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ABSTRACT

Machine learning has emerged as a pivotal tool in deciphering and managing this excess of information in an era
of abundant data. This paper presents a comprehensive analysis of machine learning algorithms, focusing on the
structure and efficacy of random forests in mitigating overfitting—a prevalent issue in decision tree models. It
also introduces a novel approach to enhancing decision tree performance through an optimized pruning method
called Adaptive Cross-Validated Alpha CCP (ACV-CCP). This method refines traditional cost complexity pruning
by streamlining the selection of the alpha parameter, leveraging cross-validation within the pruning process to
achieve a reliable, computationally efficient alpha selection that generalizes well to unseen data. By enhancing
computational efficiency and balancing model complexity, ACV-CCP allows decision trees to maintain predictive
accuracy while minimizing overfitting, effectively narrowing the performance gap between decision trees and
random forests. Our findings illustrate how ACV-CCP contributes to the robustness and applicability of decision
trees, providing a valuable perspective on achieving computationally efficient and generalized machine learning
models.
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1 Introduction

Machine learning, a cornerstone of modern data analysis, represents a significant leap in our abil-
ity to make sense of vast and complex datasets [1]. At its core, machine learning leverages algorithms
to parse, learn from, and make predictions or decisions based on data and experience [2]. This process
is crucial in an era where data generation and collection have escalated exponentially. Following the
increasing global competition, fast technology evolution and customer perceptions of product quality
have triggered the demand for future strategic plans and advanced manufacturing techniques [3]. This
overwhelming data presents unique challenges, not least of which is the phenomenon of overfitting,
particularly prevalent in simpler models like decision trees [4] when a model is trained too well on the
training data and becomes too specific to that data, leading to a poor generalization of new data. This
leads to weak adaptability of new, unseen data, undermining the model’s predictive or explanatory
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power. Decision trees, with their depth and complexity, are prone to overfitting because they can
create particular rules that perfectly describe the training data but fail to apply to the test data [5].
In response, the machine learning community has developed robust algorithms designed to handle the
complexity and scale of modern datasets while mitigating the risk of overfitting. One such solution
is the random forest algorithm, which integrates the simplicity and interpretability of decision trees,
which decomposes a complex decision-making process into a set of more straightforward decisions
with ensemble learning techniques [3] by constructing multiple decision tree classifiers where each tree
casts a unit vote for the most popular class, random forests aim to maintain the strengths of decision
trees of handling high dimensional data without feature selection.

However, despite the effectiveness of random forests in addressing overfitting, this approach
has its trade-offs, particularly in terms of increased energy consumption, computational power,
and difficulty in visualization. These factors introduce significant challenges, especially in resource-
constrained environments or applications where interpretability is crucial. Due to their structure, this
paper hypothesizes that decision trees will exhibit a higher degree of overfitting than random forests
when applied to the same datasets. The study aims to explore this hypothesis by leveraging machine
learning techniques to evaluate and compare the generalization performance of these models in terms
of accuracy and usage of resources. By focusing on these trade-offs, the primary objective of this study
is to investigate how we can leverage machine learning to balance accuracy with resource efficiency,
potentially offering a more cost-effective alternative to the widespread use of random forests. This
approach exemplifies the broader strategy in machine learning of developing methodologies that can
harness the vast potential of big data without succumbing to its overwhelming complexity. Regarding
this vast amount of data, Reference [6] pointed out that a fundamental and unsolved problem is that
the working mechanism of deep learning, by extension, machine learning models, could be more
understandable. With sufficient interpretability, applying these AI systems in real-life applications
would be easier.

2 Research Methodology

Many publications cover classification algorithms, such as Decision Trees and Random Forests,
explicitly focusing on their overfitting constraint, as presented in Table 1.

Table 1: Number of publications revised

Database First pass Second pass

SpringerLink 22 10
IEEE Xplore 0 0
ScienceDirect 57 32
ACM Digital Library 7 4

To systematically explore this research area, we employed a mapping study approach. This
method allows us to comprehensively review and categorize the existing publications, providing a clear
overview of the research landscape. The first step was to use the digital libraries to search for related
scientific publications: SpringerLink, Science Direct, IEEE Xplore, and ACM Digital Library. The
keywords used are “Decision Tree” and “Random Forest”. These search keywords resulted in a huge
number of research papers, reaching thousands of them. An extra filtering layer was used to select the
latest research and remove all publications older than 5 years.
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Nevertheless, this provided some accuracy in our search, but still, it was such a large number
of results that it required more filtering. For this reason, some new keywords were presented to
narrow the field of study and keep our paper more relevant. The added keywords were “Prune” and
“Overfitting”. This had such an impact on the results of the search. Nevertheless, it still needed to
be filtered more. For this purpose, another filtering round was added because the search yielded all
kinds of publications, only to retrieve articles and conference papers. For a more detailed report, see
Table 1, which provides detailed information regarding the number of publications. The best results
were from Science Direct, which had 57 publications, followed by SpringerLink Library, which had 22
publications, then ACM Digital Library, which had seven publications, and lastly, the IEEE Xplore did
not return any publications. In the case of IEEE Xplore, there were a small number of publications to
begin with, and they were deemed not relevant for the purpose of this study, and none of them passed
the first and second pass. Either the case study was not relevant and very specific to a not-generalized
topic, or the title contained the keywords, but they needed to make more sense to be related to the
paper. This was a good turnout, but after reading them carefully, removing duplicates, and collecting
the ones deemed more valuable, the second pass came to exist with the corresponding number of
publications.

Based on Fig. 1, we can see the trend that follows the number of publications over the last 5 years.
This 5-year is loosely defined since it also includes the year 2024. This is an exception since some
publications were up to date, and it felt wrong to exclude them because the year had just started.
We can see an incline from 2018 to 2023, but it is a slow decline from that year on. This decline is
because we have just entered the new year, and there is still quite some time before publications can be
published.

Figure 1: Publications over the time

3 Analysis of the Results
3.1 Theoretical Part

Decision trees are powerful tools in machine learning for classification that uses a tree-structure to
model decisions and possible consequences by summarizing a set of classification rules from the data
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[7]. Additionally, decision trees are highly effective and popular in data mining applications, where their
ability for relatively easy interpretation and efficient computation time proves invaluable [8]. It uses
nodes and internodes for the prediction and classification [9], with root nodes classifying the instances
with different features by having two or more branches, while the leaf nodes represent classification.
The hierarchical structure of decision trees performs a classification task by feeding the data to nodes
divided into branches for transferring the input to the most suitable class label [10], which enables
the tree to be formed by selecting the nodes as they are divided into branches. However, a significant
constraint of decision trees is their tendency to overfit the training data, especially when the tree grows
without constraints. Decision trees can become quite tricky when dealing with dirty data, leading to
poor estimation of unseen data. This phenomenon occurs because decision trees aim to partition the
feature space into regions that are as pure as possible regarding the target variable, often resulting in
excessively specific rules that may not generalize well. Additionally, decision trees exhaustively search
the entire feature space to find the optimal splits at each node, which can be computationally expensive,
particularly for datasets with many features or instances.

A decision tree is fundamentally structured as a series of nodes that guide data to its final
classification or prediction. Each decision tree is either a leaf λ(y) for some label y ∈ Y or an internal
node σ(f , v, tl, tr), where f ∈ {1, . . . , d}, for some value d which identifies a feature, v ∈ R is a threshold
for the feature and tl, tr are decision trees (left and right child), where study [11] also used σ(f , v) to
represent an internal node when tl, tr are not so important. Decision trees are generally composed of
branch nodes B and leaf nodes L. According to [12], a branch node t ∈ B applies a splitting rule on the
samples in that node, dividing data according to specific feature thresholds and directing subsets of
data to new branches or leaves. Leaf nodes l ∈ L, on the other hand, act as terminal points in the tree
and aggregate samples that satisfy all previous splits along their path. Each leaf node typically assigns
a single class label to all samples it contains, often determined by majority voting within the node. This
mechanism allows decision trees to provide clear, interpretable decision paths, making them practical
for classification tasks where interpretability is critical.

When data exhibits monotonicity—where the target variable consistently increases or decreases
with certain features—a decision tree can become overly eager to capture this pattern, often resulting
in increasingly specific splits to match the trend. This strict adherence to monotonic relationships may
lead the tree to overfit, as it generates complex rules that align closely with the training data but fail
to generalize to new samples. Consequently, the tree becomes sensitive to minor fluctuations in the
data, capturing noise as meaningful patterns, which ultimately reduces its robustness on unseen data.
This was best recognized in [1] where in any given model, defined as a function M : X 1 × . . . × X n

→Y , where X i is the value set of features and Y is the set of classes, is considered strongly monotone
with respect to a feature i if for any two data instances x = (x1, . . . , xn), x′ = (x′

1, . . . , x′
n) ∈ X we

have xi ≤i x′
i implies M(x) ≤Y ≤ M(x′). This notation underscores how monotonic trends in data can

influence model decisions, often leading to a direct but overly strict mapping that fails to account
for variations outside the training set. This tendency was highlighted by [13], where the chance of
overfitting is highest if the parameters are associated with equifinality, meaning that the likelihood of
different parameter values is similar in a predefined interval.

Machine learning techniques play a preponderant role in dealing with massive amounts of
data and are employed in almost every possible domain [14]; therefore, building a high-quality
machine learning model is challenging for both the subject matter experts and the machine learning
practitioners. This challenge is further amplified by the necessity of effective feature selection, which
is a critical step in the model-building process. Many machine learning methods may lead to worse
performance because of a large number of redundant features; hence, study [15] puts much emphasis on
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feature selection, which reduces overfitting and the number of features and improves the generalization
ability of the model. By adopting a standard approach according to [16], we compute the feature
importance as the sum of the information gained provided by a feature each time it triggers a split
in one of the trees composing the model. Feature selection is the step of choosing the most relevant
subset of features from the entire feature space of the original dataset and using them as input into
the ML models [4]. This process aims to reduce the dimensionality, costs, information loss, and
overfitting of the training model. In addition to eliminating redundancy, feature selection improves the
model’s interpretability and understanding of the relationship between the explanatory variables and
the responses [17]. With the ever-growing technology computational power [18], it has been brought up
that several feature selection techniques are used in intrusion detection for feature selection, namely,
information gain and feature correlation. However, the usage and type of technique solely depend on
the need and type of data we are working on. On the other hand, [19] pointed out that feature selection
can be realized through embedded methods that keep and remove features as part of the model
construction process, such as Lasso (for least absolute shrinkage and selection operator), performance-
influence models, and decision trees.

Ensemble methods, such as random forests, have been developed to address decision trees’
overfitting and computational constraints. Random forest is an ensemble of, typically, tens to
thousands of base decision tree classifiers [20], where the ensemble operates in parallel and classifies
by majority vote.

This pruning process can easily be illustrated in Fig. 2. When provided by a large dataset, random
forest will create multiple sub-decision trees, and each sub-decision will provide a vote regarding the
selection process. According to [11], pruning leads to a range of simple and intuitive solutions that take
advantage of state-of-the-art implementations of existing training algorithms. Those sub-trees whose
result has been seen as unfitted will be pruned so they will only take up a little space. This weighted
ability to be able to prune them has been determined by the weighted total Gini Impurity IG [20],
which is always chosen, and those child nodes are then added to the growing tree by calculating

IG (Q) =
K∑

k=1

pk (1 − pk)

where pk is the proportion of instances with the label pk in a node Q, and K is the number of classes
we consider in a specific dataset. The Gini index as an impurity function [21] state that each new
separation, according to a decision rule between the nodes, has been performed via maximal impurity
reduction.

Figure 2: Pruning the decision tree [20]
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One of the key strategies employed by random forests to mitigate overfitting is the introduction
of randomness during the tree-building process. This randomness is manifested by selecting a random
subset of features, often called “feature bagging,” thereby reducing the likelihood of individual trees
relying too heavily on specific features [22]. This randomization introduces diversity among the trees
in the forest, making them less correlated and more robust to noise in the data. Therefore, the random
forest model overcomes the overfitting issue by constructing individual trees and minimizing their
correlation in the classification task [10].

Moreover, random forests also address the computational constraints associated with decision
trees by parallelizing the training process and enabling efficient scaling to large datasets. Unlike deci-
sion trees, which exhaustively search the entire feature space to find the best split at each node, random
forests only consider a random subset of features at each split, significantly reducing the computational
burden [23]. Additionally, training individual trees in a random forest can be parallelized, allowing for
efficient utilization of multicore processors or distributed computing frameworks. Given the high-
dimensional nature of applied data, this classic supervised learning algorithm, such as random forest,
commonly accompanies a feature selection step to obtain low-dimensionality representations [24].
This parallelization enables random forests to handle large-scale datasets with millions of instances
and thousands of features, which would be infeasible for traditional decision tree algorithms.

The interpretability of models has become a crucial issue in machine learning because algorithmic
decisions have a growing impact on real-world applications [12]. Most classification algorithms
consider that features are independent and do not consider the relations between features [2], where
due to lack of interpretability are considered as Blackbox models. At its core, a random forest is an
ensemble method that combines the predictions of numerous decision trees by employing the process
of bagging [25,7] and hence inheriting all the features of a single decision tree classifier. Even though
combining multiple trees may provide higher prediction quality than a single one, it sacrifices the
interpretability property, resulting in “black box” models [12].

Using random forests introduces another layer of randomness through bootstrap sampling, also
known as “bagging,” during the construction of each tree. Bootstrap sampling involves random
sampling with replacement from the original dataset to create multiple bootstrap samples of the same
size as the original dataset.

Based on Fig. 3, we can see that from a training dataset, we applied the bootstrapping principle
to use our computational resources efficiently. Each bootstrap sample trains a separate decision tree
in the forest, leading to variations in the training data fed to each tree. This variation helps to decorate
the trees in the ensemble further and reduces the risk of overfitting to specific patterns in the data. We
can see from Fig. 3 how the dataset was divided into random chunks of the dataset in hand to create
separate test cases. By aggregating the predictions of multiple trees trained on different bootstrap
samples, random forests achieve better generalization performance and robustness than individual
decision trees.
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Figure 3: Various decision trees generated from bootstrap sampling

4 Experiments

To verify our claims, there have been two approaches to our problem. First, in regard to addressing
the overfitting of the pruning strategy, the Adaptive Cross-Validated Alpha CCP (ACV-CPP) was
proposed as a solution that will disregard those branches of the decision tree that don’t align with
our interests. The other approach is the usage of random forests to compensate for the letdown of
overfitting by generating random subsets of trees.

Eleven different datasets involving classification problems are used to evaluate our models’
effectiveness, as shown in Table 2. The datasets are collected from the University of California, Irvine
(UCI) machine learning repository [26] and have different numbers of features and instances.

Table 2: Description of the datasets

Dataset Instances Features Classes

Iris 150 4 3
Breast cancer 569 30 2
Wine 178 13 3
Digits 1797 64 10
Diabetes 442 10 214
20 Newsgroups 18,846 173,762 20
Olivetti faces 400 4096 40
COIL20 10,299 561 6
MNIST 70,000 784 10
Covertype 581,012 54 7
SVHN 9298 9298 10

In the first group of results, the performance of the decision tree classifier and the metadata
response, including the model’s accuracy, tree depth, number of nodes, and number of features on
average, were evaluated. By loading the dataset, we iterated the process of classifying and retrieving
the said metadata over 50 times and found the average for each case.

Algorithm 1: Decision tree classifier with metrics calculation
Require: Dataset X , Labels y, Number of runs num_runs = 50
Ensure: Average metrics for decision tree classifier

(Continued)
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Algorithm 1 (continued)
1: Extract feature X and labels y from the dataset
2:
3: total_metadata ← 0
4:
5: for i = 1 to num_runs do
6: X_train, X_test, y_train, y_test ← train_test_split
7: clf ←DecisionTreeClassifier()
8: clf.fit(X_train, y_train)
9: y_pred ← clf.predict(X_test)
10: accuracy ← accuracy_score(y_test, y_pred)
11: total_metadata ← total_metadata + metadata
12: end for
13:
14: average_metadata ← total_metadata/num_runs

This process is best described in Algorithm 1, which describes the whole process of iterating.
In each iteration, we split our training and testing dataset by 70% and 30%, respectively, and
ran the decision tree classifier by which we got the wanted metadata and saved each turn. After
successfully finishing the iterations, the average metadata is calculated and retrieved, displayed in
Table 3. Following this, we started pruning the datasets to achieve the best efficiency level and compare
the results. The optimal value that yielded the best results from the decision tree classifier must be found
to determine the complexity parameter to prune the dataset. This is best elaborated in Algorithm
2, which shows the steps necessary to find the best value. This process is quite computationally
demanding, so it is pretty lengthy.

Algorithm 2: Decision tree classifier with pruning and metrics calculation
Require: Dataset X , Labels y, Number of runs num_runs = 50
Ensure: Average metrics for decision tree classifier
1: Extract feature X and labels y from the dataset
2:
3: total_metadata ← 0
4:
5: for ccp_alpha in ccp_alphas do
6: clf ← DecisionTreeClassifier()
7: clf.fit(X_train, y_train)
8: train_scores.append(clf.score(X_train, y_train))
9: test_scores.append(cross_val_score(clf, X_test, y_test, cv = 5))
10: end for
11: best_alpha ← ccp_alphas[np.argmax(test_scores)]
12:
13: for i = 1 to num_runs do
14: X_train, X_test, y_train, y_test ← train_test_split
15: clf ← DecisionTreeClassifier(random_state = 42)
16: path ← clf.cost_complexity_pruning_path(X_train, y_train)

(Continued)
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Algorithm 2 (continued)
17: ccp_alphas ← path.ccp_alphas
18: train_scores ← []
19: test_scores ← []
20:
21: clf ← DecisionTreeClassifier(best_alpha)
22: clf.fit(X_train, y_train)
23: y_pred ← clf.predict(X_test)
24: total_metadata ← total_metadata + metadata
25: end for
26:
27: average_metadata ← total_metadata / num_runs

After iterating through each value of the cost complexity index by pruning the dataset running the
decision tree classifier, and retrieving the best likelihood of accuracy, we can start the main iterating
system to determine the main metadata. This loop is repeated 50 times, and the percentage of testing
and training dataset is the same as indicated in the algorithm in Algorithm 2 to keep a coherent
approach throughout the experiment. After collecting the results, we display those in Table 3.

The second phase of the experiment was comparing the performance of the random forest
classifier with the previous algorithms from Algorithms 1 and 2. The same parameters were applied
here as before: the number of iterations, the ratio of training and testing dataset, and metadata
collection. This process is elaborated in detail in Algorithm 3. The only thing separating the random
forests is the number of sub-trees created from the initial dataset. In our case, we set that number to
500 to achieve the near-optimal distribution of data among all random trees generated.

Algorithm 3: Random forest classifier with metrics calculation
Require: Dataset X , Labels y, Number of runs num_runs = 50, Number of estimators n_estimators =
500
Ensure: Average metrics for random forest classifier
1: Extract feature X and labels y from the dataset
2:
3: total_metadata ← 0
4:
5: for i = 1 to num_runs do
6: X_train, X_test, y_train, y_test ← train_test_split()
7: rfc ← RandomForestClassifier(n_estimators = n_estimators)
8: rfc.fit(X_train, y_train)
9: predictions ← rfc.predict(X_test)
10: total_metadata ← total_metadata + metadata
11: end for
12:
13: average_metadata ← total_metadata / num_runs

After successfully completing the classification process, the metadata is collected and stored in
Table 3 to better understand our performance.
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Table 3: Experimental results

Dataset Method Accuracy Tree depth Nodes

Iris DT 100% 5.5 18
DT-pruned 100% 6 19
RF 100% 5.3 16.22

Breast cancer DT 93.10% 7 31
DT-pruned 94.15% 7 31
RF 96.4% 7.16 35.5

Wine DT 95.41% 4 13
DT-pruned 96.30% 4 13
RF 100% 4.82 18.32

Digits DT 84.69% 14 269
DT-pruned 83.15% 10 73
RF 97.56% 13.45 334.18

Diabetes DT 0.81% 22.58 552.08
DT-pruned 2.26% 22 551
RF 0.90% 30.65 396.11

20 Newsgroups DT 63.33% 220.16 5575.64
DT-pruned 63.12% 203 4561
RF 86.08% 256.34 11,708

Olivetti faces DT 48.45% 38.96 121.04
DT-pruned 53.33% 39 119
RF 91.00% 31.12 138.22

COIL 20 DT 92.38% 26 449.44
DT-pruned 92.82% 14 243
RF 97.71% 19.84 613.59

MNIST DT 86.87% 40 6824.20
DT-pruned 87.00% 40 6509
RF 96.73% 33.45 8930.12

Covertype DT 93.41% 43 45,001.44
DT-pruned 93.44% 43 43,915
RF 95.47% 49.89 84,723.41

SVHN DT 87.43% 20 808.12
DT-pruned 85.88% 11 145
RF 95.57% 19.68 882.04

Table 3 shows that the random forest (RF) model’s performance surpasses that of the decision
tree (DT) and pruned decision tree (DT-pruned) in terms of accuracy across all datasets.
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In the Breast Cancer dataset, the random forest achieves a higher accuracy of 96.4% compared
to 93.10% for the DT and 94.15% for the DT-pruned. Despite this improvement in accuracy, the tree
depth and the number of nodes increase slightly, indicating that the random forest model introduces
more complexity.

Similarly, in the Wine dataset, the random forest achieves 100% accuracy, significantly higher
than 95.41% of the DT and 96.30% of the DT-pruned. However, this comes with an increase in tree
depth (from 4 to 4.82) and the number of nodes (from 13 to 18.32), illustrating the trade-off between
achieving higher accuracy and increasing model complexity.

For more complex datasets like Digits, the random forest shows a substantial improvement in
accuracy, reaching 97.56%, compared to 84.69% and 83.15% for the DT and DT-pruned models,
respectively. Despite this, the average tree depth for the random forest is 13.45, and the number of
nodes is 334.18, compared to the significantly lower numbers in the DT and DT-pruned models.

In the case of large datasets such as the 20 Newsgroups and MNIST, the random forest again
shows a notable increase in accuracy, achieving 86.08% and 96.73%, respectively. However, this
increase in performance is accompanied by a considerable rise in tree depth and the number of nodes.
For the 20 Newsgroups dataset, the tree depth of the random forest is 256.34 with 11,708 nodes,
compared to the lower values in the DT and DT-pruned models.

Analyzing the experimental results also provides critical insights into the overfitting behavior of
decision trees compared to pruned decision trees and random forests. The identification of overfitting
is evident in the unpruned decision trees, particularly in datasets like 20 Newsgroups, MNIST, and
Covertype, where the tree depths and node counts are extraordinarily high. This excessive complexity
is a clear indicator of overfitting, where the model is learning the underlying patterns and capturing
noise and anomalies in the training data. This is particularly problematic in datasets with high
dimensionality or those that contain a significant amount of noise. As the depth of the tree increases,
the model becomes more specialized to the training data, leading to poor generalization to new, unseen
data. The impact of this overfitting is most pronounced in the unpruned decision trees, as seen in the
large discrepancies between the number of nodes and tree depth compared to the pruned versions and
random forests. For instance, in the 20 Newsgroups dataset, the unpruned decision tree reaches a tree
depth of 220.16 with 5757.64 nodes. At the same time, the pruned version significantly reduces this to
203 in-depth and 4561 nodes, albeit with a slight reduction in accuracy. This reduction highlights the
effectiveness of pruning as a method to combat overfitting by simplifying the model and enhancing
its generalization capability. Random forests, on the other hand, demonstrate a different approach to
mitigating overfitting. The ensemble nature of random forests, which involves averaging the results of
multiple decision trees, inherently reduces the variance in the model, thereby preventing overfitting.
This is evident in their superior performance across all datasets, achieving higher accuracy with a
balanced tree depth and node count. For example, in the MNIST dataset, the random forest achieves
an accuracy of 96.73%, with a tree depth of 33.45 and 8930.12 nodes, significantly outperforming the
unpruned and pruned decision trees in accuracy and generalization.

Overall, the data from Table 3 illustrates that while the random forest model consistently outper-
forms the decision tree and pruned decision tree models in terms of accuracy, it does so at the cost
of increased model complexity. This complexity is reflected in the greater tree depth and the higher
number of nodes, highlighting the trade-off between achieving superior predictive performance and
managing the interpretability and efficiency of the model.
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4.1 Computational Resource Analysis

To complement our comparative analysis of Decision Trees and Random Forests, we conducted
an in-depth examination of their computational resource requirements across various datasets. Table 4
provides quantitative insights into the Training Time, Peak Memory Usage, CPU Usage, and Model
Size on Disk for both models.

Table 4: Experimental, computational resource analysis

Dataset Method Training Time Peak Memory
Usage

CPU Usage Model Size
on Disk

Iris DT 0.0006 s 180.30 MB 0.01% 0.0024 MB
RF 0.05 s 181.31 MB 0.12% 0.18 MB

Breast cancer DT 0.0042 s 180.29 MB 0.01% 0.0037 MB
RF 0.09 s 181.76 MB 0.26% 0.30 MB

Wine DT 0.0008 s 179.76 MB 0.01% 0.0024 MB
RF 0.05 s 181.81 MB 0.15% 0.18 MB

Digits DT 0.0101 s 182.51 MB 0.01% 0.0372 MB
RF 0.17 s 197.62 MB 0.50% 4.41 MB

Diabetes DT 0.0074 s 184.07 MB 0.01% 0.7919 MB
RF 0.28 s 301.88 MB 0.76% 56.46 MB

20 Newsgroups DT 15.5339 s 351.48 MB 4.34% 1.1871 MB
RF 78.27 s 801.70 MB 4.25% 251.16 MB

Olivetti faces DT 1.3351 s 201.44 MB 2.37% 0.0464 MB
RF 1.36 s 211.42 MB 2.39% 4.88 MB

COIL20 DT 3.9180 s 335.79 MB 3.33% 0.0545 MB
RF 9.00 s 349.05 MB 4.03% 6.25 MB

MNIST DT 9.4066 s 1601.09 MB 3.99% 0.9500 MB
RF 22.32 s 1849.31 MB 4.03% 116.45 MB

Covertype DT 4.8188 s 772.59 MB 3.46% 5.1531 MB
RF 63.53 s 2608.10 MB 3.94% 928.84 MB

SVHN DT 1.4251 s 246.95 MB 2.44% 0.1180 MB
RF 5.87 s 269.76 MB 3.97% 11.56 MB

As the data illustrates, Random Forests generally incur higher computational costs than Decision
Trees. For instance, the training time for Random Forests is consistently longer, particularly on larger
datasets like the Covertype and 20 Newsgroups datasets, where training times exceed those of Decision
Trees by significant margins. This increase is due to the ensemble nature of random forests, which
build multiple trees simultaneously, thereby increasing the overall duration of training. Additionally,
the Peak Memory Usage of Random Forests is notably higher, reflecting the concurrent memory
requirements for managing multiple decision trees. Similarly, CPU Usage is markedly higher for
Random Forests, especially on complex datasets, indicating a greater demand for processing power.
This is crucial for applications in resource-constrained environments where CPU allocation is limited.
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Furthermore, the Model Size on Disk is substantially larger for Random Forests, as the ensemble
structure produces more complex models. For instance, on the Covertype dataset, the model size of
Random Forests reaches over 900 MB, compared to only 5 MB for Decision Trees. These findings
underscore the practical trade-offs between achieving higher accuracy and managing resource effi-
ciency. They highlight that while Random Forests can offer superior predictive performance, they do
so at a considerable computational cost. This analysis provides a clearer perspective for practitioners
on the computational implications of choosing Random Forests over Decision Trees, especially in
real-world applications where memory, CPU, and storage constraints are critical considerations.

4.2 Real-Life Applicability and Scalability

To assess the real-life applicability of Decision Trees and Random Forests, we applied these models
to four distinct datasets, each representing a real-world scenario: Telco Customer Churn [27], Credit
Card Fraud Detection [28], Crime Data from 2020 to Present [29] and Crash Reporting–Drivers Data
[30]. Table 5 provides a comparative summary of model accuracy for each dataset, highlighting how
each model performs under different conditions. This analysis underscores the practical implications
of using these algorithms in production environments, where the accuracy (test and training sets),
scalability, and efficiency of model predictions are critical.

Table 5: Real-life experimental results

Dataset Method Test accuracy Train accuracy Tree depth Nodes

Telco customer
churn

DT 77.30% 99.84% 40.36 1639.08
DT-pruned 77.47% 99.53% 41.00 779.00
RF 79.41% 99.84% 117.31 3841.03

Credit card DT 99.92% 100% 21.00 297.28
DT-pruned 99.93% 99.93% 21.00 141.00
RF 99.96% 100% 23.28 299.54

Crime data DT 79.26% 100% 5.00 27.00
DT-pruned 78.95% 95.24% 5.00 27.00
RF 63.16% 100% 6.73 30.52

Crash
reporting

DT 56.89% 77.71% 65.00 66,957.08
DT-pruned 56.85% 77.71% 65.00 65,827.00
RF 56.62% 77.70% 62.73 54,562.04

4.2.1 Analysis of Crime Data from 2020 to Present

This study’s analysis of the Crime Data from 2020 to the Present [29] provides insight into the
performance and scalability of decision tree-based algorithms when applied to a dataset with real-
world complexity. The chosen dataset, a comprehensive repository of crime incidents over a multi-year
span, reflects the challenges inherent to large, constantly updating data streams typically encountered
in production environments.

The decision tree (DT), pruned decision tree (DT-pruned), and random forest (RF) models
were evaluated for accuracy, tree depth, and node count. Based on Table 5, the DT-pruned model
achieved the highest accuracy (78.95%), followed by the standard DT model (75.37%), with the RF
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model trailing at 63.16%. Despite RF’s potential for high accuracy in many applications, the dataset’s
characteristics—such as temporal dependencies and sparse feature distribution—may have hindered
its performance. These observations are crucial when considering model selection for large-scale
implementations in crime data analysis.

With its controlled depth and reduced node complexity, the pruned decision tree demonstrates
an advantage here, as it maintains a high accuracy with minimal complexity. This makes it a suitable
choice for environments where computational resources are limited or where latency is a concern.
For larger datasets or scenarios demanding near-real-time processing, deploying a random forest may
prove more challenging without optimization techniques. Strategies such as parallelizing the tree-
building process or using distributed computing frameworks could enhance the random forest model’s
applicability. However, this would require balancing model complexity with operational constraints.

4.2.2 Visual Comparison of Decision Tree Structures for Credit Card Fraud Detection

To further illustrate the impact of model complexity on computational efficiency and inter-
pretability, Figs. 4 and 5 provide a visual comparison of the decision tree structure for the Credit Card
Fraud Detection dataset before and after pruning. These visualizations highlight how pruning reduces
tree depth and the number of nodes, simplifying the model while maintaining essential decision paths.
Such visual comparisons offer insights into the practical trade-offs between model complexity and
accuracy, enhancing our understanding of decision tree behavior in real-life applications.

4.2.3 Interpretability with LIME

While Random Forest models provide high accuracy, they are often criticized for their lack of
interpretability. We applied the Local Interpretable Model-agnostic Explanations (LIME) method
to the Crash Reporting–Drivers Data and Telco Customer Churn datasets to address this issue.
LIME enables us to generate interpretable, instance-based explanations for model predictions by
approximating the Random Forest with more straightforward, locally interpretable models. This
approach reveals the influence of individual features on specific predictions, allowing us to understand
and trust the model’s outputs. Figs. 6 and 7 illustrate LIME explanations for sample instances from
each dataset, demonstrating how feature contributions can be visualized and interpreted for end-users,
thus mitigating some of the interpretability challenges associated with Random Forests.

Figure 4: Decision tree before pruning
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Figure 5: Decision tree after pruning

Figure 6: LIME model for crash reporting

Figure 7: LIME model for telco customer churn

This LIME output provides an interpretation of how various features contribute to a model’s pre-
diction, which in this case assigns a 0.68 probability to “No” (likely indicating a low chance of an event,
such as a collision or positive outcome) and a 0.32 probability to “Yes” (likely indicating the opposite).
The features listed represent various conditions that the model considers in its decision-making
process. The feature importance section shows that certain conditions, like Collision Type_SINGLE
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VEHICLE and Surface Condition_Ice/Frost, have the highest influence on the model’s prediction,
with both weighted at 0.20. Other influential factors include Traffic Control_School Zone Sign and
Traffic Control_RAILWAY CROSSING DEVICE, with weights of 0.16 and 0.14, respectively. These
weights indicate that these features are significant in the model’s interpretation, and higher weights
suggest a more substantial impact on the prediction. In this specific instance, however, the values for
each feature (such as collision type, surface condition, and weather) are all recorded as 0, implying that
these particular conditions are not present. Despite the lack of these specific values in the instance,
the LIME explanation reveals that these features are essential in the model’s general decision-making
process. The model leans towards predicting “No” (indicating a lower likelihood of “Yes” events)
primarily based on these feature weights, which influence its understanding of conditions typically
associated with different collision probabilities.

This LIME output explains the impact of TotalCharges values on the model’s prediction, which
has a probability of 0.62 for the class labeled “1” (suggesting a positive outcome) and 0.38 for the
class labeled “0” (indicating a negative outcome). The feature importance section highlights specific
TotalCharges values, such as 130.15, 381.2, and 1054.6, which contribute most to the prediction,
with weights of 0.18, 0.17, and 0.15, respectively. These weights reflect the strength of each feature’s
influence, with higher weights suggesting a more substantial impact. Each TotalCharges feature is
recorded as 0 for this instance, meaning the actual feature values do not fall within the specified
influential ranges. Nonetheless, the LIME explanation reveals that these TotalCharges values still play
a vital role in the model’s overall decision-making, guiding it toward predicting class “1” in similar
cases.

4.2.4 Train-Test Performance Comparison and Overfitting Analysis

Based on Table 5, this analysis provides a detailed comparison of training and test accuracies
to highlight instances of overfitting across different datasets and models. The table illustrates each
model’s generalizability by showing the extent to which training accuracy surpasses test accuracy,
underscoring the potential limitations in model performance on unseen data.

The results of our experiments provide insights into each model’s generalizability and its tendency
toward overfitting across four datasets. In the Telco Customer Churn dataset, both Decision Trees
(DT) and Random Forest (RF) models display near-perfect accuracy on the training data (99.84%)
but significantly lower accuracy on the test data (77%–79%). This pattern suggests that these models
may have overfitted, capturing specific patterns within the training set that do not generalize well to
unseen data. Overfitting is particularly pronounced in these models because of their complexity and
propensity to memorize intricate details in the training data. By contrast, the Credit Card dataset
shows high accuracy across both training and test sets with minimal disparity, implying that the
models here generalize effectively without sacrificing performance. This outcome suggests that either
the dataset characteristics support good generalization or the features are well-suited to the chosen
models, reducing the likelihood of overfitting.

Overfitting in the Crime Data dataset becomes more evident, especially with RF, where train
accuracy reaches 100% while test accuracy drops to 63.16%. The large gap between train and test
performance illustrates how RF, a more complex model, can overfit when faced with potentially
noisy or small datasets. Pruned Decision Trees perform slightly better in terms of generalization here,
demonstrating the effectiveness of pruning in mitigating overfitting. In contrast, the Crash Reporting
dataset yields low accuracies across both train and test sets (77.7% and 56%, respectively), indicating
moderate overfitting but suggesting that the models struggle with this dataset overall. This pattern
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highlights potential feature separability or data quality limitations, possibly necessitating further
feature engineering or alternative model approaches. These comparisons illustrate the importance
of balancing model complexity with dataset characteristics and validate the need for techniques
that combat overfitting, particularly in scenarios where models must generalize well to new data in
production environments.

5 Conclusions, Limitations, and Future Work

In conclusion, this study hypothesized that decision trees, due to their structure, would exhibit a
higher degree of overfitting than random forests when applied to the same datasets. The experimental
results confirm this hypothesis, demonstrating that unpruned decision trees are particularly prone to
overfitting, as evidenced by their excessive tree depths and high node counts, especially in datasets
like 20 Newsgroups, MNIST, and Covertype. The structural properties of decision trees, which allow
them to create particular rules tailored to the training data, lead to a significant risk of overfitting,
particularly in complex or noisy datasets.

The proposed pruning approach, the Adaptive Cross-Validated Alpha CCP (ACV-CCP), has
proven to be an effective method for reducing overfitting by simplifying the model, as indicated by
the reduction in tree depth and node count in pruned decision trees. Although this slightly decreases
accuracy, it enhances the model’s generalization ability, making it more applicable to new, unseen data.
Even with pruning, decision trees often fall short of the performance and robustness of random forests,
which generally outperform them across various datasets. Random forests mitigate overfitting through
their ensemble approach, averaging the predictions of multiple decision trees to reduce variance and
improve generalization. This is reflected in their superior accuracy and balanced complexity, making
them particularly effective for large and complex datasets where overfitting is a significant concern.

In conclusion, while decision trees can be prone to overfitting, this issue can be mitigated
through pruning or by employing more advanced ensemble methods like random forests. The model
choice should consider the application’s specific requirements, balancing the need for accuracy,
interpretability, and computational efficiency. Random forests should be the preferred choice when
robustness and performance are critical, while pruned decision trees offer a viable alternative when
simplicity and interpretability are prioritized.

When we discuss the limitations regarding the usage of the classification algorithms, it is worth
mentioning data imbalances in datasets. Random forests may not perform well on imbalanced datasets
where some variables are heavily underrepresented. In such cases, the algorithm might be biased
towards the majority class, affecting its ability to correctly classify instances of the smaller class. Also,
the performance of classification algorithms can be affected by the settings of their hyperparameters.
The number of sub-trees and the depth of each tree should be considered at each node. Finding
the optimal configuration requires extensive cross-validation, which can be time-consuming and
computationally expensive and presents quite a limitation on the usage of the algorithm.

On the other hand, while random forests are safer to overfit than individual decision trees, they
can still overfit noisy data. If the noise level in the data is high, the random forest might learn
the noise as if it were a pattern, especially with many trees. Addressing these limitations requires
a grounded understanding of both the dataset being used and the classification algorithm itself;
therefore, addressing these shortcomings becomes a priority.

One significant limitation is accurately measuring power consumption when working within
Windows environments. Unlike Linux, where detailed power usage metrics are more accessible,
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Windows lacks the same level of granularity for monitoring resource consumption, making it harder
to quantify the exact computational cost in terms of energy efficiency. This gap limits the ability to
fully assess the model’s scalability in environments with energy constraints.

With the evolution of machine learning and the rapid development of classification algorithms,
the possibilities for growth are limitless. With this field of study being so current, there is so much
capacity for growth and reaching new unseen heights. Future research could focus more on exploring
automated and more efficient hyperparameter tuning methods for random forests to reduce the
manual effort and expertise required to find the optimal model configuration, possibly by utilizing
machine learning techniques like Bayesian optimization; also, with the rise of big data to study the
scalability of random forests in the context of big data, focusing on how these models can be adapted
or improved to handle huge datasets efficiently.
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[25] M. Szeląg and R. Słowiński, “Explaining and predicting customer churn by monotonic rules induced from
ordinal data,” Eur. J. Oper. Res., vol. 317, no. 2, pp. 414–424, Oct. 2023. doi: 10.1016/j.ejor.2023.09.028.

https://doi.org/10.1016/j.datak.2023.102173
https://doi.org/10.1016/j.procs.2018.05.122
https://doi.org/10.1016/j.bspc.2023.105448
https://doi.org/10.1145/3576915.3623100
https://doi.org/10.1016/j.ejco.2024.100084
https://doi.org/10.1016/j.envsoft.2022.105556
https://doi.org/10.48550/arxiv.1907.00678
https://doi.org/10.1038/s41598-022-14143-8
https://doi.org/10.1016/j.dss.2020.113346
https://doi.org/10.1016/j.compag.2022.106844
https://doi.org/10.1007/s10586-023-04089-5
https://doi.org/10.1145/3461001.3471155
https://doi.org/10.1007/s10462-020-09833-6
https://doi.org/10.1038/s43247-024-01257-2
https://doi.org/10.1016/j.neucom.2019.02.024
https://doi.org/10.1007/s11356-020-11413-8
https://doi.org/10.1016/j.patter.2022.100602
https://doi.org/10.1016/j.ejor.2023.09.028


1006 IASC, 2024, vol.39, no.6

[26] “UCI machine learning repository,” Accessed: Nov. 01, 2024. [Online]. Available: http://archive.ics.uci.
edu/ml

[27] “Predict customer churn using watson machine learning and jupyter notebooks on cloud pak for data,”
Nov. 29, 2021. Accessed: Nov. 01, 2024. [Online]. Available: https://github.com/IBM/telco-customer-churn-
on-icp4d/blob/master/data/Telco-Customer-Churn.csv

[28] Kaggle, “Credit card fraud detection,” 2018. Accessed: Nov. 01, 2024. [Online]. Available: https://www.
kaggle.com/datasets/mlg-ulb/creditcardfraud

[29] “Crime Data from 2020 to Present,” Nov. 16, 2022. Accessed: Nov. 01, 2024. [Online]. Available: https://
catalog.data.gov/dataset/crime-data-from-2020-to-present

[30] “Crash reporting-drivers data,” Apr. 21, 2023. Accessed: Nov. 01, 2024. [Online]. Available: https://catalog.
data.gov/dataset/crash-reporting-drivers-data

http://archive.ics.uci.edu/ml
https://github.com/IBM/telco-customer-churn-on-icp4d/blob/master/data/Telco-Customer-Churn.csv
https://github.com/IBM/telco-customer-churn-on-icp4d/blob/master/data/Telco-Customer-Churn.csv
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://catalog.data.gov/dataset/crime-data-from-2020-to-present
https://catalog.data.gov/dataset/crime-data-from-2020-to-present
https://catalog.data.gov/dataset/crash-reporting-drivers-data
https://catalog.data.gov/dataset/crash-reporting-drivers-data

	Overfitting in Machine Learning: A Comparative Analysis of Decision Trees and Random Forests
	1 Introduction
	2 Research Methodology
	3 Analysis of the Results
	4 Experiments
	5 Conclusions, Limitations, and Future Work
	References


