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ABSTRACT

Skin cancer is a highly frequent kind of cancer. Early identification of a phenomenon significantly improves
outcomes and mitigates the risk of fatalities. Melanoma, basal, and squamous cell carcinomas are well-recognized
cutaneous malignancies. Malignant We can differentiate Melanoma from non-pigmented carcinomas like basal
and squamous cell carcinoma. The research on developing automated skin cancer detection systems has primarily
focused on pigmented malignant type melanoma. The limited availability of datasets with a wide range of
lesion categories has hindered in-depth exploration of non-pigmented malignant skin lesions. The present study
investigates the feasibility of automated methods for detecting pigmented skin lesions with potential malignancy.
To diagnose skin lesions, medical professionals employ a two-step approach. Before detecting malignant types with
other deep learning (DL) models, a preliminary step involves using a DL model to identify the skin lesions as either
pigmented or non-pigmented. The performance assessments accurately assessed four distinct DL models: Long
short-term memory (LSTM), Visual Geometry Group (VGG19), Residual Blocks (ResNet50), and AlexNet. The
LSTM model exhibited higher classification accuracy compared to the other models used. The accuracy of LSTM
for pigmented and non-pigmented, pigmented tumours and benign classes, and melanomas and pigmented nevus
classes was 0.9491, 0.9531, and 0.949, respectively. Automated computerized skin cancer detection promises to
enhance diagnostic efficiency and precision significantly.
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1 Introduction

The rising incidence of skin cancer, particularly melanoma, underscores the urgent need for
enhanced diagnostic techniques. While current practices like skin biopsies remain the gold standard
for diagnosis, they are time-consuming and invasive. Automated deep learning (DL) systems promise
to make diagnoses more accurate, especially when it comes to telling the difference between skin lesions
that are coloured and those that are not. This study examines how well DL models like LSTM, VGG19,
ResNet50, and AlexNet can sort different skin lesions, help find them earlier, and give dermatologists
better diagnostic tools.

One of the most deadly skin cancers is melanoma. Globally, cutaneous malignancies account for
75% of mortality due to melanoma. Melanoma can inhibit the formation of melanin due to its impact
on the cells responsible for melanin synthesis [1]. Given these circumstances, the early identification
of melanoma assumes significant importance in the battle against cancer-related death, as shown
in Fig. 1.

Figure 1: Some samples from the dataset

We can broadly classify skin lesions into two primary categories: pigmented and non-pigmented.
Both melanoma and pigmented nevi are instances of pigmented lesions. Similarly, non-pigmented
lesions encompass vascular issues, basal cell cancer, dermatofibroma, and actinic keratosis, the initial
manifestation of squamous cell carcinoma, commonly referred to as Bowen’s disease. We can classify
pigmented and non-pigmented lesions as benign or malignant. Melanoma, basal cell carcinoma, and
actinic keratosis are all examples of skin conditions that are malignant, which means they can cause
cancer.

Scanning is a commonly used non-invasive imaging method that studies the morphology of skin
lesions. Fig. 1, the provided dermoscopy images, shows the melanoma skin lesion. Dermatoscopy is
a useful way to find melanoma early on because pigmented lesions can sometimes show signs of not
being pigmented. The people who discussed dermoscopy agreed to use a two-step diagnostic method
to group skin lesion pigmentation seen with dermoscopy [2,3]. The implementation of this measure
aimed to standardise dermoscopic nomenclature. After explaining the difference between pigmented
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and non-pigmented lesions, the next step in this process is to explain the difference between benign
and malignant lesions.

Unfortunately, this instrument’s complex and time-consuming framework occasionally compro-
mises its efficacy, as does its limited ability to consistently distinguish between inter- and intra-features.
Furthermore, we can employ computational methods to expand the use of dermoscopy [4]. An arduous
implementation of this idea involves using computer methods to categorise melanomas using artificial
segmentation, considering factors such as size, colour, form, and texture (Fig. 2).

The primary outcomes derived from this research are:

• Commodifying non-pigmented skin lesions augments dermatologists’ two-step dermoscopic
procedure [3].

• In contrast to previous research that used clinical imaging to categorize malignant, non-
pigmented skin lesions, the present study utilizes dermoscopy pictures [5]. The presence of
photographic variability can influence the clinical imaging process.

• We used a collection of 7285 dermoscopy pictures to more accurately classify pigmented skin
lesions that are not pigmented. This collection is substantially larger than the 167 [6] or 107 [7]
photos used in earlier study projects.

• To broaden the classification of non-pigmented skin lesions, we have included vascular lesions in
addition to the dermatofibroma categories. In the study above, we classified these two common
forms of benign, non-pigmented skin lesions in clinical practice using only fourteen out of six
hundred fifty photographs [7]. However, binary non-pigmented skin lesions classification has
overlooked these groups in studies [6] and [8].

Figure 2: Classification of skin lesions [3]



1038 IASC, 2024, vol.39, no.6

The following section outlines the organizational structure of the paper: Preceding this, one may
encounter pertinent scholarly material about machine-learning approaches for classifying skin lesions.
The next part explains the research techniques employed in this study and the database used for data
collection and analysis. Finally, we evaluated and discussed the efficacy of the DL architecture.

2 Related Works

Melanoma identification in dermoscopic images employs two primary strategies: deep learning
(DL) and classical methods. Initial efforts relying on manually designed features exhibited lim-
ited effectiveness. For instance, Reference [9] introduced the California STEM Learning Network
(CSLNet), a specialised deep convolutional neural network (CNN) trained on the ISIC-19 dataset
using end-to-end learning that achieves superior performance across various metrics without relying
on handcrafted features. Concurrently, Reference [10] proposed an algorithm to optimise wavelet
networks by enhancing feature selection to improve melanoma detection effectiveness. However, both
approaches struggled to distinguish melanoma subtypes and differentiate visual similarities between
melanoma and non-melanoma images [1].

To address these challenges [11], we combined neural networks with genetic algorithms, empha-
sising segmentation methodologies. Border detection techniques extracted clinical features like border
irregularity and asymmetry. However, this method faced issues resolving indistinct boundaries in
unclear lesions, complicating melanoma diagnosis [12].

Han et al. [13] compiled over 20,000 macroscopic images spanning 12 disease classes and utilised
a fine-tuned ResNet-152 model [14] to freeze early layers for feature extraction from manually
cropped images. Similarly, Ma et al. [15] demonstrated using pre-trained ConvNets for classifying non-
dermoscopic skin images through feature extraction. In addition, Reference [16] used a multi-stage,
multi-scale method and a softmax classifier to sort melanoma lesions by pixel.

The utility of CNNs in melanoma detection lies in their ability to effectively perform identifica-
tion, classification, and segmentation tasks. For example, Reference [17] developed a hybrid model
integrating a CNN with sparse coding and a support vector machine (SVM) algorithm. A non-
supervised CNN model based on AlexNet was also proposed by [7], aiming to extract features specific
to melanoma.

A deep learning method for separating melanoma lesions first described by [4] used a fully
convolutional network (FCN) with 19 layers. The convolution operator improved the accuracy, but
FCNs had problems like being less flexible because they had fewer parameters, were less efficient than
Maxpool operators, and took longer to train. We validated this approach using ISIC 2016 and PH
datasets.

Expanding into more medical imaging, Reference [18] created HGANet, a CNN for automatically
finding problems in the digestive tract using Kvasir datasets. This demonstrates the effectiveness of
Deep Learning in medical image analysis. The study [19] reviewed smartphone applications for skin
disease diagnosis using Convolutional Neural Networks (CNNs). It employs digital photographs and
dermoscopy images as datasets. CNNs enhance classification accuracy without user intervention.
Results show that while many apps assist in skin cancer detection, few offer direct computational
analysis with varying performance metrics.

Deep learning systems (DLS) [20] identify skin disorders based on clinical cases (skin pictures
and medical history). The DLS recognises 26 skin disorders—80% of primary-care skin problems. We
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created and tested the DLS using de-identified cases from 17 teledermatology clinics that were spread
out over time.

The SPL analysis method is based on a deep convolutional neural network and works with wide-
field photos [21]. It was tested on a dermatology dataset containing 38,283 images which included 133
patient images used in the ISBI 2016 dataset, which has 900 dermoscopy images [22].

The PH2 dataset, which has 200 images split into three groups, to make sure that their methods
worked.Different pre-trained state-of-the-art architectures (DenseNet 201, ResNet 152, Inception
v3, InceptionResNet v2) were used by applied on applied 10,135 dermoscopy skin images in total
(HAM10000: 10015, PH2: 120). This study utilises the 2019 ISIC Challenge dataset (Fig. 3) [8],
encompassing 30,169 dermoscopy images across seven categories, facilitating DL frameworks for
distinguishing pigmented and non-pigmented tumour lesions (Table 1).

Figure 3: Skin lesions of ISIC 2019

Table 1: Recent studies (2023–2024)

Study Model Dataset Method Accuracy Remarks

[23] CNN HAM10000 Adam optimiser, data
augmentation, early
stopping, model
checkpoint

97.858% Effective for
identifying melanoma
and basal cell
carcinoma.

[24] CNN ISIC Data augmentation 87.64% Improves diagnosis
over traditional
methods

[25] DTL +
ML

HAM10000,
DAYISET 1

XGBoost with Lasso
regression, ROC curves,
confusion matrix

AUC: 1.0
(train), 0.708
(validation)

Enhances BCC and
AK detection.

[26] Mobile
Net-V2

1559 images Transfer learning,
fine-tuning, Grad-CAM
for explainability

∼90% Strong performance;
struggles with minority
classes.

[27] CNN 57,822 images Deep learning,
multi-staining protocols

94.6% Reliable across
staining protocols.

(Continued)
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Table 1 (continued)

Study Model Dataset Method Accuracy Remarks

[28] ResNet50,
ViT

ImageNet,
skin cancer

Transfer learning,
CAM-based
explainability

ResNet50:
88.8%

Balances accuracy and
complexity; requires
dermatologist input.

[29] Ensemble ISIC 2018 Ensemble learning using
multiple deep models

93.18% Outperforms existing
skin lesion classifiers.

[30] Ensemble 1659 images U-Net for segmentation,
hyperspectral imaging,
XGBoost

93.51% Excels in PsO
classification; efficient
but slower inference.

[31] STFL HAM10000 Semi-supervised
learning, dynamic
threshold adjustment

85.50% Performs well with
limited labelled data.

[32] DC-AC SIIM-ISIC
2020

Transfer learning, data
augmentation

AUROC:
0.9787

High efficiency with
fewer parameters.

3 Methodology

The main goal of developing and testing four different deep learning (DL) models, namely Long
Short-Term Memory (LSTM), VGG19, ResNet50, and AlexNet, is to distinguish between cancerous
skin lesions and those that are not. The process involves three main phases: data preprocessing and
augmentation, model development, and model evaluation.

3.1 Data Preprocessing and Augmentation

This work uses a collection of pictures of melanocytic and non-melanocytic skin lesions. The
pictures came from the 2019 ISIC challenge collection, which is open to the public and has 25,331
pictures of different skin diseases. Table 2 illustrates the initial uneven distribution of the dataset’s
pictures among the various groups.

Table 2: Initial classification of melanoma and non-melanoma cells

Skin lesion Training set Testing set Total

Melanoma cells 4525 862 5387
Non-melanoma 20,729 4053 15,267
Total 25,254 4915 30,169

Different augmentation approaches [33–35] used data augmentation methods like image rotation,
flipping, zooming, and scaling to fix the imbalance because they were fast on the computer. This
process increased the dataset size and ensured that each category contained a more even distribution
of images, as shown in Table 3. The augmentation process improved the model’s ability to generalise
across different lesion types by exposing it to a wider range of variations in the training set.
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Table 3: Balanced data after augmentation

Skin lesion Training set Testing set Total

Melanoma cells 19,867 1418 20,729
Non-melanoma 20,729 4053 24,782
Total 40,596 5471 46,067

Data preprocessing for this study involves resizing all images to a uniform dimension of 224 ×
224 pixels to ensure consistency across the dataset and normalising pixel values to a range of [0, 1]
by dividing by 255, which improves model convergence during training. We apply data augmentation
techniques to enhance the diversity of the dataset. These include random rotations within a range of
−30 to +30 degrees to simulate different orientations, horizontal and vertical flipping to create mirror
images, zooming from 0.8 to 1.2 to simulate different camera distances, and shearing transformations
to introduce perspective changes. Additionally, brightness adjustments between 0.8 and 1.2 account
for lighting variations. At the same time, colour jittering modifies hues and saturations to simulate
different lighting conditions. We also employ random cropping, which shifts the image width and
height by 10% to focus on different parts of the lesions. We implement these techniques using Keras’
ImageDataGenerator, forming an augmentation pipeline that applies these transformations in real-
time during model training through batch generation and the flow method.

3.2 Model Development

We developed four DL models to classify skin lesions—LSTM, VGG19, ResNet50, and AlexNet.
We trained each model to identify both pigmented and non-pigmented skin lesions. The pigmented
category includes melanoma and pigmented nevus. In this group are basal cell carcinoma (BCC),
actinic keratosis (AK), benign keratosis (BKL), dermatofibroma (DF), and vascular lesions (VASC).
However, they are not coloured.

We employed the Keras deep learning framework for model implementation. The need to balance
accuracy and computational efficiency drove the choice of architecture. We used already trained
models (VGG19, ResNet50, and AlexNet) to make transfer learning easier. The ISIC dataset was used
to fine-tune the models. We incorporated LSTM to capture temporal dependencies in lesion features,
enhancing the model’s ability to classify images with subtle variations. The Machine Learning Models
Training & Testing Framework for the 2019 ISIC Challenge Dataset is depicted in Fig. 4.
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Load 2019 ISIC Dataset

Preprocessing dataset
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Selecting the model

Testing set (20%)Training set (80%)

AlexNetResNet 50VGG 19 LSTM
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Evaluate on Testing Set

SpcificitySensitivityPrecisionAccuracy

Prediction and Classification

Output

Input

Figure 4: The framework of this study

Additional augmentation techniques were applied to further balance the dataset between
melanoma. They pigmented nevus, as shown in Tables 4 and 5.
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Table 4: Classification of melanoma and pigmented nevus

Skin lesion Training set Testing set Total

Melanoma 4525 862 5387
Pigmented nevus 9581 2078 11,659
Total 14,106 2940 17,046

Table 5: Balanced data after augmentation (melanoma vs. pigmented nevus)

Skin lesion Training set Testing set Total

Melanoma 10,668 862 11,530
Pigmented nevus 9581 2078 11,659
Total 20,249 2940 23,189

DL models are used to classify benign and non-pigmented malignant tissues accurately. Non-
pigmented benign tumours include benign keratosis, dermato-fibroma, and vascular lesions. Con-
versely, basal cell carcinoma and actinic keratosis (commonly known as Bowen’s disease) are two
instances of non-pigmented malignant tumours. Table 6 displays the number of photographs allocated
to each category.

Table 6: Non-pigmented tumour and benign classes

Skin lesion Training set Testing set Total

Tumor 1858 347 2205
Benign 4782 964 5746
Total 6640 1311 7951

3.3 Hyperparameters and Training Configuration

The hyperparameters utilized in the training process are summarized in Table 7. These values were
selected based on prior research and experimental tuning. The models were trained using the Adam
optimizer, with a learning rate of 0.01 and a batch size of 500. The activation functions used were ReLU
for hidden layers and Softmax for the output layer, allowing multiclass classification. The models were
trained for 30 epochs, with early stopping to prevent overfitting.

Table 7: Model hyperparameters

Hyper-parameters Value/Utilizing

Dropout 0.2
Optimizer Adam

(Continued)
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Table 7 (continued)

Hyper-parameters Value/Utilizing

Kernal size 3 × 3
Pooling size 2 × 2
Learning rate 0.01
Epochs 30
Activation function ReLU and Softmax
Batch size 500
Verbose 1
Bias Zeros
Weight Glorot_uniform

3.4 Model Evaluation

We evaluated each model’s performance using accuracy, precision, recall, F1 score, and Area
Under the Curve (AUC). We calculated these metrics for melanoma and non-pigmented lesion
classification, ensuring consistency across evaluations.

4 Results
4.1 Dataset

We evaluate performance by using the freely available 2019 ISIC challenge dataset. The dataset
consists of 25,331 images, divided into two sections. The first portion comprised 80%, or 20,265 images,
of the training dataset, while the second comprised 20%, or 5066 images, for testing purposes. We
evaluated each classifier on the original image test set to determine the model’s efficacy. The images
illustrate many types of skin cancer, including melanoma, basal cell carcinoma, benign keratosis,
dermatofibroma, actinic keratosis, and pigmented nevus. Table 8 comprehensively summarises the
number of photos in each category.

Table 8: Distribution of images of the classes of melanoma and non-melanoma cells

Skin lesion Training set Testing set Total

Melanoma cell 4525 862 5387
Nevus 12,769 2498 15,267
Seborrheic keratosis 2634 519 3153
Basal cell carcinoma 3318 596 3914
Actinic keratosis 873 178 1051
Dermatofibrosarcoma 245 49 294
Vascular lesion 262 54 316
Squamous cell carcinoma 628 159 787
Total 25,254 4915 30,169
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4.2 Evaluation

While it is desirable to have high classification performance across all classes, accurately predicting
all skin cancers, particularly those with a high mortality rate, such as melanoma, takes precedence over
incorrectly predicting a benign lesion.

We assess the effectiveness of the DL-based classification strategy using proposed classification
algorithms. We evaluate the efficacy of the DL models in categorizing pigmented and non-pigmented
skin lesions. We perform this examination at the beginning of the operation. Later on, the approach
achieved a high success rate in the classification, as shown in Table 9.

Table 9: Pigmented and non-pigmented categorization

Method Acc. Sen. Spe. Precision

LSTM 0.9491 0.9411 0.9385 0.9473
VGG19 0.8926 0.8821 0.8910 0.8951
ResNet50 0.9264 0.9190 0.9210 0.9218
AlexNet 0.8882 0.8877 0.8920 0.8865

The next phase involves examining deep-learning models to classify skin lesions as melanoma
or pigmented nevus. Finally, we assess the ability of the third DL model to classify non-pigmented
malignant and benign skin disorders. This evaluation confirms the effectiveness of the recommended
models.

4.3 Experiment Results: Pigmented vs. Non-Pigmented Classes

Table 9 summarises the results of categorizing pigmented cancers and benign classes. This table
displays the count of classes and test photos used to evaluate the performance of the classification.
Table 9 also displays the overall results of the categorization process.

4.4 Experimental Results: Pigmented Tumor vs. Benign Classes

Table 10 summarises the classification findings of pigmented tumours and benign classes by
displaying the number of photos used for training and testing assessment results. This table also
presents the overall classification results.

Table 10: Pigmented tumour and benign classes

Method Acc. Sen. Spe. Precision

LSTM 0.9531 0.9502 0.9462 0.9510
VGG19 0.9055 0.9020 0.8988 0.9042
ResNet50 0.9178 0.8990 0.9010 0.9018
AlexNet 0.9170 0.9212 0.920 0.9232
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4.5 Experiment Results: Melanoma vs. Pigmented Nevus Classes

A summary of the findings from the categorization of pigmented nevus and melanoma can be
seen in Table 11, which also contains the findings from the performance assessment.

Table 11: Melanoma and pigmented nevus classes

Method Acc. Sen. Spe. Precision

LSTM 0.9490 0.9431 0.9396 0.9480
VGG19 0.9035 0.8966 0.8907 0.9025
ResNet50 0.9130 0.910 0.9065 0.9118
AlexNet 0.8932 0.8902 0.8874 0.8916

5 Discussion

Three experiments were conducted. 1. Classification of pigmented and non-pigmented classes. 2.
Classification of pigmented tumours and benign classes. 3. Classification of melanoma and pigmented
nevus classes.

The information in Tables 9–11 shows that the complementing LSTM model did better than the
other three models in the three classification tests we did on the ISIC 2019 dataset in terms of accuracy,
sensitivity, and specificity. Table 12 also shows the comparison between our results and some previous
related studies, which displays the superiority of our proposed networks over the rest of the networks.

Table 12: Compares the performance of our proposed networks with the comparative algorithms in
ISIC-17, ISIC-18, and ISIC-19 in terms of accuracy, precision, sensitivity, specificity, and F1 score

Method Acc. Sen. Spe. Precision

[9] 0.9325 0.9325 0.9064 0.9397
[36] 0.8963 0.8993 0.9215 0.9129
[37] 0.865 0.556 0.785 –
[38] 0.877 0.8726 0.8218 –
[39] 0.8315 0.83 – 0.89
Our study 0.9531 0.9502 0.9462 0.9510

The graphs illustrate the training results of the proposed models for distinguishing melanoma and
pigmented cells, non-melanoma cells, tumour cells, and benign cells. Figs. 5–7 display these graphs.

Metadata, which includes sociodemographic information about patients, is needed to prove that
imbalance or under-representation biases exist [40]. The most direct route to resolving this issue is,
where feasible, to augment the dataset with photos and information from patients belonging to under-
represented groups. Another option is to do further validation, such as prospective studies, to ensure
the model’s resilience.
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Figure 5: Performance evaluation of pigmented and non-pigmented classes

Figure 6: Performance evaluation of pigmented tumor and benign classes

Figure 7: Performance evaluation of melanoma and pigmented nevus classes

An intriguing conversation about the makeup of the training dataset emerged during [41]. The
training dataset’s limitations in the clinical presentation spectrum, variability in picture collection
settings, and limited clinical information raised concerns about the generality of automated diagnosis.
These issues pertained to the fact that the training dataset had constraints. A common and often
inherent issue with healthcare data is the under-representation of clinical or demographic categories,
which may limit the model’s potential for generalisation.

Clinically, close-up photographs can effectively aid in the artificial categorisation of skin lesions.
The first step that a doctor takes in determining whether or not to continue with dermoscopy is to
perform a macroscopic evaluation of a lesion. It is possible that clinical photographs of the lesion can
offer extra information that is not evident by dermoscopy. These additional data include the pearly
look and shining surface of seborrhoeic keratosis, as well as the “stuck-on” aspect of the condition [42].
Smartphone apps could potentially use these datasets of clinical photographs to train their algorithms.
However, even the most advanced of these algorithms still have a significant distance to go.

Shimizu et al. [6] introduced VGG19, a 19-layer convolutional neural network, as an approach
for picture classification. The structure consists of three fully interconnected layers and sixteen
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convolutional layers. We dedicate the first three convolutional layers to classification and use the
remaining sixteen layers for feature extraction.

He et al. [43] introduced ResNet, an enhanced CNN iteration that uses residual blocks. We
designed this architecture to tackle the issue of gradient degradation in very deep networks. In these
networks, the accuracy first reaches a saturation point. However, it then quickly deteriorates owing to
a drop in gradient values.

AlexNet, an efficient, simple CNN Alex Krizhevsky et al. suggested the idea at the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC-2012) [44]. The architecture consists of convolu-
tional, pooling, ReLU, and connected layers. Three layers make up AlexNet’s five convolutional layers:
a pooling layer, an initial layer, an intermediate layer, and a final layer.

6 Conclusions

We have introduced a DL-based classification technique for skin lesions. It employs four forms
of DL. We can classify skin lesions using the provided models as pigmented or non-pigmented.
This classification enables the identification of types such as basal cell carcinoma and squamous
cell carcinoma. The evaluation data indicates that the LSTM DL model achieves accuracy and
sensitivity values. Furthermore, it demonstrates that the melanoma and pigmented nevus classes
exhibit classification abilities compared to models.

Based on these results, using the other three models, it seems harder to tell the difference between
skin lesions in the Melanoma and non-category than between Melanoma and pigmented nevus.
This difficulty arises because both groups encompass a range of skin abnormalities. Additionally,
each of these four models uses several training photographs. Moreover, we have determined that
identifying a non-pigmented tumour skin lesion is more difficult than identifying a pigmented skin
lesion. Moreover, our findings indicate that the LSTM model had greater effectiveness in this aspect
than the other models used.

Limitations of the Method Used: The study’s models may not generalize well due to a limited and
potentially biased dataset that doesn’t represent diverse skin types.

Shortcomings of This Method: The computational complexity and need for extensive labelled
data can hinder real-time clinical application and widespread implementation.

Prospects for the Future: Future efforts should focus on diversifying datasets, integrating mul-
timodal data for improved accuracy, and developing lightweight models for mobile use to enhance
accessibility in dermatological care.
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