and found that
the DNN-PCA-GWO algorithm outperformed the others, achieving 97.3% accuracy. They also noted
that using PCA as a pre-processing technique significantly reduced the training time while maintaining
the model’s performance [26,27].
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The study [28] discussed a transfer learning approach for classifying retinal disorders using a
neural network model designed for mobile and early diagnosis. Although the specific dataset used
is not explicitly named, it consists of retinal images categorized as healthy, glaucoma-related, and
diabetic. While the exact algorithm is not specified, it is suggested that a neural network model using
transfer learning was employed. According to the publication, the proposed model achieved a peak
accuracy of 90.52% with a learning rate of 0.01 and 100 epochs. It is mentioned that adjusting the
number of epochs and learning rate could affect accuracy. Nonetheless, the study consistently reports
accuracy levels above 90%, demonstrating the reliability and utility of the model for classifying retinal
disorders.

The goal of the study [29] was to introduce a new deep-learning system aimed at predicting the
progression of DR in individual patients using color fundus images. This research employed a DCNN
by utilizing color fundus photos (CFPs) taken during a single visit from patients with DR. The DCNN
was trained to anticipate the advancement of diabetic retinopathy (DR). The algorithm was specifically
designed to forecast a 2-step deterioration on the Early Treatment Diabetic Retinopathy Severity
Scale and was trained using DR severity scores assessed at 6, 12, and 24 months after the initial
visit by experienced human reading center graders, who were masked to the patient’s information.
The dataset for this study comprised CFPs obtained from two large, similarly designed, placebo-
controlled, double-masked, phase 3 clinical trials (RIDE [NCT00473382] and RISE [NCT00473330])
[30,31]. These images were taken from patients with DR and diabetic macular edema (DME) during
their baseline and subsequent visits at 6, 12, and 24 months. The deep learning system described in
this study achieved its best performance, with an area under the curve (AUC) of 0.79, in predicting the
development of DR at the 12-month mark.

In a recent article [32], the authors presented a method for predicting diabetic retinopathy (DR)
that relies on individual risk factors. They used a combination of a deep neural network (DNN)
and recursive feature elimination (RFE) for their research, which was based on a dataset of 115,000
patients. The results showed highly accurate DR predictions. The main algorithm involved using a
DNN to categorize diseases and RFE to eliminate irrelevant characteristics. Although the authors
compared their approach with other machine-learning techniques, they did not specify the algorithms
used. They applied their method to an unspecified publicly available dataset to predict early DR. In
the publication, they referenced the NHISS Korea dataset [33], which includes risk variables from
1000 individuals, 239 of whom have diseases like hypertension and diabetes. The authors achieved
remarkably high accuracy using their proposed technique, with an F1-score, accuracy, precision,
sensitivity, and AUC all reaching 96.5%. These results were obtained through stratified 10-fold cross-
validation, and the authors found that their approach, utilizing DNN with RFE, outperformed other
machine learning techniques.

A study cited in [34] discusses glaucoma detection using fundus images by exploring modified
Gauss-Kuzmin-distribution-based Gabor (GKDG) features within a two-dimensional (2D) Flexible
Analytical Wavelet Transform (FAWT). The findings indicate that the proposed glaucoma classifica-
tion model outperforms existing techniques. This model was evaluated using tenfold cross-validation,
achieving an impressive accuracy of 95.84%, a specificity of 97.17%, and a sensitivity of 94.55%.

Similarly, another study mentioned in [35] examines hybrid intelligent techniques for diagnosing
diabetic retinopathy. The researchers utilized k-Nearest Neighbors (kNN), Support Vector Machine
(SVM), and Histogram-based Gradient Boosting (HGB) machine learning algorithms on the APTOS
dataset. The SVM algorithm yielded the highest accuracy at 96.9%, followed closely by kNN and HGB
at 95.6%.
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In addition, a fuzzy rule-based system-assisted approach for retinal disease classification was
proposed in [36]. This study investigated two classifiers: rule-based (RB) and Stochastic Gradient
Boosting (SGB). The efficiency of these algorithms in multi-class classification on unbalanced data
was evaluated using two indicators: the multi-class area under the curve (MAUC) and the multi-
class Matthews correlation coefficient (MMCC). The results indicated a 5%–8% increase in accuracy
compared to traditional methods.

Another approach explored extended fuzzy logic for detecting diabetic retinopathy, as mentioned
in [37]. Instead of solely focusing on overt symptoms, this method identifies subtle similarities in retinal
irregularities between diabetic patients and non-diabetic individuals. To quantify these similarities, the
‘f-validity’ value was calculated based on diabetic retinopathy risk factors and associated symptoms,
which were then transformed into membership function values. The aggregation of these values was
accomplished using the Ordered Weighted Averaging (OWA) operator. Experimental results of this
method aligned well with expert expectations, achieving an accuracy of 90%, a precision of 92.2%,
and a sensitivity of 75%.

Studies indicate that deep learning has the potential for the automated analysis of retinal images.
However, the datasets used in these studies are often limited in size, diversity, and balance across
various disease classes. Many research efforts relied on small, homogeneous datasets that focused on
specific patient populations. Furthermore, there is a lack of thorough external validation using large,
real-world datasets. Other challenges include the risk of model overfitting, suboptimal optimization
for clinical applications, and a narrow emphasis on accuracy instead of overall clinical suitability.

Most models focus solely on retinal diseases, disregarding how other eye conditions could affect
performance. Additionally, there has been little analysis of how factors such as image quality influence
algorithm outcomes. As a result, the generalizability and cost-effectiveness of these models outside
specific research settings remain uncertain.

To address these gaps, the proposed study developed a transfer learning model to enhance
the practical application of deep learning technologies beyond theoretical success. Acknowledging
the limitations of direct clinical trials for validating these models, we rigorously tested them using the
best available evaluation techniques. By focusing on metrics like recall and precision and employing
robust data preprocessing and augmentation strategies, we aimed to ensure that the models are not only
accurate but also reliable in correctly identifying true positive cases of retinal diseases. The goal is to
improve generalization and tackle the challenges identified in the literature. We intend to contribute to
solving the generalization problem by implementing technical solutions. Table 1 provides a summary
of recent and relevant literature.

Table 1: Summary of literature review

# Year Technique Datasets Results Limitations

[18] 2022 (CNN) SE-ResNeXt RFMID Au-roc = 96.13%.
The highest au-roc
score = 95.86%.

The dataset is
limited in size,
particularly for
certain diseases,
thereby impacting
the accuracy.

(Continued)
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Table 1 (continued)

# Year Technique Datasets Results Limitations

[20] 2023 MobileNetV2,
EfficientNetV2/B7,
ResNet125V2,
DenseNet-201,
XceptionNet

RFMID Acc = 76.92% for
multi-disease
detection, and
96.98% for risk
classification.

The paper does
not discuss the
limitations of the
model or the
potential biases.

[21] 2021 EfficientNetB,
DenseNet201,
InceptionV3,
ResNet151,
DenseNet201,
Logistic regression

RFMID Logistic regression
AUROC: 99.90%,
EfficientNetB4
AUROC: 99.3%,
DenseNet201
AUROC: 98%,
InceptionV3
AUROC: 93.2%,
ResNet151 AUROC:
97%, DenseNet201
AUROC: 97.30%.

Not mentioned.

[24] 2020 Pre-trained
Convolutional
Neural Network
(CNN)

3662 images
were collected
from many
participants

97.41% accuracy,
kappa statistic of
94.82 for detection,
81.7% accuracy,
kappa value of 71.1
for severity
prediction.

Limited datasets
and with limited
computational
resources.

[26] 2022 (ML-CNN)/
DensNet201,
MoMobileNetV2,
InceptionV3,
SeResNext50, and
InceptionresNetv2

RFMID (acc) = 94.3%, a
precision of 91.5%, a
recall rate of 80%,
(auc) of 96.7%, and a
(dsc) of 99%.

The paper
acknowledges
that the proposed
system falls into
overfitting in
some epochs and
that the recall
could be relatively
low.

[32] 2020 (DT), (KNN),
(SVM), (NB),
(DNN), (GWO),
Boost, and (PCA)

Debrecen
dataset for DR

The
DNN-PCA-GWO
best ACC of 97.3%,
with a Precision of
96.5%, a Recall of
97%, a Sensitivity of
91% and a
Specificity of 97%.

Not mentioned.

(Continued)
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Table 1 (continued)

# Year Technique Datasets Results Limitations

[34] 2024 Modified GKDG
features with 2D
FAWT & LS-SVM

APTOS Accuracy: 95.84 %, Only single
disease
(Glaucoma)
detection.

Specificity 97.17 %,
and
Sensitivity: 94.55 %.

[35] 2024 SVM, KNN, HGB APTOS SVM Accuracy:
96.9%

Single dataset.

KNN & HGB:
95.6%.

[36] 2024 Fuzzy logic, RB,
SGB

Imbalanced
dataset

MAUC (SGB
91.22% and RB
87.88%).

Limited and
Imbalanced
dataset.

[37] 2024 Extended fuzzy logic Manually
collected

Accuracy 90%,
Precision 92.2%, and
Sensitivity 75%.

Single disease.

3 Methodology
3.1 Proposed Techniques

The study employs Convolutional Neural Networks (CNN) as the primary technique and utilizes
Transfer Learning to efficiently create and implement models. This approach leverages existing high-
performance models such as Xception, VGG16, ConvNeXtTiny, and YOLOv8n-cls. By utilizing their
pre-trained knowledge, we can reduce computational demands and maximize learning efficiency. This
streamlined process simplifies the fine-tuning of models, allowing them to quickly adapt to specific
tasks or domains, thereby expediting deployment and optimization. The framework will include
systematic steps for selecting suitable pre-trained models, adjusting parameters, and integrating
domain-specific data to enhance performance. This ensures an adaptable and robust solution for
various computer vision applications. The section describing predefined computational intelligence-
based systems and preprocessing methods used in the research will precede a detailed explanation of
techniques such as CNN and architectures like Xception, VGG16, ConvNeXtTiny, and YOLOv8n-
cls. Subsequent sections will introduce the performance metrics used to evaluate the proposed models,
culminating in a summary of the entire chapter in the final section.

3.2 Preprocessing

The RFMiD [19] dataset is a carefully curated collection of retinal fundus images intended to cover
a wide range of retinal conditions. It consists of 3200 images and ground truth labels for 28 different
categories, with separate sets for training, validation, and testing. Our focus is on six distinct classes:
DR with 479 images, MH with 512 images, DN with 433 images, ODC with 516 images, TSLN with
523 images, and a normal class comprising 401 images. This deliberate distribution ensures a balanced
representation of diverse retinal conditions for comprehensive analysis and classification. This dataset
serves as a crucial resource for training and evaluating models, aiming to accurately identify and
differentiate between these retinal conditions, thereby contributing to advancements in ophthalmic
diagnostics and healthcare. The following preprocessing techniques have been employed.
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1. Image Preprocessing: Data preprocessing is essential for reliable analysis and diagnosis. The
raw retinal images undergo various procedures to enhance their quality and make it easier to
detect abnormalities.

2. Data Exploration was a critical part of our research. This phase involved examining the types
of variables and the distribution of diseases within the dataset. We carefully identified and
managed imbalances in disease occurrences to improve our model’s learning process.

3. Cropping and resizing: We cropped the images to ensure that the retina filled the picture and
then resized them to 224 × 224 pixels. These steps were important for standardizing the image
dimensions and ensuring compatibility for subsequent analysis.

4. Data Augmentation: Up-sampling involves creating new instances of minority classes to
balance the classes in a dataset. For instance, in our dataset, classes like Drusen (DN), Optic
disc cupping (ODC), and Tessellation (TSLN) had fewer samples compared to other classes.
We addressed this imbalance by randomly selecting instances and applying horizontal flipping,
vertical flipping, and rotation by 90 degrees to increase their representation in the dataset and
achieve better class balance.

5. Data normalization is a preprocessing technique used to rescale the values of numeric features
in a dataset to a standard range. In Keras, each model such as Xception, VGG16, and
ConvNeXt has specific preprocessing requirements. For Xception, the inputs should be
preprocessed using Keras.applications.xception.preprocess_input, which scales the input pixels
between −1 and 1. VGG16 requires calling keras.applications.vgg16.preprocess_input, which
involves converting RGB images to BGR and zero-centering each color channel with respect to
the ImageNet dataset, without scaling. Conversely, ConvNeXt models include preprocessing
within the model itself, utilizing a Normalization layer. For ConvNeXt, the inputs should be
float or uint8 tensors with pixel values ranging from 0 to 255. It is important to apply the
appropriate preprocessing steps based on the specific model to ensure accurate and reliable
results [38]. YOLOv8n-cls includes a Spatial Pyramid Pooling Fast (SPPF) layer for acceler-
ated computation and utilizes batch normalization and SiLU activation functions for each
convolution [39]. The head is decoupled to process objectless, classification, and regression
tasks independently. Additionally, advanced techniques are employed, with transformation
processes varying for each convolutional layer [40].

Initially, the dataset was split into a 60:20:20 ratio, comprising 1455 training images, 466 validation
images, and 463 test images, all with multi-label annotations. Following preprocessing, the dataset was
re-divided into a 67.5:21.9:10.6 ratio. Preprocessing, data augmentation, and up-sampling techniques
were applied to the training and validation sets, resulting in 2400 training images and 779 validation
images. However, no augmentation or up-sampling was conducted on the test set of 463 images as the
aim was to evaluate model performance on unaltered, real-world images with multi-labeling.

Nevertheless, preprocessing steps such as cropping, resizing, and normalization were carried out
on the test set to ensure uniform image formatting and data integrity. Table 2 contains the data
distribution for training and validation. While Table 3 provides lables distribution among the instances
of test dataset.
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Table 2: Dataset distribution after preprocessing (training and validation)

Label Training images Validation images

DN 400 130
DR 400 130
MH 399 129
Normal 401 134
ODC 401 124
TSLN 399 132

Table 3: Test dataset

Labels Images Labels Images Labels Images

Normal 134 DR, ODC 24 DN, TSLN 5
DR 88 ODC, TSLN 16 DR, MH 3
MH 79 MH, ODC 11 MH, ODC, TSLN 2
ODC 29 DR, TSLN 7 MH, DN 1
DN 33 MH, TSLN 7 DR, ODC, TSLN 1
TSLN 15 DN, ODC 7 DR, MH, ODC 1

3.3 Model Development

Transfer learning is particularly effective for medical image analysis tasks, such as predicting
retinal diseases, due to the limited availability of large, labeled medical image datasets [41]. By utilizing
models that have been pre-trained on extensive general image datasets like ImageNet, transfer learning
enables us to develop high-performance models using fewer medical images [42].

In the context of predicting retinal diseases, transfer learning has demonstrated state-of-the-
art results. This is achieved by fine-tuning models that were initially trained on natural images and
then retraining them on specific retinal image datasets [43]. This approach significantly reduces the
computational resources and data requirements compared to training a model from scratch.

Using a single transfer-learned model for multiple retinal diseases offers several advantages over
employing separate models:

1. A unified model architecture minimizes redundancy and decreases the likelihood of overfitting
to any single disease, thereby enhancing the model’s generalizability to new disease cases [44].

2. With a shared feature representation, knowledge can be transferred between related diseases
during multi-task learning, which can improve overall prediction performance [44].

3. From an operational perspective, a single model is more efficient to develop, validate, update,
and deploy when compared to managing multiple models, simplifying real-world usage.

Therefore, transfer learning plays a crucial role in developing predictive frameworks for retinal
eye diseases. Pre-trained deep learning architectures, such as Xception, VGG16, ConvNeXtTiny, and
YOLOv8n-cls, serve as a foundation for transferring knowledge from large image datasets to the
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specialized area of retinal scans. Fine-tuning these models with a comprehensive array of retinal
images allows them to learn the specific features associated with various eye conditions. To ensure
the robustness and generalizability of the models, rigorous testing and validation protocols, including
train-validation-test partitioning, are employed. This meticulous process enables transfer learning-
based models to accurately diagnose and predict retinal diseases, potentially revolutionizing early
detection and treatment strategies in ophthalmology.

Additionally, we used scikit-learn for various tasks, including importing confusion_matrix, One-
HotEncoder, precision_recall_curve, and f1_score from the scikit-learn.metrics module. Furthermore,
we employed YOLOv8n-cls to build another model trained on a dataset relevant to the experiment’s
objectives. This model was used to identify and localize objects of interest within the data.

3.3.1 Hardware and Software Configuration

For the models Xception, VGG16, and ConvNeXtTiny, we utilized Kaggle with GPU support
P100. In contrast, we used Google Colab for the YOLOv8n-cls architecture. Both platforms provided
the essential computational resources and infrastructure needed to effectively train and evaluate the
models, in line with the objectives of our experiment. Additionally, the experiments were conducted
using an Intel 12th Gen Core i7-1260P processor, with a clock speed of 2.10 GHz, 16 GB of RAM,
and a Jupyter notebook environment.

3.4 Hyper-Parameter Tuning

Hyperparameter optimization involves systematically adjusting the hyperparameters of an algo-
rithm through iterative evaluation to find the optimal configuration for maximizing model perfor-
mance. In our research, we selected parameters by reviewing previous studies, and then proceeded
with parameter adjustments and experimentation.

3.4.1 VGG16

The VGG16 architecture is renowned for its simplicity and effectiveness in computer vision tasks.
It has been meticulously configured to ensure optimal performance for this particular setup. The
selected optimizer is Adam, which utilizes a learning rate of 0.001. This allows for adaptive learning
rates for individual parameters, making it a variant of stochastic gradient descent that facilitates
efficient weight updates during training.

In addition to the optimizer, the VGG16 model is configured with specific parameters to
enhance compatibility with the dataset. These parameters include setting the ‘class_mode’ to ‘raw’,
the ‘color_mode’ to ‘RGB’, and the ‘target_size’ to (224, 224). These configurations are crucial
for maximizing the model’s performance in image classification. Table 4 presents the fine-tuned
hyperparameters.

Table 4: Fine-tuned hyperparameters values for VGG16, Xception, and ConvNeXtTiny

Fine-tuned hyperparameters VGG16 Xception ConvNeXtTiny

Optimizer Adam Adam Adagrad
Learning rate 0.001 0.01 0.01
Unfreezing layer 3 3 3
Epochs 40 150 150
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3.4.2 Xception

Xception is an advanced convolutional neural network specifically designed to achieve superior
performance in computer vision tasks. It is initially optimized using the Adadelta optimizer with a
learning rate of 0.1, which enables the model to dynamically adjust its weights to minimize categorical
cross-entropy loss. Pre-trained with ImageNet weights, Xception benefits from accelerated training
and enhanced generalization capabilities.

The model uses a batch size of 32 and implements early stopping with a patience of 7 epochs,
ensuring efficient convergence and reducing the risk of overfitting. ReLU activation is applied in the
hidden layers to introduce non-linearity, while the Softmax function in the output layer computes
multi-class probabilities. The single hidden layer consists of 256 units and features a dropout rate of 0.3
to further prevent overfitting. Additionally, global average pooling is utilized to reduce the dimensions
of the feature maps, improving interpretability and mitigating overfitting.

During the fine-tuning stage, the optimizer is changed to Adam with a learning rate of 0.01. Three
layers of the network are frozen to preserve the pre-learned representations, and training continues for
150 epochs to refine the model’s performance on the specific dataset.

The Xception model is configured with additional parameters tailored to match the characteristics
of the dataset: the class mode is set to ‘raw’, the color mode is set to ‘RGB’, and the target size is
specified as (224, 224). These hyperparameters and settings ensure that the Xception model performs
robustly across various image classification tasks. Table 4 presents the hyperparameters used in
Xception.

3.4.3 ConvNeXtTiny

The ConvNeXtTiny is a compact convolutional neural network designed specifically for image
classification tasks. It has been meticulously configured to optimize performance. The model utilizes
Adagrad optimization with a learning rate of 0.01 to dynamically adapt its weights and minimize
categorical cross-entropy loss. It is initialized with ImageNet weights to enhance training and improve
generalization.

With a batch size of 16 and early stopping set to a patience of 7 epochs, ConvNeXtTiny efficiently
converges while mitigating the risks of overfitting. ReLU activation is employed in the hidden layers
to introduce non-linearity, while Sigmoid activation is used in the output layer to compute class
probabilities. The single hidden layer consists of 32 units, augmented by a dropout rate of 0.4 to further
reduce the risk of overfitting. Additionally, Global Average Pooling is applied to decrease feature map
dimensions, enhancing interpretability and also helping to prevent overfitting.

During the fine-tuning phase, the optimizer remains Adagrad with customized parameters: an
initial accumulator value of 0.1, an epsilon of 1e−07, and a learning rate of 0.01. Three layers
are frozen to preserve pre-learned representations while training continues for 150 epochs to refine
the model’s performance on the specific dataset. The ConvNeXtTiny model is also configured with
additional parameters to ensure compatibility with the dataset’s characteristics. The class mode is
set to ‘raw,’ the color mode is set to ‘RGB,’ and the target size is specified as (224, 224). Together,
these hyperparameters and settings equip the ConvNeXtTiny model for robust performance in various
image classification tasks. Refer to Table 4 for the hyperparameters.
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3.4.4 YOLOv8n-cls

The configuration of the YOLOv8n-cls model is designed with various hyperparameters to
optimize its performance. The model undergoes extensive training for 200 epochs with a patience
threshold of 10 to ensure robust learning. It utilizes a batch size of 16 and an image size of 512 pixels to
facilitate efficient processing and high-resolution analysis. Additionally, the use of pre-trained weights
and automatic mixed precision enhances both training efficiency and accuracy. Key optimization
parameters, such as momentum (0.937) and weight decay (0.0005), contribute to stable convergence
and improved generalization.

The model also incorporates specialized loss functions, including box loss gain (7.5) and pose loss
gain (12.0), which are tailored to specific tasks. To enhance model robustness, augmentation techniques
such as HSV (Hue, Saturation, Value) adjustments and mosaic transformations are employed to
diversify the training data. The model furthermore includes validation and plotting functionalities,
which aid in monitoring training progress and diagnosing performance issues. Data augmentation
parameters, including probabilities for rotation, translation, and flipping, enrich the dataset and
promote better generalization. The YOLOv8n-cls model features an automatic optimizer selection
mechanism that uses the ‘auto’ setting to dynamically choose the most appropriate optimizer for
training. While the default optimizer is set to ‘AdamW’, the ‘auto’ mode enables adaptive parameter
selection, which can lead to better results compared to manual selection. This automated approach
ensures that the model is optimized with hyperparameters tailored to both the dataset and the training
dynamics, enhancing performance without the need for manual tuning.

By utilizing automatic optimization, YOLOv8n-cls maximizes training efficiency and effective-
ness, resulting in improved object detection outcomes. Overall, the hyperparameter configuration of
YOLOv8n-cls represents a comprehensive strategy aimed at achieving state-of-the-art object detection
capabilities. Refer to Table 5 for the hyperparameters of YOLOv8n-cls.

Table 5: YOLOv8n-cls hyperparameters

Hyperparameter Value Hyperparameter Value Hyperparameter Value

Epochs 200 Validation True Warmup bias
LR

0.1

Patience 10 IoU threshold 0.7 Box loss gain 7.5
Batch size 16 Maximum

detections
300 Classification

loss gain
0.5

Image size 512 Learning rate 0.000714 Depth loss gain 1.5
Pretrained True Momentum 0.937 Pose Loss Gain 12.0
Optimizer Auto (AdamW) Warmup

epochs
3.0 Keypoint OBB

loss gain
1.0

Automatic
mixed precision

True Warmup
momentum

0.8 Batch size for
subdivision

64

3.5 Optimal Threshold Determination for Binary Classification

During the post-processing phase of our predictive modeling, we employ a step-by-step approach
to determine the best threshold for converting predicted probabilities into binary classifications. First,
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we organize the labels and predicted probabilities into one-dimensional arrays to ensure compatibility
for further analysis. Next, we utilize the precision_recall_curve function to calculate precision and
recall at various thresholds, which are critical for evaluating the performance of binary classifiers. To
identify the threshold that balances precision and recall, we compute the F1-score for each possible
threshold.

The F1-score, which is the harmonic mean of precision and recall, serves as a reliable measure
of binary classifier accuracy, particularly in imbalanced datasets. We then select the threshold that
corresponds to the highest F1-score as the optimal threshold. This optimal threshold is subsequently
used to categorize the predicted probabilities into either 0 or 1, depending on whether they meet or
exceed this value. This method is essential for enhancing the effectiveness of the classification process,
ensuring a balance between precision and recall to improve overall model performance.

3.6 Performance Evaluation of the Proposed Models

The performance of the models will be assessed using several key performance indicators,
including accuracy, Receiver Operating Characteristic (ROC) curve, precision, recall, Area Under the
Curve (AUC), and F1-score. Accuracy refers to the proportion of correctly predicted results among all
predictions. Precision is defined as the ratio of true positive predictions to the total number of positive
predictions. Recall measures the proportion of actual positive instances that were correctly identified
by the model.

The F1-score combines both precision and recall into a single metric. AUC is a metric that
evaluates a classification model’s ability to distinguish between positive and negative examples, with a
higher AUC value indicating better discriminatory ability. The ROC curve is a graphical representation
that plots the true positive rate against the false positive rate, allowing for an assessment of the model’s
effectiveness.

These metrics are essential for evaluating model performance, and some are interdependent. For
example, accuracy cannot be calculated without knowing precision and recall. Additionally, the terms
used in this evaluation include: True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN). The relevant formulas are presented in Eqs. (1)–(6).

Accuracy = TP + TN
TP + FP + FN + TN

(1)

Precision = TP
TP + FN

(2)

Recall = TP
TP + FN

(3)

F1 − score = 2 x Precision × Recall
Precision + Recall

(4)

AUC =
∫

[0, 1]TPR (FPR) dFPR (5)

ROC = TPR = TP
(TP + FN)

, FPR = FP
(FP + TN)

(6)

In this research, we conducted a thorough assessment of the performance of classification models
using various evaluation metrics, including Recall, Accuracy, Precision, F1-score, and AUC per class.
These metrics provide insights into the performance of each individual class.
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We also analyzed Macro-Average, Micro-Average, Weighted-Average, and sample-average metrics
to offer a comprehensive evaluation by employing different averaging techniques. Additionally, Global
Accuracy gives a summary of the overall correctness of the model across all classes.

Furthermore, we emphasize the importance of considering metrics such as False Negatives (FN)
and False Positives (FP) to prevent misdiagnosis, which can pose significant risks and endanger
people’s lives.

4 Results and Discussion

The section explores the performance analysis of the YOLOv8n-cls model and compares it with
other leading architectures, such as VGG16, Xception, and ConvNeXtTiny, during the training and
validation phases, both prior to and following fine-tuning.

4.1 VGG16

The performance of the VGG16 model, both before and after fine-tuning, is demonstrated
through three key metrics: Training and Validation Accuracy, Training and Validation Loss, as well
as Precision, Recall, and AUC. After implementing a strategic fine-tuning approach—by unfreezing
the last three layers and using the Adam optimizer with a learning rate of 0.0001—significant
improvements in performance metrics were achieved. The model’s accuracy increased dramatically
from 71.50% before fine-tuning to an impressive 95.71% afterward. This substantial improvement
indicates that the model’s ability to correctly classify instances has been greatly enhanced through the
fine-tuning process.

The results comparing performance before and after fine-tuning are presented in Table 6. A
notable difference is evident in the performance by applying the fine-tuning by a margin of 24.21%,
15.85%, 5.95% and 10.75%, in accuracy, precision, recall and AUC, respectively. While epochs were
reduced by just 2.

Table 6: The results of the VGG16 model before and after fine-tuning

Metric Before After

Epochs 16 14
Accuracy 71.50% 95.71%
Precision 29.91% 45.76%
Recall 92.92% 98.87%
AUC 84.88% 95.63%

4.2 Xception

The performance of the Xception model was evaluated before and after fine-tuning by examining
various metrics, including Training and Validation Accuracy, Training and Validation Loss, Precision,
Recall, and AUC. After fine-tuning the model using a strategic approach—specifically, unfreezing the
last three layers and applying the Adam optimizer with a learning rate of 0.01—significant improve-
ments in these performance metrics were observed. These enhancements illustrate the effectiveness of
fine-tuning process in optimizing the model’s performance, resulting in better classification outcomes.
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Table 7 presents the experimental results before and after hyperparameter tuning, respectively. It
is apparent that post fine tuning, results are significantly improved in terms of accuracy, precision,
recall, and AUC by 17.54%, 12.11%, 26.17% and 3.69%, respectively. Moreover, this feat was achieved
with significantly reduced number of epochs.

Table 7: The results of the Xception model before and after fine-tuning

Metric Before After

Epochs 46 12
Accuracy 75.83% 93.37%
Precision 82.98% 95.09%
Recall 65.00% 91.17%
AUC 95.75% 99.44%

4.3 ConvNeXtTiny

The performance of the ConvNeXtTiny model is evaluated using three key metrics: Training
Accuracy, Validation Accuracy, Training Loss, Validation Loss, Precision, Recall, and AUC. After
fine-tuning the ConvNeXtTiny model with a strategic approach—specifically, unfreezing the last three
layers and utilizing the ‘Adagrad’ optimizer with a learning rate of 0.01, an initial accumulator value
of 0.1, and an epsilon value of 1e−07—significant improvements in these performance metrics have
been observed.

The results are detailed in Table 8. A significant improvement in performance metrics of accuracy,
precision, recall and AUC has been observed after fine-tuning by a difference of 13.7%, 5.83%, 6.33%
and 4.88%, respectively. While the number of epochs are reduced by 33.

Table 8: The results of ConvNeXtTiny model before and after fine-tuning

Metric Before After

Epochs 69 36
Accuracy 65.42% 79.12%
Precision 38.99% 44.82%
Recall 89.33% 95.54%
AUC 89.74% 94.62%

4.4 YOLOv8n-cls

The performance of the YOLOv8n-cls model is illustrated through four key plots: Training Loss,
Validation Loss, Top-1 Accuracy, and Top-5 Accuracy. The plots for training and validation loss
show a consistent decrease, which indicates effective learning and convergence of the model. The Top-
1 accuracy improves and stabilizes around 0.75, reflecting the model’s enhanced ability to predict
the correct class. Meanwhile, the Top-5 accuracy metric highlights the model’s capability to rank
predictions. This plot consistently demonstrates high accuracy, starting at 0.99 and maintaining that
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level with only minor fluctuations. This indicates the proposed model’s strong ability to correctly rank
the target class within its top five predictions.

Using accuracy metrics such as Top-1 and Top-5 provides a direct measure of performance for
classification tasks, emphasizing how often the correct class is predicted. This method is effective for
assessing the model’s efficiency in identifying and ranking classes, which is the primary objective of
models like YOLOv8n-cls. Fig. 2 visually represents the performance of the YOLOv8n-cls model.

Figure 2: Performance of YOLOv8n model over training epochs

The YOLOv8n-cls model was not fine-tuned due to its complex architecture, which posed
challenges in the fine-tuning process. Furthermore, the version of YOLOv8n-cls used in this study
is not designed to support fine-tuning. These limitations restricted the application of fine-tuning
techniques that were successfully implemented on other models such as VGG16, Xception, and
ConvNeXtTiny. Consequently, we focused on evaluating the model based on its inherent capabilities
without any additional fine-tuning or adjustments.

Table 9 presents the model’s performance. It is important to note that an early stopping criterion
was applied to mitigate the potential risk of overfitting. Additionally, transfer learning models do not
require as many epochs or extended training times, which is one of the advantages of using transfer
learning models like YOLO.

Fig. 3 presents a compelling collection of retinal fundus images paired with their true labels,
highlighting the accuracy of our dataset.
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Table 9: YOLOv8n model perform ance

Metric Value

Epochs 14
Accuracy 85.17%
Top-1 accuracy 75.22%
Top-5 accuracy 99.48%

Figure 3: Actual labels

In contrast, Fig. 4 showcases images labeled based on predictions from the YOLOv8n-cls model,
demonstrating its potential for advanced image analysis.
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Figure 4: Predicted labels

In this experiment, we evaluated the performance of the YOLOv8n-cls model in accurately pre-
dicting various retinal diseases based on fundus images. The first set of images displays the actual labels
of the retinal images, categorizing them into distinct disease classes, including Diabetic Neuropathy
(DN), Tesselated Fundus (TSLN), Normal, Diabetic Retinopathy (DR), and Macular Hole (MH).
The second set presents the predictive output from the YOLOv8n-cls model. By comparing these sets,
we can assess the model’s diagnostic accuracy by examining how closely the predicted labels align with
the true disease categories.
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The aim of this experiment is to determine the model’s reliability and precision in real-world
scenarios, providing insights into its potential utility in clinical practice for the detection and classifi-
cation of retinal conditions. Such validation is essential and crucial for further refining the model and
ensuring its applicability in clinical healthcare settings, where accurate and early diagnosis is crucial
for effective treatment planning.

4.5 Performance of All the Models over Test Data

Table 10 presents the comprehensive performance outcomes of all models tested on individual
diseases, as well as their aggregated performance. It is important to note that these results were achieved
following hyperparameter optimization. Results obtained prior to hyperparameter tuning are not
included due to page limitations. The YOLOv8n-cls model outperformed all other models across all
performance metrics for both individual disease detection and aggregated performance.

Table 10: All models’ performance over the test data

Model Disease Accuracy Recall Precision F1-score AUC

YOLOv8n-cls DN 90.71% 63.04% 52.72% 57.43% 86.36%
DR 94.60% 87.10% 92.31% 89.63% 97.75%
MH 93.95% 88.46% 85.19% 86.79% 97.38%
Normal 91.58% 97.76% 78.44% 87.04% 98.21%
ODC 83.59% 38.46% 63.64% 47.95% 72.89%
TSLN 92.44% 64.15% 68.00% 66.02% 92.70%
Aggregated 91.59% 77.72% 77.72% 77.72% 92.46%

Xception DR 88.77% 75.81% 81.03% 78.33% 92.87%
MH 90.71% 65.38% 90.67% 75.98% 92.32%
DN 90.06% 15.22% 50.00% 23.33% 78.14%
ODC 83.15% 18.68% 80.95% 30.36% 66.58%
TSLN 90.50% 43.40% 62.16% 51.11% 83.49%
Normal 86.61% 91.79% 70.69% 79.87% 93.29%
Aggregated 88.30% 60.14% 75.97% 67.14% 86.85%

ConvNeXtTiny DR 89.85% 71.77% 88.12% 79.11% 95.68%
MH 93.30% 80.77% 88.42% 84.42% 95.63%
DN 82.07% 45.65% 26.58% 33.60% 74.63%
ODC 80.78% 34.07% 51.67% 41.06% 75.25%
TSLN 91.58% 47.17% 69.44% 56.18% 87.82%
Normal 89.63% 84.33% 80.71% 82.48% 95.74%
Aggregated 88.47% 65.76% 71.04% 68.66% 90.27%

(Continued)
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Table 10 (continued)

Model Disease Accuracy Recall Precision F1-score AUC

VGG16 DR 74.30% 84.68% 51.22% 63.83% 85.06%
MH 86.61% 85.58% 65.44% 74.17% 92.50%
DN 59.61% 30.43% 8.28% 13.02% 51.09%
ODC 79.48% 49.45% 47.87% 48.65% 75.58%
TSLN 91.36% 66.04% 61.40% 63.64% 89.52%
Normal 89.42% 89.55% 77.42% 83.04% 95.59%
Aggregated 81.56% 73.91% 57.11% 63.69% 85.05%

4.6 Major Observations

The analysis, along with the data presented in Tables 10 and 11, has revealed the following
observations:

1. The YOLOv8n-cls and Xception models demonstrate a strong performance in True Positives
for the conditions of diabetic retinopathy (DR), Normal, and macular hemorrhage (MH),
indicating good sensitivity to these conditions.

2. The ConvNeXtTiny and VGG16 models show significant improvements in True Positives for
the Normal and DR conditions after fine-tuning.

3. The YOLOv8n-cls model is remarkably stable across most diseases, consistently achieving high
True Negatives, particularly notable in the Normal and TSLN conditions.

4. The Xception model exhibits a significant improvement in True Negatives for the Normal
condition post-fine-tuning; however, it also shows a notable increase in False Negatives for
DR, MH, and diabetic neuropathy (DN).

5. The ConvNeXtTiny model demonstrates balanced improvement after fine-tuning across most
diseases, with increased True Positives and decreased False Negatives for both DR and MH.

6. The VGG16 model exhibits considerable variability, with dramatic shifts in performance
metrics, particularly in False Positives and False Negatives across all conditions.

Table 11: Performance comparison of all the approaches in terms of prediction rate

Model Phase Disease TP TN FP FN

YOLOv8n-
cls

DR 108 330 9 16
MH 92 343 16 12
DN 29 391 26 17
ODC 35 352 20 56
TSLN 34 394 16 19
Normal 131 293 36 3

(Continued)
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Table 11 (continued)

Model Phase Disease TP TN FP FN

Xception Before fine
tuning

DR 101 305 34 23
MH 81 339 20 23
DN 13 392 25 33
ODC 31 336 36 60
TSLN 26 395 15 27
Normal 126 289 40 8

After fine
tuning

DR 94 317 22 30
MH 68 352 7 36
DN 7 410 7 39
ODC 17 368 4 74
TSLN 23 396 14 30
Normal 123 278 51 11

ConvNeXtTiny Before fine
tuning

DR 82 333 6 42
MH 84 345 14 20
DN 15 374 43 31
ODC 21 347 25 70
TSLN 28 395 15 25
Normal 116 303 26 18

After fine
tuning

DR 89 327 12 35
MH 84 348 11 20
DN 21 359 58 25
ODC 31 343 29 60
TSLN 25 399 11 28
Normal 113 302 27 21

VGG16 Before fine
tuning

DR 99 205 134 25
MH 93 236 123 11
DN 23 251 166 23
ODC 10 352 20 81
TSLN 44 306 104 9
Normal 54 211 118 80

After fine
tuning

DR 105 239 100 19
MH 89 312 47 15
DN 14 262 155 32
ODC 45 323 49 46
TSLN 35 388 22 18
Normal 120 294 35 14

4.7 Comparison with State-of-the-Art

The proposed scheme has been qualitatively compared with various techniques found in the
literature, considering that there are approximately fifty retinal diseases and that different techniques
are chosen for different conditions. The selected schemes were evaluated based on criteria such as the



IASC, 2025, vol.40 171

use of the same dataset (RFMID), the presence of multiple retinal diseases, and the application of
deep learning, particularly transfer learning. Overall, the proposed scheme outperforms the others in
these comparisons. The results are illustrated in Fig. 5.

Figure 5: Comparison [20–24]

5 Discussion

This research aimed to develop and evaluate deep learning models for identifying retinal eye dis-
eases using transfer learning methods. We specifically focused on four pre-trained models: YOLOv8n-
cls, Xception, ConvNeXtTiny, and VGG16. The primary diseases considered in our study were
Diabetic Retinopathy (DR), Macular Hole (MH), Diabetic Neuropathy (DN), Optic Disc Changes
(ODC), Tessellated Fundus (TSLN), and normal eye conditions. Accurately identifying positive cases
in medical diagnostics is crucial, so we prioritized recall as our main metric to minimize false negatives.
These false negatives can be particularly dangerous, as they may lead to delayed treatment for serious
conditions. The strong performance of YOLOv8n-cls and VGG16 in identifying normal conditions
after fine-tuning is promising. This indicates that these models can effectively reduce the number of
false positives in healthy patients, which is important in clinical settings to avoid unnecessary anxiety
and additional medical examinations.

For Diabetic Retinopathy, we observed consistently high recall rates across the models, especially
with YOLOv8n-cls. This aligns with the need to prioritize sensitivity for this sight-threatening
condition and supports findings from other studies that highlight the potential of deep learning
in DR screening. In our comparative analysis with state-of-the-art models, our proposed scheme
outperformed others using the same dataset. Furthermore, this study contributes to Saudi Arabia’s
Vision 2030 initiative, which aims to improve healthcare and well-being for its citizens.

A notable limitation of this study is its reliance on a specific dataset, RFMiD, for testing,
which may limit the generalizability of the findings. To enhance the robustness of the models, future
research should incorporate data from multiple centers. Additionally, using advanced forms of transfer
learning and integrating clinical metadata could improve diagnostic accuracy [45,46]. Given the
wide variety of retinal diseases, it is crucial to differentiate each condition through a segmentation
process that highlights abnormalities, rather than simply classifying them. To address these limitations,
future investigations should explore data augmentation techniques to include more diverse datasets,
contributing to the development of more generalized and robust models. Furthermore, for multi-class
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classification, it is essential to investigate hybrid, fusion-based, and ensemble models to further refine
the results [47–50].

6 Conclusion

This study successfully developed and evaluated deep learning models utilizing transfer learning to
detect retinal eye diseases. We employed four prominent pre-trained models: YOLOv8n-cls, Xception,
ConvNeXtTiny, and VGG16, fine-tuning them on a comprehensive dataset of retinal images to diag-
nose conditions such as Diabetic Retinopathy (DR), Macular Hole (MH), Diabetic Neuropathy (DN),
Optic Disc Changes (ODC), Tesselated Fundus (TSLN), and normal eye conditions. We emphasized
recall as the primary metric due to the critical need to minimize false negatives in medical diagnostics,
as missing a positive case can lead to severe consequences for patients. Our results demonstrated that
the YOLOv8n-cls model performed exceptionally well, particularly in detecting normal conditions,
with a recall of 97.76%, and DR, with a recall of 87.10%. This high sensitivity in identifying normal
and DR conditions is essential for reducing unnecessary treatments and ensuring patients with
significant conditions receive prompt and accurate diagnoses and treatments. In conclusion, this
research highlights the potential of deep learning approaches, especially transfer learning with pre-
trained models, in transforming the diagnosis of retinal diseases. By focusing on recall, we ensure
that the developed models are sensitive to detecting true positives, which is crucial in medical settings.
However, a potential limitation of the current study is its focus on a single, comprehensive dataset.
Future research should aim to address these limitations and explore new methodologies to enhance
the applicability and robustness of these models further.
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