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ABSTRACT

Diabetic retinopathy (DR) is a complication of diabetes that can lead to reduced vision or even blindness if left
untreated. Therefore, early and accurate detection of this disease is crucial for diabetic patients to prevent vision loss.
This study aims to develop a deep-learning approach for the early and precise diagnosis of DR, as manual detection
can be time-consuming, costly, and prone to human error. The classification task is divided into two groups
for binary classification: patients with DR (diagnoses 1–4) and those without DR (diagnosis 0). For multi-class
classification, the categories are no DR, mild DR, moderate DR, severe DR, and proliferative diabetic retinopathy
(PDR). To achieve this, the proposed model utilizes two pre-trained convolutional neural networks (CNNs),
specifically ResNet50 and DenseNet-121. Both models were trained and evaluated on fundus images sourced from
the widely recognized APTOS dataset, a publicly available resource., and achieved impressive training and testing
accuracies. For binary classification, DenseNet-121 achieved an accuracy of 98.1%, while ResNet50 attained an
accuracy of 97.4%. In multi-class classification for DR, DenseNet-121 achieved an accuracy of 82.0%, and ResNet50
reached an accuracy of 80.8%. The results are promising and comparable to state-of-the-art techniques in the
literature for both binary and multi-label classification of DR.
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1 Introduction

Diabetes is a serious medical condition characterized by elevated blood sugar levels, primarily
resulting from the pancreas’s inability to produce sufficient insulin. Uncontrolled high blood sugar can
lead to severe health complications, such as heart disease, kidney failure, nerve damage, and ultimately,
blindness [1]. A significant complication of diabetes is diabetic retinopathy (DR), a condition that
damages the delicate blood vessels in the retina of the eye. When these small blood vessels become
blocked due to high blood sugar, they may leak fluids or bleed, leading to serious damage to the
retina [2].
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To compensate for this blockage, the retina attempts to develop new blood vessels; however,
these vessels often fail to function properly and may result in bleeding or leakage. According to
estimates from the World Health Organization (WHO), diabetic retinopathy contributes to around
37 million cases of blindness worldwide. Proactively managing diabetes is essential to prevent such
severe outcomes, particularly in Middle Eastern regions [3].

Current approaches to treating diabetic retinopathy (DR) mainly aim to slow down or prevent
further vision deterioration, highlighting the critical importance of routine eye examinations facilitated
by advanced computational systems. Artificial intelligence (AI) and its associated technologies have
demonstrated exceptional potential in accurately diagnosing diseases through medical imaging. For
instance, recent research has successfully linked the biological factors of DR with cutting-edge AI
models [4].

It is critical to identify and treat Vision-Threatening Diabetic Retinopathy (VTDR) as early as
possible to effectively reduce the risk of irreversible vision loss. This proposed study aims to make a
significant impact by facilitating early detection and proactive prevention of DR. AI has established
itself as a vital asset in healthcare and medicine, fueled by innovations in computing power, deep
learning (DL) algorithms, and the explosion of big data. By leveraging training datasets, learning
algorithms enhances accuracy, minimize the chances of misdiagnosis, and significantly reduce time,
effort, and costs. Thus, the development of a sophisticated DL model dedicated to the early diagnosis
of diabetic retinopathy, assessing its severity, and delivering tailored treatment plans is not just
beneficial—it is imperative for advancing patient care and preserving vision [5].

This study utilizes the latest machine learning technologies to improve diabetic retinopathy (DR)
detection in retinal image analysis by leveraging two pre-trained Convolutional Neural Network
(CNN) architectures: ResNet50 and DenseNet-121. ResNet50, a widely recognized deep CNN archi-
tecture with 50 layers, demonstrates remarkable accuracy and efficiency in analyzing retinal images
[6]. Meanwhile, DenseNet-121, a more complex network with 121 layers, excels in extracting intricate
features from these images, allowing it to identify subtle abnormalities that may indicate DR [7].

Upon reviewing the literature, it has become evident that there are relatively few studies conducted
on DR detection using artificial intelligence (AI) and deep learning in the Kingdom of Saudi Arabia
(KSA). However, several studies related to diabetes detection indicate a clear and increasing trend in
disease prevalence after the COVID-19 pandemic, largely due to lifestyle changes [8–10]. This evidence
suggests a significant likelihood of an increase in DR cases across the kingdom. This study aims to
establish an efficient mechanism for the early detection of the disease, enabling timely remedial actions
before it is too late.

This study is committed to significantly advancing the accuracy of disease diagnosis through the
power of deep learning, with the primary goal of enhancing patient care. We introduce an innovative
diagnostic approach for diabetic retinopathy (DR) that utilizes state-of-the-art deep learning models.
Our approach strategically employs pre-trained models, integrating two essential classification tasks:
a binary classification to confirm the presence or absence of DR, and a multi-class classification to
determine disease severity across five distinct categories: no DR, mild, moderate, severe, and prolif-
erative. This dual strategy empowers us to achieve remarkable detection accuracy for DR. Rigorous
experiments were carried out using the popular and authentic APTOS 2019 dataset, made available
by the Asia Pacific Tele-Ophthalmology Society (APTOS) via Kaggle for their 2019 competition. Our
comprehensive results indicate that our proposed method surpasses existing techniques, based on a
range of evaluation metrics from prior studies. By enabling earlier detection of DR, our pioneering
approach holds promise for substantially improving patient outcomes.
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The motivation driving our study is twofold and highly impactful. First, we seek to seamlessly
integrate binary classification (assessing presence vs. absence) with multi-class classification (reflecting
different degrees of disease severity). This innovative approach directly addresses a significant gap
in current research, which has primarily concentrated on isolated aspects. Second, we recognize the
urgent necessity to optimize hyperparameters within our transfer learning models, enabling us to
achieve substantial improvements over existing models. This crucial optimization is at the forefront
of our research, ensuring a powerful and effective solution for diabetic retinopathy (DR) detection.
Furthermore, our study aims to make a meaningful contribution to the Kingdom of Saudi Arabia’s
(KSA) vision for improved healthcare facilities by 2030.

The rest of the paper is organized as follows: Section 2 provides related work on DR. Section 3
provides insights into data acquisition and pre-processing utilized in the study. Model development,
training, and testing steps are provided in Section 4. The model is evaluated and analyzed in Section 5,
and discussion is made in Section 6, while Section 7 concludes the paper.

2 Related Work

Innovative deep-learning techniques are making significant strides in the diagnosis of diabetic
retinopathy. This section highlights cutting-edge developments in the early detection of this condition,
focusing on the powerful capabilities of deep learning models and methodologies that promise to
transform patient outcomes.

Qummar et al. [11] designed an ensemble of deep convolutional neural network (CNN) models to
improve the accuracy of classifying various stages of diabetic retinopathy (DR) using retinal images.
This research specifically addressed the limitations of current models in detecting early stages of
DR and utilized the Kaggle Diabetic Retinopathy Detection dataset, which is publicly available.
To accomplish this, the team developed an ensemble comprising five CNN models: ResNet50,
InceptionV3, Xception, DenseNet-121, and DenseNet-169. Preprocessing and data augmentation
steps involved resizing images to 786 × 512 pixels, generating five random 512 × 512 patches per
image, applying flipping, rotating by 90 degrees, and mean normalization. The results showed that the
proposed model achieved 80.8% accuracy, 51.5% recall, 86.72% specificity, 63.85% precision, and an
F1-score of 53.74%. Overall, the model demonstrated its effectiveness in detecting all DR stages and
outperformed existing techniques on the Kaggle dataset. A study by Yasashvini et al. [12] proposes a
deep learning model for automatically classifying the stages of diabetic retinopathy (DR) from fundus
images. The research evaluates three deep learning models: a convolutional neural network (CNN), a
hybrid CNN with ResNet, and a hybrid CNN with DenseNet. All three models were trained on the
same training dataset and evaluated on the same test dataset. The study utilized the Kaggle dataset
APTOS 2019 Blindness Detection, which comprises approximately 5500 fundus images labeled with
one of the five DR stages: stage zero (no DR), stage one (mild DR), stage two (moderate DR), stage
three (severe DR), and stage four (proliferative DR). Among the models evaluated, the hybrid CNN
with DenseNet achieved the highest performance, with an accuracy of 96.22%. CNN and the hybrid
CNN with ResNet recorded accuracies of 75.61% and 93.18%, respectively. However, the study’s scope
was limited by the small sample size. Additionally, the authors did not conduct cross-validation to
assess the generalization performance of their models.

In a study conducted by Ali et al. [13], the authors proposed a novel deep learning (DL) model
for the early classification of diabetic retinopathy (DR). This model utilizes color fundus images and
focuses on the most critical aspects of the disease while excluding irrelevant factors to ensure high
recognition accuracy. The study utilized the Kaggle Diabetic Retinopathy Detection dataset, which
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was divided into 80% for training and 20% for testing. A hybrid deep-learning classification approach
was developed using ResNet50 and InceptionV3. ResNet50 was employed to enhance performance
without introducing excessive complexity, while InceptionV3 was used to reduce parameters and com-
putational costs through the application of different filter sizes. The images underwent preprocessing
that included histogram equalization, intensity normalization, and data augmentation. The results
of the study were impressive, achieving an accuracy of 96.85%, sensitivity of 99.28%, specificity of
98.92%, precision of 96.46%, and an F1-score of 98.65%.

A recent study by Alwakid et al. [14] developed a sophisticated deep learning (DL) model to
accurately classify the five stages of diabetic retinopathy (DR). The data used for this study were
obtained from two different sources: the Diabetic Retinopathy Dataset (DDR) and the APTOS
dataset. Both datasets consist of high-resolution retinal images that represent a range of DR stages,
from stage 0 (no DR manifestations) to stage 4 (proliferative DR). The study implemented a bifurcated
methodological approach, introducing two variants: one with image augmentation and one without.
The DenseNet-121 model was employed to identify the five stages of DR within both the APTOS
and DDR datasets, achieving exceptional performance when compared to other methods. The
methodology differentiated between two enhancement scenarios: case 1 utilized Contrast Limited
Adaptive Histogram Equalization (CLAHE) and Enhanced Super Resolution Generative Adversarial
Networks (ESRGAN), while case 2 proceeded without any enhancements. The model, leveraging the
DenseNet-121 architecture, demonstrated accuracy rates of 98.7% for case 1 and 81.23% for case 2
on the APTOS dataset. In parallel, the DDR dataset achieved accuracy rates of 79.6% for case 1 and
79.2% for case 2.

A study conducted by Shakibania et al. [15] introduced a reliable method for screening and grading
the stages of diabetic retinopathy, demonstrating significant potential for enhancing clinical decision-
making and patient care. The research presents a deep learning approach for detecting and grading
diabetic retinopathy using Discriminative Restricted Boltzmann Machines (DRBMs) with Softmax
layers, all based on a single fundus retinal image. By employing transfer learning, the model utilizes
two advanced pre-trained models, ResNet50 and EfficientNetB0, as feature extractors, which are then
fine-tuned with a new dataset. This dataset was divided into training (70%), validation (10%), and
testing (20%) subsets. To address the issue of imbalanced data, the complement cross-entropy (CCE)
loss function was implemented. The model was trained using three datasets: APTOS 2019 Blindness
Detection, MESSIDOR2, and the Indian Diabetic Retinopathy Image Dataset (IDRID). As a result,
the proposed method achieved an accuracy of 98.50%, a sensitivity of 99.46%, and a specificity of
97.51% in binary classification. For stage grading (non-binary classification), the model reached an
accuracy of 89.60%, a sensitivity of 89.60%, and a specificity of 97.72%, as well as a quadratic weighted
kappa of 93.00%.

Research by Kumari et al. [16] proposed an automated decision-making approach for identifying
diabetic retinopathy (DR) using a ResNet-based feed-forward neural network methodology. The study
utilized a dual-image multi-layer mapping technique and evaluated the effectiveness of the approach
on two datasets: the APTOS 2019 Blindness Detection dataset and EyePACS. The datasets were
split into 80% for training, which was used to optimize the model, and 20% for testing, which was
used for evaluation. Fundus images from both datasets were preprocessed to create both colored and
black-and-white versions, which were subsequently used for DR stage classification and detection.
Feature extraction was performed using the ResNet feed-forward neural network, and missing data
were addressed through vectorization. A feed-forward neural network classifier was then utilized
to categorize images based on the presence of diabetic retinopathy. Methodology evaluation was
conducted using 10-fold cross-validation, and the results were stratified according to image quality. For
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high-quality images, the testing accuracy, sensitivity, and specificity were found to be 98.9%, 98.7%,
and 98.3%, respectively. In contrast, these metrics were 94.9%, 93.6%, and 93.2% for low-quality
images.

A study referenced in [17] examined the role of hybrid intelligence by utilizing various machine
learning models, including support vector machines (SVM), k-nearest neighbors (kNN), and his-
togram gradient boosting (HGB). The findings revealed that SVM achieved the highest accuracy at
96.9%. Meanwhile, another study in [18] utilized convolutional neural network (CNN) architectures
for the binary classification of diabetic retinopathy (DR), attaining a maximum accuracy of 94.55%.

The literature review indicates that the use of artificial intelligence (AI) for diagnosing diabetic
retinopathy (DR) is a leading area of research. Timely and accurate diagnostics can significantly aid
in mitigating the severity of the disease. Additionally, there is still potential for improvement in various
evaluation metrics, including accuracy, precision, sensitivity (also known as recall), specificity, and F1-
score, as well as in the exploration of different datasets. A summary of the literature review is provided
in Table 1.

Table 1: Summary of literature review

Ref. Year Technique/s Dataset/s Accuracy Task

[11] 2019 Ensemble of five
models: (Resnet50,
InceptionV3, Xception,
Dense-121, and
Dense169)

Kaggle: Diabetic
Retinopathy Detection

80.8% Multi

[12] 2021 CNN APTOS 2019 75.61% Multi
CNN with ResNet 93.18%
CNN with DenseNet 96.22%

[13] 2023 ResNet50 and
InceptionV3 for feature
extraction + CNN for
classification

Kaggle: Diabetic
Retinopathy Detection

96.85% Multi

[14] 2023 DenseNet-121rendered APTOS 2019 98.7% Binary
DDR 79.6%

[15] 2023 Deep dual-branch
model (ResNet50 and
EfficientNetB0)

APTOS 2019 +
Messidor-2 + IDRiD)
stage grading

89.60% Multi

APTOS 2019 +
Messidor-2 + IDRiD)
binary classification

98.50% Binary

[17] 2024 SVN, k-nearest
neighbors, and
Histogram Gradient
Boosting

APTOS 96.9% Binary

[18] 2024 MobileNet CNN APTOS 94.55% Binary
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3 Data Acquisition and Pre-processing
3.1 Data Acquisition

This study utilized retinal images from the APTOS 2019 Blindness Detection dataset, an open
competition on Kaggle [19]. The dataset comprises 3662 retinal images collected from individuals
residing in rural areas of India. The images may contain artifacts, blurriness, poor brightness, and
other issues. Trained doctors labeled the images and categorized the extent of blindness into five
classes ranging from 0 to 4: No DR (Class 0), Mild (Class 1), Moderate (Class 2), Severe (Class 3),
and Proliferative DR (Class 4). As a result of adapting this classification into a binary system, we
divided the data into two groups: those with DR (diagnoses 1-4) and those without DR (diagnosis
0). The main reason behind this mapping is the highly imbalanced nature of the dataset. We also
conducted our analysis in both the standard multi-class and an altered binary format. This allowed us
to thoroughly evaluate the dataset’s flexibility and reliability across multiple diagnostic approaches.
Fig. 1 demonstrates the class distribution of the binary classification, and Fig. 2 demonstrates the
multi-classification dataset.

Figure 1: Binary label distribution

3.2 Data Preprocessing

The quality of the images in the dataset could be improved through a preprocessing phase. Since
the images are noisy and contain artifacts, such as being out of focus, having too much exposure, or
having extra lighting or a black background, preprocessing is necessary to get them into a standard
format. As the first step of preprocessing, all images in the dataset are resized to a uniform size
of 224 × 224 pixels to match the size of the input image used in the extraction process. In the
second preprocessing step, contrast adjustment techniques are applied to the input images to increase
the contrast. Fundus images are typically available as RGB color images. Initially, only the green
channel of the image is extracted during preprocessing out of the three red, blue, and green channels.
Additionally, to enhance the contrast of the green channel image at the tile level, the Contrast-Limited
Adaptive Histogram Equalization (CLAHE) process is applied. Afterward, Gaussian filtering is used
to reduce the noise in the images. Fig. 3 displays the preprocessed images.
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Figure 2: Multi label distribution

Figure 3: Images obtained after pre-processing
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4 Model Development and Training

ResNet50 and DenseNet-121 stand out as top choices for transfer learning models in the detection
of diabetic retinopathy [11–15]. These models have been chosen for their remarkable effectiveness
in similar challenges, particularly in the field of medical image diagnostics. Their performance has
consistently outshined other models across numerous datasets dedicated to diabetic retinopathy
detection [11–15]. This impressive capability stems from their exceptional proficiency in extracting
critical features from medical images, which are vital for achieving precise disease detection and
diagnostics.

4.1 Model Development

This section provides insight into the proposed transfer learning models investigated in the current
study. Moreover, the values of optimized hyperparameters are also mentioned that are obtained after
several trials on the proposed models.

4.1.1 ResNet50

ResNet50 is a type of ResNet architecture that is particularly noteworthy for having 50 layers,
making it exceptionally deep and ideal for tasks that involve image classification [20]. The key
innovation is the use of residual connections, which help address the vanishing gradient problem
that often affects deep networks. With the help of shortcut connections, ResNet50 makes it possible
to add convolutional layers seamlessly, which allows for deeper architecture without compromising
performance [21]. The architecture is divided into four main segments, including initial convolutional
layers for feature extraction, identity, and convolutional blocks for further transformation with feature
processing, and fully connected layers for classification [21]. ResNet50’s 50 bottleneck residual blocks
provide a robust solution to the challenges of vanishing gradients, ensuring efficient training and
exceptional performance in complex visual recognition tasks. Fig. 4 refers to the architecture of
ResNet50. This study utilized ResNet50, there were two separate trials conducted, one involving binary
classification and the other having five classes. In this regard, we have employed the Cross-Entropy
loss function and used the Adam optimizer (optim.Adam’) to optimize the model parameters during
training. The Adam optimizer is an adaptive optimization algorithm that adjusts the learning rates for
each parameter individually.

4.1.2 DenseNet-121

In this study, DenseNet-121 has been implemented as the second model. This choice was made
to overcome the common obstacles of training deep neural networks such as convergence rate.
The architecture of DenseNet is characterized by a feed-forward connection between every layer,
resulting in dense connectivity among feature maps. This design enables the efficient transmission
of information from earlier to later layers, thereby reducing the total number of parameters required.
Additionally, it facilitates the reuse of features and promotes gradient flow during training [22].

DenseNet-121 is a deep convolutional neural network architecture comprising 121 layers and four
dense blocks. A dense block in the context of DenseNet-121 refers to a cohesive set of layers where each
layer is intricately connected to every other layer within that block. This dense connectivity pattern
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promotes feature reuse and enhances information flow throughout the network. To ensure a seamless
transition between these dense blocks, DenseNet-121 incorporates transition layers. Decreasing the
spatial dimensions of the feature maps is a vital function carried out by the transition layers, facilitating
a smooth transition from one dense block to another and contributing significantly to the network’s
overall efficiency [23]. Fig. 5 refers to the architecture of DenseNet-121.

Figure 4: Architecture of ResNet50
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Figure 5: Architecture of DenseNet-121

4.2 Model Training

To initiate the training process, the input data is divided into training, testing, and validation
sets using a 70%–20%–10% split with the train_test_split function from the sklearn.model_selection
module. This separation is crucial in assessing the model’s efficacy on unobserved data. The neural
network model is formulated with a cross-entropy loss function and the Adam optimizer.



IASC, 2025, vol.40 135

The data is transformed into TensorFlow format, then normalized and resized using a series
of transformations. These include resizing the images to (224, and 224) and normalizing them
with specific mean and standard deviation values. During the training process, the loop runs for a
predetermined number of epochs, typically 30. The model is set to training mode, and the optimizer
is initialized to start the forward pass. The loss is calculated using the cross-entropy criterion, and
the backward pass computes the gradients. The optimizer then updates the model weights. Once the
training phase is complete, the model switches to evaluation mode, and its performance is assessed on
the validation set. If the validation accuracy improves, the best model weights are saved.

5 Evaluation and Analysis
5.1 Model Development

Five key metrics were utilized to evaluate the performance of the classification model, ensuring
a comprehensive analysis: accuracy, precision, sensitivity (also referred to as recall), specificity, and
the F1-score. Accuracy represents the fraction of correct predictions compared to the total observa-
tions. Precision measures the proportion of correctly predicted positive instances out of all positive
predictions. Sensitivity, or recall (also known as the True Positive Rate), evaluates the proportion
of correctly identified positive instances relative to the total number of actual positives. Specificity
assesses the percentage of correctly identified negative predictions among all negatives. Finally, the
F1-score combines precision and recall into a single value, providing a balanced measure between
these two metrics [24].

5.1.1 Accuracy

Mathematically, accuracy can be represented as [25]. It is referred to as the ratio of true positive
and true negative to all cases that are true positive, true negative, false positive, and false negative,
respectively.

Accuracy = Number of Correct Predictions
Total Number of Predictions

(1)

5.1.2 Precision, Sensitivity (Recall), Specificity, and F1-Score

Mathematically, the precision, sensitivity, specificity, and F1-score can be represented as given in
Eqs. (2)–(5), respectively [26].

Precision = True Positives
True Positives + False Positives

(2)

Sensitivity (Recall) = True Positives
True Positives + False Negatives

(3)

Specificity = True Negatives
True Negatives + False Positives

(4)

F1 − score = 2 × Precision × Recall
Precision + Recall

(5)

In medical diagnostics and clinical decision support systems, sensitivity and specificity are crucial
factors in addition to accuracy and precision. This is primarily because they effectively report the true
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positive and true negative rates, which demonstrate the efficacy of the proposed approach in medical
diagnostics [27,28].

5.2 Performance Evaluation

In this research, we employed pre-trained models, ResNet50 and DenseNet-121, to accurately
identify diabetic retinopathy. After training the models with the APTOS dataset for 30 epochs, we
evaluated their performance for both multi-class and binary-class classification. Despite an unbal-
anced dataset, we refrained from using specific preprocessing techniques, allowing the data to dictate
the outcome. Both ResNet50 and DenseNet-121 achieved impressive accuracy in binary classification,
demonstrating the effectiveness of deep learning models for this task. ResNet50 displayed an accuracy
of 97.4%, precision of 97.4%, sensitivity (recall) of 97.4, specificity of 96.5%, and F1-score of 97.4%,
while DenseNet-121 exhibited an accuracy of 98.1%, precision of 98.1%, sensitivity (recall) of 98.1%,
specificity of 99.7%, and F1-score of 98.1%.

Table 2 shows the accuracy, precision, sensitivity (recall), specificity, and F1-score for the binary
classification scenario.

Table 2: Models performance in binary classification

Model Accuracy Precision Sensitivity
(Recall)

Specificity F1-score

ResNet50 0.974 0.974 0.974 0.965 0.974
DenseNet-121 0.981 0.981 0.981 0.997 0.981

Figs. 6 and 7 demonstrate the confusion matrices for the binary class for ResNet50 and DenseNet-
121, respectively.

Figure 6: ResNet50 binary confusion matrix
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Figure 7: DenseNet-121 binary confusion

Our analysis of the comparison between ResNet50 and DenseNet-121 for the multi-class clas-
sification of diabetic retinopathy indicated that both models performed well. ResNet50 achieved an
accuracy of 80.8%, whereas DenseNet-121 achieved a slightly higher accuracy of 82.0%. Additionally,
ResNet50 obtained 79.7% precision, 80.8% sensitivity (recall), 62.1% specificity, and 79.9% F1-
score. On the other hand, DenseNet-121 exhibited 81.0% precision, 82.0% sensitivity (recall), 62.9%
specificity, and 81.3% F1-score. Table 3 shows the accuracy, precision, sensitivity (recall), specificity,
and F1-score for multi-class classification. Figs. 8 and 9 contain the confusion matrices for the multi-
class.

Table 3: Models performance in multi-class classification

Model Accuracy Precision Sensitivity
(Recall)

Specificity F1-score

ResNet50 0.808 0.797 0.808 0.621 0.799
DenseNet-121 0.820 0.810 0.820 0.629 0.813

5.3 Comparison with State-of-the-Art

The proposed study is compared with a scheme from the literature that uses the same dataset,
called APTOS. A separate comparison is made for binary and multi-classification.

5.3.1 Binary Classification

First, we will analyze our scheme against the state-of-the-art methods for binary classification of
diabetic retinopathy (DR). For this purpose, we selected recent studies published in 2023 [14,15] and
2024 [17,18] that achieved the highest metrics using the same dataset. Table 4 presents a comparison
of these studies in terms of accuracy, precision, recall (sensitivity), specificity, and F1-score. However,
some studies [14,15] do not provide value for precision and F1-score.



138 IASC, 2025, vol.40

Figure 8: ResNet50 multi-class confusion matrix

Figure 9: DenseNet-121 multi-class confusion matrix

The proposed scheme significantly outperforms SVM [17] and MobileNet CNN [18], achieving
higher accuracy by 1.1% and 3.6%, respectively. This advantage extends to essential metrics such
as sensitivity, F1-score, and specificity, reinforcing its effectiveness. While schemes [14] and [15]
that incorporated DenseNet-121 and ResNet50 with EfficientNetB0 showed slight improvements in
accuracy—0.6% and 0.4% respectively—the proposed scheme excels in specificity, surpassing them by
1.7% and 2.5%. Moreover, the sensitivity achieved by the proposed scheme is on par with that of [14]
and [15], demonstrating their competitiveness across the board.
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Table 4: Comparison of binary classification

Study Model Accuracy Precision Sensitivity
(Recall)

Specificity F1-score

Proposed ResNet50 0.974 0.974 0.974 0.965 0.974
DenseNet-121 0.981 0.981 0.981 0.997 0.981

[14] 2023 DenseNet-121 0.987 NA 0.98 0.98 0.98
[15] 2023 Deep dual-branch model

(ResNet50 and EfficientNetB0)
0.985 NA 0.984 0.975 NA

[17] 2024 SVM 0.969 0.969 0.969 0.969 0.969
[18] 2024 MobileNet CNN 0.945 0.945 0.945 0.945 0.945

5.3.2 Multi Classification

The study outlined in [11] investigates an impressive ensemble of five models—ResNet50, Incep-
tionV3, Xception, DenseNet-121, and DenseNet-169—targeting multi-class classification and achiev-
ing a remarkable accuracy of 80.8%. However, the proposed scheme leverages two of these techniques
without relying on an ensemble approach, surpassing the original results by a significant 1.2%
accuracy, specifically with DenseNet-121. In addition to this, the proposed scheme shows notable
improvements in key performance metrics, exceeding the previous study by 1.62% in precision, 3.05%
in sensitivity, and 2.786% in F1-score. While the study in [11] does hold an edge in specificity,
outperforming the proposed scheme by 2.38%, the overall findings underscore the robustness and
efficacy of the proposed approach. These compelling results are detailed in Table 5.

Table 5: Comparison of multi classification

Study Model Accuracy Precision Sensitivity
(Recall)

Specificity F1-score

Proposed ResNet50 0.808 0.797 0.808 0.621 0.799
DenseNet-121 0.820 0.810 0.820 0.629 0.813

[11] Ensemble transfer learning
model

0.808 0.638 0.515 0.867 0.537

This study emphasizes the compelling benefits of using transfer learning with pre-trained models
for interpretable diabetic retinopathy classification. Instead of merely striving for the highest accuracy,
our findings highlight the critical importance of interpretability, especially in the medical field
where understanding decisions can be lifesaving. While our proposed model may not surpass the
performance of the latest pre-trained models, particularly in multi-class scenarios, the ability to
comprehend the model’s decision-making process is vital. The slight decrease in performance can be
attributed to the common issue of class imbalance in medical datasets. Nonetheless, this approach
effectively balances performance with interpretability, making it a superior choice for real-world
applications where understanding a model’s reasoning holds equal weight to its predictions. A notable
limitation of our study is its reliance on a single dataset. To bolster the model’s adaptability and
overall effectiveness, upcoming work should expand to include diverse datasets and leverage data
augmentation techniques [29,30].
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6 Discussion

The findings from this study significantly contribute to the existing literature on the use of deep
learning models for detecting and classifying diabetic retinopathy (DR). Our innovative approach
has practical implications for enhancing healthcare access and quality. By improving the accuracy
of DR detection, our deep learning models can accelerate the diagnostic process, allowing for earlier
interventions that can greatly improve patient outcomes. Integrating deep learning technologies into
healthcare systems can alleviate the burden on medical facilities and ensure that patients receive
timely eye care. This integration also provides healthcare professionals with advanced diagnostic
tools, empowering them to make well-informed clinical decisions and tailor treatment plans to meet
each patient’s unique needs. In the study, we investigated the DenseNet-121 model, which achieved
outstanding results in the binary classification task. Notably, the model delivered an accuracy of
98.1%, along with precision, sensitivity (recall), and F1-scores all at 98.1%, and a specificity of
99.7%. In the multi-class classification task, the DenseNet-121 model showed a precision of 81.0%,
a sensitivity (recall) of 82.0%, a specificity of 62.9%, and an F1-score of 81.3%. These impressive
results demonstrate the effectiveness and superiority of our proposed approach. Implementing this
model could lead to significantly improved patient outcomes and reduced healthcare risks and
costs, particularly regarding late-stage DR complications, thereby enhancing the quality of life for
individuals with diabetes. However, to fully realize this potential, it is essential to discuss and address
these critical aspects more comprehensively.

Our future research goal is to develop an innovative smartphone app for Apple and Android,
as well as a user-friendly website, aimed at the rapid detection of diabetic retinopathy (DR) in
hospitals and medical centers. This advanced clinical decision support system is intended for imme-
diate implementation, enhancing the diagnostic process while significantly reducing the workload of
healthcare professionals and accelerating timely patient intervention. By seamlessly integrating our
predictive models into existing clinical workflows, this tool will empower early detection and effective
management of DR, which is crucial for preventing the disease from advancing to more serious stages.
This initiative is a vital contribution to the Saudi Vision 2030, focused on enhancing healthcare services
around the kingdom. Additionally, we guarantee that our research meets contemporary standards for
clinical decisions and actively promotes advancements in the field of ophthalmology [31,32].

6.1 Limitations

A key limitation of the research lies in its reliance on a single dataset. Although the APTOS 2019
dataset provided a strong foundation for training and evaluating the proposed models, the results
may not be universally applicable, as other datasets could exhibit different image characteristics,
demographic variables, or labeling standards. To enhance the robustness and versatility of the proposed
models, future studies should consider incorporating multiple datasets and employing data augmen-
tation techniques. In addition, ensemble learning models [33,34], and hybrid intelligence techniques
[35,36] must be investigated especially for multi classification scenarios where there is still room for
improvement. Moreover, the dataset is imbalanced, and the current study is in the same format
(let the data speak). In the future, however, data balancing techniques such as Synthetic Minority
Over Sampling Technique (SMOTE) with up and downsampling may also be investigated [37,38].
Moreover, the current study only focuses on critical yet single disease diagnostics from the retinal
images. However, other retinal eye diseases can be associated with the same image. In the future,
advanced studies can be conducted for joint diagnosis of multiple retinal eye diseases [39,40].
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7 Conclusions

Numerous deep-learning techniques have shown great promise in the literature for diagnosing
diabetic retinopathy. In this section, we explore the recent breakthroughs in the early detection of
this serious condition, particularly through innovative deep-learning models and methodologies. This
study highlights the groundbreaking potential of deep learning in identifying diabetic retinopathy from
image datasets, emphasizing its capability to transform patient outcomes. The evidence demonstrates
that deep learning can reliably and accurately classify diabetic retinopathy into distinct stages,
providing a valuable and cost-effective resource for medical professionals. By utilizing two state-of-the-
art convolutional neural network (CNN) architectures—ResNet50 and DenseNet-121—pre-trained
on diverse and extensive datasets, we significantly boost diagnostic accuracy. Moreover, the application
of various image enhancement techniques on retinal fundus images has been shown to further elevate
the models’ performance. The ResNet50 model achieved a remarkable accuracy of 97.4% in binary
classification, while DenseNet-121 outperformed this with an accuracy of 98.1%. In the multi-class
classification task, ResNet50 reached 80.8% accuracy, while DenseNet-121 exceeded this with an
accuracy of 82.0%. While this framework focuses specifically on diabetic retinopathy diagnosis, its
methods can readily extend to other retinal conditions, such as glaucoma and age-related macular
degeneration (AMD). To fully harness the potential of data augmentation techniques, leveraging a
range of diverse datasets is essential. Additionally, exploring advanced preprocessing methods and
fine-tuning hyperparameters presents exciting opportunities to further enhance diagnostic perfor-
mance, ultimately improving patient care.
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