
Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2024.056792

ARTICLE

Distributed Federated Split Learning Based Intrusion Detection System

Rasha Almarshdi1,2,*, Etimad Fadel1, Nahed Alowidi1 and Laila Nassef1

1Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah, 21589, Saudi Arabia
2Department of Computer Science, Faculty of Computer Science and Engineering, University of Hail, Hail, 55476, Saudi Arabia

*Corresponding Author: Rasha Almarshdi. Email: rabdullahalmarshdi@stu.kau.edu.sa

Received: 31 July 2024 Accepted: 23 September 2024 Published: 31 October 2024

ABSTRACT

The Internet of Medical Things (IoMT) is one of the critical emerging applications of the Internet of Things
(IoT). The huge increases in data generation and transmission across distributed networks make security one
of the most important challenges facing IoMT networks. Distributed Denial of Service (DDoS) attacks impact
the availability of services of legitimate users. Intrusion Detection Systems (IDSs) that are based on Centralized
Learning (CL) suffer from high training time and communication overhead. IDS that are based on distributed
learning, such as Federated Learning (FL) or Split Learning (SL), are recently used for intrusion detection. FL
preserves data privacy while enabling collaborative model development. However, FL suffers from high training
time and communication overhead. On the other hand, SL offers advantages in terms of computational resources,
but it faces challenges such as communication overhead and potential security vulnerabilities at the split point.
Federated Split Learning (FSL) has proposed overcoming the problems of both FL and SL and offering more
secure, efficient, and scalable distribution systems. This paper proposes a novel distributed FSL (DFSL) system to
detect DDoS attacks. The proposed DFSL enhances detection accuracy and reduces training time by designing an
adaptive aggregation method based on the early stopping strategy. However, the increased number of clients leads
to increasing communication overheads. We further propose a Multi-Node Selection (MNS) based Best Channel-
Best l2-Norm (BC-BN2) selection scheme to reduce communication overhead. Two DL models are used to test
the effectiveness of the proposed system, including a Convolutional Neural Network (CNN) and CNN with Long
Short-Term Memory (LSTM) on two modern datasets. The performance of the proposed system is compared with
three baseline distributed approaches such as FedAvg, Vanilla SL, and SplitFed algorithms. The proposed system
outperforms the baseline algorithms with an accuracy of 99.70% and 99.87% in CICDDoS2019 and LITNET-2020
datasets, respectively. The proposed system’s training time and communication overhead are 30% and 20% less than
the baseline algorithms.

KEYWORDS
IDS; DFSL; DDoS attacks; CNN; CNN+LSTM

1 Introduction

The Internet of Things (IoT) is the most important technology, and it has grown exponentially.
IoT is a set of technologies that connect a wide range of IoT devices and generate a large volume of

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2024.056792
https://www.techscience.com/doi/10.32604/iasc.2024.056792
mailto:rabdullahalmarshdi@stu.kau.edu.sa


950 IASC, 2024, vol.39, no.5

data with features of larger size, higher velocity, and heterogeneity [1]. At the same time, the evolution
of 5G networks has given strength to the growth of the IoT. 5G is characterized by higher capacity
and lower latency to facilitate communication of billions of devices over the Internet. Therefore, the
5G network should be integrated with modern technologies to provide exceptional services [2]. One of
the important 5G-enabling technologies is Multiple-Input-Multiple-Output (MIMO), which has been
used in recent years to provide high spectral efficiency and high throughput [3].

The growth of 5G-based IoT (5G-IoT) comes with challenges related to IoT data, such as security
and privacy, and they also have an impact on computational complexity and cost in data storage
and data processing. An important IoT domain that needs 5G features in transmission and channel
utilization is the Internet of Medical Things (IoMT) [4]. The IoMT is a latency-sensitive application
expected to be deployed based on 5G technologies. It will have a great role in maintaining the
sustainability of smart cities [5]. Fig. 1 describes the 5G-IoMT architecture, including three layers:
sensing layer, fog computing layer, and cloud computing layer. First, the data is collected using various
sensors or medical devices in the sensing layer. These devices are resource-constrained and have low
computation power. The data is passed to the fog computing layer via communication protocols,
where more powerful computing fog servers process it to avoid latency. The data is transmitted in
the 5G structure through multiple Base Stations (BSs) that employ fog computing. Finally, the data
is transmitted from the fog computing layer to the cloud computing layer to store and update the
patient’s data [6].

The significant increase in transmitting a large volume of data across distributed networks makes
security one of the most important challenges in IoMT. Recently, Distributed Denial of Service
(DDoS) attacks have increased dramatically, leading to significant consequences [7]. One of the most
popular real examples of DDoS against medical institutions was in 2016 when the attacker used
malware to breach the Banner Health network in Arizona and access the patient’s information,
including patient’s social numbers, dates of services, and information related to the insurance. The
attack went undetected for a month, with 3.7 million patients affected. It cost $1.25 million to resolve
the data breach issue [8].

Intrusion Detection Systems (IDSs) based on the Centralized Learning (CL) approach are widely
used to detect security attacks. CL is a traditional learning approach where the data is uploaded
from each connected client device to the cloud server to train the entire model and distribute it
to all devices [9]. IDSs using Machine Learning (ML) methods are impractical in the new network
environment, and they are not effective in detecting attacks in massive and distributed environments.
Although centralized systems based on Deep Learning (DL) achieve acceptable accuracy, they include
limitations such as connectivity, bandwidth, latency, communication overhead, computation power,
and distributed data security. In addition, it is not scalable to the size of IoMT [10].

IDSs based on distributed learning, such as Federated Learning (FL) or Split Learning (SL), are
used in distributed environments to overcome the limitations of CL. FL is an efficient approach that
trains the model with its local data among multiple clients and shares the model update with the server.
FL preserves data privacy while enabling collaborative model development. However, FL suffers from
high training time and communication overhead [11]. On the other hand, SL splits the model into two
parts, one for clients and one for servers, which reduces the computational cost and can help reduce
training time [12]. SL offers advantages in terms of computational resources, but it faces challenges
such as communication overhead and potential security vulnerabilities at the split point. Both FL
and SL are not efficient when the number of clients increases, having heterogeneous datasets, and
with constraints on communication resources. Federated Split Learning (FSL) is emerging research



IASC, 2024, vol.39, no.5 951

combining FL and SL that could solve problems of both FL and SL and offer more secure, efficient,
and scalable distribution systems [13]. Most existing IDSs are not scalable to the network size. It suffers
from low detection accuracy, training time, and communication overhead. These issues have negatively
affected the throughput of real-time applications such as IoMT, and we need to solve them urgently.

Figure 1: 5G-IoMT system architecture

Recently, a user selection strategy has been used to reduce communication overheads. In FL,
different selection schemes have been proposed in [14], including four schemes. The first scheme is Best
Channel (BC), where the user is selected based only on the channel condition. The second scheme is
Best l2-Norm (BN2), where the user is selected according to the significance of the model update. The
third scheme is Best Channel-Best l2-Norm (BC-BN2), which considers the channel condition and the
significance of the model update. The last scheme is Best l2-Norm-Channel (BN2-C), where each user
performs a Decentralized Stochastic Gradient Descent (D-SGD) quantization scheme assuming all
bandwidth availability to itself and finds the resultant quantized vector and the significant importance
of the local update is sent to the server. In [15], a user equipment UE selection scheme named Multi-
Arm Bound (MAB) is based on BC-BN2 (MAB-BC-BN2). The proposed scheme uses the discounted
Upper Confidence Bound (UCB) strategy to make the selection decision based on the UCB score.



952 IASC, 2024, vol.39, no.5

Nevertheless, the above schemes, including channel quality and the importance of local model update,
are popular selection strategies in FL. In practice, it is not practical because it is difficult to get
an accurate selection before the learning process is executed, which leads to more computation and
communication consumption.

Motivated by the above, this paper proposed a distributed FSL (DFSL) system to detect DDoS
attacks, enhancing detection accuracy and reducing training time and communication overhead. Three
research questions were formulated as follows:

Q1: How do we distribute the detection model with high detection accuracy and low training time?

Q2: How can the communication overhead of the system be reduced?

Q3: How can we test the effectiveness of the proposed system?

To address the research questions of this paper, the following contributions were identified:

1. Propose a novel distributed FSL (DFSL) system to detect DDoS attacks in IoMT. An adaptive
aggregation method is designed based on the early stopping strategy to reduce training time
and enhance detection accuracy.

2. Propose a Multi-Node Selection (MNS) based Best Channel-Best l2-Norm (BC-BN2) selection
scheme to reduce communication overhead. The nodes are selected based on the importance of
local update, channel quality, and the nearest distance from the server. The MNS dynamically
identifies the irrelevant local updates during the training process to avoid computation and
communication resources consuming.

3. Test the system performance using Convolutional Neural Network (CNN) and a hybrid model
that combines the CNN and long Short-Term Memory (LSTM), on two modern datasets such
as CICDDoS2019 and LITNET-2020, and compare the performance with baseline distributed
approaches such as FedAvg, Vanilla SL, and SplitFed algorithms.

The paper is organized as follows. A brief overview of FL, SL, FSL, and related works is provided
in Section 2. Section 3 describes the problem formulation. The proposed work of the DFSL system
and MNS scheme are described in Section 4. Section 5 describes the dataset description and data
preprocessing. The performance results and comparative analysis are presented in Section 6. The
discussion is presented in Section 7. Finally, the conclusion and future work is described in Section 8.

2 Literature Review

This section described a background for the FL, SL, and FSL approaches. Then, related works
that are based on ML, CL, and distributed learning IDS in IoMT networks are presented.

2.1 Federated Learning

In Federated Learning (FL) [16], the model is trained at each client in parallel with its local data for
its local epochs. After that, the local model updates are sent to the server for model aggregation. The
server aggregates the received local updates, generates the global model update, and sends it back to the
clients so they can train for the next round. After receiving the global model update, each client trains
the global parameters on its local data and sends its local update to the server. This process continues
until the model converges. Federated Averaging (FedAvg) algorithm [17] is the popular centralized
aggregation algorithm in FL. FedAvg algorithm considers a weighted average of the gradients for the
model updates. Based on the FedAvg procedure, as shown in Fig. 2, the server initializes the global
model parameter w0 and broadcasts the initial global parameter to the clients. Then, each client n



IASC, 2024, vol.39, no.5 953

receives the initial parameter and starts the local training with its local data Dn. The local loss function
L for each client n with Dn is calculated as

Ln (w) = 1
|Dn|

∑
i∈Dn

l(w, si
n) (1)

where |Dn| is the dataset size and l(w, si
n) is the loss function of the model at data sample si

n. The global
loss function L (w) over the data for the clients is calculated as

L (w) =
∑N

n=1 DnLn(w)

D
(2)

where D is the global data, and N is the number of clients. The local training updates wn
t+1 is

calculated as

wn
t+1 = wn

t − αt∇g(wn
t ) (3)

where αt is the learning rate, ∇g(wn
t ) is the gradients for wn

t of loss function L. The global model
parameter wt is updated at the server by aggregating each local update wn

t+1 from each client and sending
it back to the clients; this process is repeated until the loss function reaches the optimal value for the
global model. The global model update is represented as

wt =
∑N

n=1 Dnwn
t+1

D
(4)

Figure 2: FedAvg architecture

2.2 Split Learning

In Split Learning (SL), the model is trained sequentially with its local data. The training raw data
is stored in the client, and the server cannot access the raw data. Four SL configuration strategies
include Vanilla SL, U-shaped SL, Vertically SL, and two-part SL configurations. Vanilla SL [18] is the
most popular SL algorithm where the model is partitioned into at least two parts and shares labels. The
first part runs on the client wn

t+1, and the second part runs on the server ws
t; it trains its smashed data

up to the cut layer C, as shown in Fig. 3. Each client needs to update its local model parameters before
starting the next round of training. In the sequential training, the client performs forward propagation
wn

t+1 on its local data Dn and sends the activations an
t up to the cut layer to the server. Then, the server

receives the client’s activation an
t and performs the forward propagation until the last layer of the model

ws
t. After that, the server performs the backpropagation, and the gradient gn

t of the client cut layer is



954 IASC, 2024, vol.39, no.5

sent back to the client. Then, the client updates the model on its side and sends it back to the server
for updates.

Figure 3: Vanilla SL architecture

U-shaped SL is another split configuration similar to Vanilla SL but without label sharing.
Because the client does not share the label, the client completes learning. In U-shaped SL, the client
has one or more bottom layers and one or two top layers, whereas the middle layers are allocated by the
server. Vertically SL is a way to train a split model with different data without sharing data. Each client
trains a part of the model up to the cut layer C. After that, the data is sent to the server to complete
the rest of the learning process. Finally, two-part SL is a strategy to split the model into only two parts
between clients and server [19]. The SL helps reduce training time where the model is portioned among
multiple clients and server, but most of the SL algorithms suffer from high communication overhead.

2.3 Federated Split Learning

Federated Split Learning (FSL) is a promising distributed learning that combines FL and SL
approaches and takes advantage of the two approaches. It trains the model in parallel among multiple
distributed clients in FL and splits the entire model between the clients and server in SL. SplitFed
is the first method in FSL that eliminates the drawbacks of FL and SL. Unlike FL, the model is
portioned and trained among the clients and the server to reduce training time. On the other hand,
it does their training in parallel to reduce computation time and enhance learning performance, as
in FL. It works similarly to the classic SL setting, except the existing fed server on the client side
performs federated aggregation [20]. MiniBatch-SFL is proposed to incorporate MiniBatch SGD to
FSL, where the clients train the client-side model in an FL fashion, and the server trains the server side
and analyzes the convergence of the data [21]. A Communication and Storage Efficient FSL (CSE-
FSL) strategy is proposed using the auxiliary network to update the local model at the client while
keeping only a single model at the server, which helps to avoid the communication of gradients from
the server and reduces the server resource requirement [22]. Finally, a comparison of the FL and SL
settings regarding communication efficiency is explained in [23].

2.4 Related Works

The following presents the most current IDS for detecting attacks in the IoMT environment.

Saheed et al. [24] developed an efficient IDS in IoMT based on Deep Recurrent Neural Network
(DRNN) and ML models such as Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors



IASC, 2024, vol.39, no.5 955

(KNN), and ridge classifiers. The goal is to classify and forecast unexpected cyber-attacks. They
evaluated the developed IDS with the NSL-KDD dataset, and it outperformed the existing approaches
with an accuracy of 99.76%. Manimurugan et al. [25] proposed a DL-based method Deep Belief
Network (DBN) algorithm for IDS in IoMT. The CICIDS2017 dataset is used to test the proposed
algorithm. The results achieved 96.67% accuracy for the DoS/DDoS class, 95.21% precision, 97.34%
recall, 0.97 F-measure, and 97.31% detection rate. Usman et al. [26] proposed a framework that
divides an underlying wireless multimedia sensor network into many clusters in IoMT. Each cluster
has a cluster head, which is responsible for protecting the privacy data via data and location
coordinates aggregation. Then, the aggregated data are processed on the cloud using Artificial Neural
Network (ANN). The proposed P2DCA framework is implemented with the CICIDS2017 dataset
and compared with the existing schemes. It achieved 150 min training time, 350 MB communication
overhead, and 95.56% accuracy. Ren et al. [27] proposed Data Optimization IDS (DO-IDS) to identify
the anomaly behaviors in the network. The proposed DO-IDS used hybrid data optimization. They
used Isolation Forest (iForest) in data sampling and Genetic Algorithm (GA) to optimize the sampling
ratio. The RF and GA are used in feature selection to obtain the optimal subset. The DO-IDS is tested
using the RF classifier with the UNSW-NB15 dataset; it scored an accuracy of 92.8% and a false alarm
rate of 0.330.

Some of the studies used the CL approach to detect attacks. Gudla et al. [28] proposed a Deep
Intelligent DDoS Detection Scheme (DI-ADS) for IoT applications. The model is implemented in the
fog layer to predict the behavior of the fog devices. The scheme was implemented using Multilayer
Perceptron (MLP) on a dataset for Software Defined System called DDoS-SDN that consists of
three types of DDoS attacks. The results showed the accuracy of 97.84% and 1000 min training
time. Priyadarshini et al. [29] proposed a source-based DDoS defense mechanism in fog and cloud
environments. The defender module is deployed at the SDN controller to detect abnormal behavior
in the network and transport layer. The detection model is implemented using LSTM on CTU-13
Botnet and ISCX 2012 IDS datasets. The accuracy of the model was 87.67% and 87.96% for CTU-13
Botnet and ISCX 2012 IDS, respectively. Zhang et al. [30] proposed a DDoS detection model based on
Bidirectional LSTM (BiLSTM) at edge computing. The model achieves information extraction using
the BiLSTM network and automatically learns the characteristics of the attack traffic in the original
data traffic. The proposed model, called power IoT, was implemented in their data and achieved an
accuracy of 95%, 250 min training time, and 520 MB communication overhead.

For distributed learning, little works addresses the security in IoMT using FL, SL, and FSL
approaches. Verma et al. [31] proposed an FL Deep Intrusion Detection (FLDID) framework in smart
industries. The proposed framework builds a collaborative model to detect DDoS attacks. They used
CNN+LSTM+MLP in the detection model with the X-IIoTID dataset. The proposed framework
outperforms the other approaches with 99.22% accuracy and 3042 s training time. Rey et al. [32]
proposed an FL framework to detect malware in IoT devices. The N-BaIoT dataset is used and is
designed for network traffic of multiple IoT devices. Two different DL models, MLP and Autoencoders
(EA), are used for detection. The performance of the models is compared with the traditional
approach, which shares its data with the server, and with the traditional approach, which does
not share its data. The performance of the proposed framework scored an accuracy of 95% and
88 MB communication overhead. Alhasawi et al. [33] introduced a federated learning-based approach
to detect DDoS attacks known as FL for decentralized DDoS Attack Detection (FL-DAD). The
detection model used CNN to effectively identify DDoS attacks on the CICIDS2017 dataset. The
model is compared with centralized detection methods, and it achieved 99.3% accuracy, 48.3 s training
time, and 390.2 MB communication overhead with the maximum number of nodes.



956 IASC, 2024, vol.39, no.5

Yu et al. [34] proposed a Pseudo-Client ATack (PCAT) based on SL to detect DDoS attacks
with more challenging situations where the client model is unknown to the server. They investigated
the inherent privacy leakage via the server model in SL, where the server model can easily steal the
data. The server trains a small part from the dataset, about 0.1%–5%, for the same learning task. The
performance is evaluated using the Deep Neural Network (DNN) model on the MINIST dataset with
a two-part SL strategy, where the results scored an accuracy of 96.98%. Abuadbba et al. [35] examined
the SL on the 1D CNN model to detect DDoS attacks. They tested the model with medical ECG
data and added two mitigation techniques. The first technique adds more hidden layers to the client
side. The second technique applies various privacy. The model achieved 98% accuracy and 20 min
training time.

Khan et al. [36] performed the first empirical analysis of the SplitFed algorithm. They used
SplitFed to design a strong detection model. The CIFAR10 and FEMNIST datasets are used with
Alexnet and VGG11 models to perform the training process. The results of the Alexnet and VGG11
in the CIFAR10 dataset, the accuracy scored 62.4% and 73%, respectively. For the custom model in the
FEMNIST dataset, the accuracy scored 81%. The communication overhead scored 150 and 200 MB
for both datasets. Li et al. [37] proposed an attack detection approach FSL in real IoT scenarios. The
proposed approach for the construction of global models of various time series in the context of data
isolation has the ability to detect attacks. The experiment is applied to the CNN model and MNIST
dataset. It achieved an accuracy of 93.56%, precision of 92.78%, recall of 93.19%, and F-measure of
92.98%.

All related works that are mentioned above are summarized in Table 1.

Table 1: Comparison between different detection methods

Ref./year Method Dataset Finding Limitations

[24] 2021 DRNN
and ML

NSL-KDD ACU: 99.76% Accuracy alone cannot ensure
the effectiveness of the
proposed IDS in IoMT
detection

[25] 2020 DBN CICIDS2017 ACU: 96.67% No consideration was given to
training time and
communication overhead

Precision: 95.21%
Recall: 97.34%
F1: 0.97
DR: 97.31%

[26] 2019 ANN CICIDS2017 ACU: 95.56% Accuracy, training time, and
communication overhead need
to be improved

Training time: 150 min
Communication
overhead: 350 MB

[27] 2019 DO-IDS
with RF

UNSW-NB15 ACU: 92.8% Accuracy needs to be improved
FAR: 0.330

[28] 2022 MLP DDoS-SDN ACU: 97.84% Training time needs to be
reducedTraining time: 1000

min

(Continued)



IASC, 2024, vol.39, no.5 957

Table 1 (continued)

Ref./year Method Dataset Finding Limitations

[29] 2022 LSTM CTU-13
Botnet and
ISCX 2012
IDS

ACU: 87.67% and
87.96%

Accuracy needs to be improved

[30] 2022 BiLSTM Power IoT ACU: 95% Results need to be improved
Training time: 250 min
Communication
overhead: 520 MB

[31] 2022 FLDID X-IIoTID ACU: 99.22% Communication overhead was
not consideredTraining time: 3042 s

[32] 2022 FL with
MLP and
EA

N-BaIoT ACU: 95% There is still room for
improvementCommunication

overhead: 88 MB
[33] 2024 FL-DAD

with CNN
CICIDS2017 ACU: 99.3% Communication overhead

needs to be improvedTraining time: 48.3 s
Communication
overhead: 390.2 MB

[34] 2023 SL with
DNN

MINIST ACU: 96.98% Accuracy alone is not enough
to prove the effectiveness of
the proposed IDS in IoMT
detection

[35] 2020 SL with
1D-CNN

ECG dataset ACU: 98% Communication overhead was
not considered, and accuracy
can be improved

Training time: 20 min

[36] 2022 Empirical
SplitFed

CIFAR10 and
FEMNIST

ACU: 73% and 81% Accuracy needs to be
improved. Training time and
communication overhead are
not considered

[37] 2023 FSL with
CNN

MINIST ACU: 93.56% No consideration was given to
training time and
communication overhead

Precision: 92.78%
Recall: 93.19%
F1: 92.98%

Note: • (ACU) for Accuracy in (%), (F1) for F-measure in (%), (DR) for Detection Rate in (%), and (FAR) for False Alarm Rate.

Three important criteria to improve IoMT networks are detection accuracy, latency, and com-
munication overhead. Most existing works that address the security in IoMT based on ML, CL, and
distributed learning suffer from low detection accuracy, high training time, and high communication
overhead, which is not acceptable for real-time and latency-sensitive applications such as IoMT. In
addition, most of the datasets are out of date and related to different types of security attacks; there is a
lack of datasets related to DDoS attacks. To solve the problems of existing attack detection, we propose
a distributed FSL (DFSL) system to detect DDoS attacks in the IoMT environment, supporting the



958 IASC, 2024, vol.39, no.5

existing issues. An adaptive aggregation method based on the early stopping strategy is proposed to
enhance detection accuracy and reduce training time. In addition, to improve the communication
overhead, we propose a Multi-Node Selection (MNS) based BC-BN2 scheme with three selection
metrics. The proposed system is evaluated using two modern DDoS datasets, CICDDoS2019 and
LITNET-2020.

3 Problem Formulation

As mentioned above, IDS based on ML and CL has multiple challenges, including learning
performance, training time, and communication overhead. The first Optimization Problem (OP)
considers the learning performance of ML and CL, which needs optimization to maximize the
detection accuracy. FL helps to enhance the learning of a statistical model at the server to generate a
model with high accuracy with distributed datasets among multiple clients. Therefore, the server needs
to minimize the global loss function.

OP1: The first objective is to maximize detection accuracy by minimizing the global loss function
L (w) in FL according to Eq. (2) which is subject to massively distributed data constraint where the
global data D is stored across a large number of clients N. The objective function can be modeled as

J(w) = minDn(L (w))

Subject to
∑N

n=1
Dn = D (5)

Although the FL may enhance learning performance, it suffers from high training time, which
takes a long time to compute. The term computation refers to the number of training epochs/rounds
ne and the number of model steps/epochs ns that are assigned for each client n. By multiplying these
two values, we get the total number of steps/rounds of the model for each client. The total training
time in one communication round t is calculated as

T = max
(
Tn

w + (ne × ns) × Tn
s

)
(6)

where Tn
w is the total time for two-way transmission between client n and server s and Tn

s is the total
time for the client n to complete the model steps.

OP2: The second objective is to reduce the total training time T with maximum CPU frequency
constraint. The objective function can be modeled as

z = min(T)

Subject to CPUmin ≤ CPUn ≤ CPUmax (7)

A distributed FSL (DFSL) system with an adaptive aggregation method based on the early
stopping strategy is proposed to solve OP1 and OP2. Moreover, FSL suffers from high communication
overhead, especially in SL training. For each round, the server should collect the smashed data from all
clients to train the server-side model, and all clients must wait for gradients from the server to update
its local model. We consider the communication overhead of client n at tth communication round can
be calculated as

COn
t = Bn

t log2

(
1 + Pn

t

Bn
t

)
(8)

where Bn
t is the allocated bandwidth of client n at the t communication round, Pn

t is the transmission
power of node n at t communication round.



IASC, 2024, vol.39, no.5 959

OP3: The last objective is to reduce communication overhead with maximum transmission power
constraint. The objective function can be modeled as

u = min(COn
t )

Subject to 0 ≤ Pn
t ≤ Pmax (9)

A Multi-Node Selection (MNS) based BC-BN2 selection scheme is proposed to solve OP3. The
proposed selection scheme selects the nodes with three selection metrics: the importance of the local
update, channel quality, and the nearest distance from the server. Only the selected nodes are used for
global aggregation to reduce communication overhead.

4 Proposed Distributed FSL System

This section describes the details of the proposed distribution FSL (DFSL) system. First, the
channel model is illustrated. Then, the DFSL system procedure is introduced. Then, the MNS scheme
is explained. Finally, model convergence and complexity analysis are described.

4.1 Channel Model

The channel model of the proposed distributed FSL (DFSL) is based on uplink massive MIMO
technology. The massive MIMO technology has been used in recent years with 5G to achieve high
spectral efficiency and throughput, which is needed for IoMT networks. As shown in Fig. 4, the
channel model consists of multiple clients, a base station with multiple antennas, and one server.
The clients are fog nodes represented as N = {n1, n2, . . . , ni}, where each fog node represents a fog
server distributed in different areas. We assume that neither the nodes nor the server is attacked. We
use a 16 × 16 MIMO antenna configuration where increasing the number of antennas helps avoid
interference with the neighbor nodes. We suppose the uplink massive MIMO is equipped with M
antennas at the base station and communicates with the set of fog nodes N simultaneously. If the
signal is transmitted from the node to estimate the channel is x ∈ CN, it is received at the base station
during uplink transmission as

y = Hx + nuplink (10)

where y ∈ CM is the signal received, H is the channel vector between the node and base station,
and elements of H ∈ CM×Nare independent and distributed with unit variance and zero mean
H ∼CN(0, 1). The nuplink ∈ CM is the additional interference from the multiple transmission and
receiver noise. This interference is independent of the node signal x, but it can be dependent on the
channel H as

nuplink = nuplink−interference + nnoise (11)

4.2 DFSL Procedure

The proposed DFSL is based on the FSL approach to maximize detection accuracy and reduce
training time. Fig. 5 shows the DFSL system framework. Because the IoMT devices are resource-
constrained and limited in computations, our DFSL algorithm works on fog nodes which have high
computation capabilities and can avoid latency in computations. The proposed system works in three
phases including initialization and model splitting, local model training, and adaptive aggregation.



960 IASC, 2024, vol.39, no.5

Figure 4: System channel model

Figure 5: Proposed DFSL framework



IASC, 2024, vol.39, no.5 961

4.2.1 Initialization and Model Splitting

The server randomly selects the nodes randomly and broadcasts the initial global parameter w0 to
all selected nodes. After receiving the initial parameter, the model is split between the node and server.
Based on the two-part SL strategy, the CNN and CNN+LSTM models are split into two parts, as
shown in Fig. 6. The first part runs on the node side, and the second runs on the server side. The
CNN model is used with four convolutional layers (Conv), two max-pooling layers (Max-Polling),
two dropout layers (Dropout), and three fully connected layers (FC). The first part consists of Conv 1
and Conv 2 operated with (convolution filters = 16, filter size = 3, and output shape = 16 × 196 feature
matrix), Max-Pooling 1 with pooling size = 2, (Conv 3 and Conv 4) operated with (convolution filters
= 32, filter size = 3, and output shape = 16 × 128 feature matrix), and max-pooling 2 with pooling
size = 2. The second part has many layers, including FC 1, Dropout 1, FC 2, Dropout 2, and FC
3. One padding is applied before each convolution operation, and the Rectified Linear Unit (ReLU)
is chosen as an activation function of hidden layers. Sigmoid is used to activate the last FC layer.
For the CNN+LSTM model, the same layers with the same configuration add an LSTM layer after
Max-Pooling 2 in the part that is operated with (filter size = 64 and the output shape = 64 × 128).

Figure 6: Two-part SL (a) CNN; (b) CNN+LSTM

4.2.2 Local Model Training

After model splitting, each node with its smashed data computes activation an
t up to its cut layer

C with the server and updates its local model update. Now, the server receives the an
t and performs

the forward propagation as
t from its split layer up to the last layer in the model and calculates the loss

function Ln

(
wn

t+1

)
. After that, the backpropagation is calculated and sent back to the node to update its

model part. When the server receives the final update from the node, it calculates the backpropagation
to the last layer and updates the model wn

t+1. The backpropagation (gradient) and model update on the
server side are calculated as

gs
t = ∇L

(
as

t, ws
t

)
(12)

gn
t = ∇L

(
an

t , wn
t

)
(13)

The local model updates on the node side are calculated as

wn
t+1 = wn

t − αt∇g(wn
t ) (14)



962 IASC, 2024, vol.39, no.5

4.2.3 Adaptive Aggregation

An adaptive aggregation method is proposed to reduce training time and enhance detection
accuracy. When training a model, the weights are the most important parameter for learning the model.
The objective of the nodes’ local training process is to find the weight that enhances the global model’s
accuracy on the local training sets. Therefore, the proposed adaptive aggregation adopts a computation
amount controlled strategy that performs a certain number of model training steps per round to each
node. This controlled strategy is based on the gap between the current local model’s accuracy and loss
on the training set, as well as the maximum achievable accuracy and minimum achievable loss.

Unlike FedAvg, which perform fixed computation (ne and ns) to the nodes in each communication
round. The proposed adaptive aggregation method can assign specific computation amounts to each
node based on the early stopping strategy. The early stopping strategy aims to prevent the training
at the inflection point where the performance is not improved, reducing the overall training time.
The early stopping strategy stops the training based on the classification score to enhance detection
accuracy. This classification score includes the accuracy and loss scores. Accuracy and loss are
important parameters that determine the model’s behavior based on its score value. As a result, nodes
with larger accuracy and loss gaps are needed to perform extra training rounds to obtain the optimal
score. Conversely, nodes with smaller gaps are assigned fewer steps.

Our idea is that FedAvg’s convergence can be improved by using the max score of accuracy and
loss in the training set to smartly stop the training at a certain point and to set the values for ne and
ns for each node and each round. By reducing the computational time, the convergence time will be
optimized.

The adaptive aggregation works in three steps. First, the server determines the maximum score
scoremax by computing the training accuracy for the local update at each round. Then, the accuracy
value is subtracted from (μ × loss) as

scoremax = wn
t+1(acc) − wn

t+1(μ × loss) (15)

The μ is a hyperparameter used to balance accuracy and loss in the overall score; it is assigned to
the default value μ = 0.5.

Second, the current scoremax is compared to the average score scoreavg of the rest of the local updates.
If the current scoremax exceeds the scoreavg value, the model is saved as best model wn

t+1 and the new score
as best score scoreb_max. Otherwise, it will not be saved as the best model. This can be expressed as

wn
t+1 =

{
wn

t+1 if scoremax > scoreavg

wn
t+1 if scoremax < scoreavg

(16)

Finally, the stopping counter sc is set to 0 when assigning the best model. Otherwise, sc is increased
by one to record no improvement. When sc > patience (patience is the number of epochs/rounds with
no improvements after which training will be stopped; we set the patience = 10 rounds), the process
stops, and the local update is starting aggregation.

Subsequently, the server aggregates the selected local updates to obtain the global model updates.
The global model aggregation is calculated as

wt = wt −
∑n

n=1
∇Ln(w

n
t ) (17)

The workflow of the proposed DFSL system is described in Algorithm 1.



IASC, 2024, vol.39, no.5 963

Algorithm 1: Proposed DFSL
Require: Node n ∈ N, initial global parameter w0, local training data Dn of node n, activation as

t up to
the last layer of the server at round t, activation an

t up to cut layer C of the node n at round t, gradients
gs

t of server s at round t, gradients gn
t of node n at round t, maximum score scoremax, stopping counter

sc, epochs e, training steps s, number of epochs/round assigned to the node ne, and number of model
steps/epochs ns,
1. scoremax = 0
2. sc = 0
3. ne = emax, ns = smax

// Initialization
4. Server initializes w0

5. for each round t = 0, 1, . . . , T do
6. Select a random set N of n nodes
7. Server sends w0 to all n nodes participating in the round t
// Local model update
8. Each node n ∈ N containing the smashed data, performs forward propagation up to its cut

layer C
9. Each node n ∈ N sends the activation an

t of its cut layer C to the server
10. Server that received the activation an

t from node n, performs forward propagation
as

t from its cut layer to the final layer and compute loss value Ln

(
wn

t+1

)
11. Server performs backward propagation gs

t in (12) and send the gradient of its loss
value to the node n

12. Each node n ∈ N that received the gradient from the server, performs the backward
propagation gn

t in (13) and updates its local model update wn
t+1 in (14)

// adaptive aggregation
13. Server computes scoremax

(
wn

t+1

)
in (15)

14. if scoremax > scoreavg

15. wn
t+1 = wn

t+1

16. scoremax = scoreb_max

17. sc = 0
18. else
19. sc = sc + 1
20. end if
21. if sc > patience then
22. Process stop and server aggregate the local update as wt = wt − ∑n

n=1 ∇Ln(w
n
t )

23. end for
24. return wt

4.3 Multi-Node Selection

The fog nodes are connected to a wireless network via a radio communication link with con-
strained bandwidth. Although the DFSL reduces communication overhead by sharing model param-
eters rather than raw training data, the transmission of complex models from many nodes still generates
much traffic. The goal is to reduce the number of nodes participating in each communication round
to reduce overall communication overhead. One common technique to reduce the communication
overhead in a distributed network is the node selection technique.



964 IASC, 2024, vol.39, no.5

Based on the BC-BN2 which selects the nodes based on two metrics including the importance of
local update and channel quality, the proposed MNS scheme selects the nodes based on three metrics.
These metrics include the importance of local update, channel quality, and the nearest distance from
the server. Selecting nodes with important local update helps to improve the model performance and
get an accurate model. On the other hand, selecting the node with good channel quality and the nearest
distance from the server improves communication and reduces communication time consumption.

For selecting nodes with the importance of local update, the nodes need to compare their local
updates with the global update to determine the importance of its update in each communication
round. The issue here is we cannot know if the global update is relevant or not until all local updates are
aggregated. So, we can use the previous global update for comparison. To ensure the correct relevance
between the previous global update and the current local update, we take the difference between two
sequential global updates because the model training does not always have constant model convergence
in each communication round. The normalized difference between two previous sequential global
updates is measured as

Δwt = ‖wt−1 − wt‖
‖wt‖ (18)

where ‖·‖ is the Euclidean norm for a given vector, wt and wt−1 are two previous sequential global
updates generated in rounds t and t − 1, respectively.

A larger normalized difference means a larger divergence between the two updates. To ensure
no large divergence between the two updates, the CNN and CNN+LSTM models are trained and
measured for the cumulative distribution of the normalized divergence of the two global updates.
As shown in Fig. 7, we see that for CNN, more than 98% of the difference is less than 0.3, where
the maximum difference is 0.5. For CNN+LSTM, more than 99% has a difference of less than 0.2,
where the maximum difference is 0.4. We can ensure that the previous global update can be used for
the current global update. This prediction does not require more communications because each node
maintains the global update made in the previous round. The current local update is compared to
the previous round’s global update. The relevance between the local and global update is determined
by computing the number of parameters with the same sign (gradients) in the two updates and
normalizing the result by the total number of parameters. The relevance between the two updates
is formulated as

r(wn
t+1, �wt) =

{
1 if sign

(
wn

t+1

) = sign (�wt)

0 Otherwise
(19)

where wn
t+1 and Δwt are the current local update and relevant global update, respectively. If

r(wn
t+1, �wt) = 1, this means the wn

t+1 and Δwt have the same parameters sign. If r(wn
t+1, �wt) = 0,

this means the wn
t+1 and Δwt have different parameter signs.

Now, the nodes that have the important local update are denoted as N = {n1, n2, . . . , ni}. After
determining the nodes with the important local update, each relevant node n is measured in its channel
quality. Unlike the BC-BN2, which uses the channel gain to test the channel quality, our MNS
measures the channel quality by its capacity. The channel capacity in IoMT is very important to avoid
latency. The channel capacity in MIMO communication is calculated based on the Shannon theorem
as

Capacity = B log2 (1 + SNR) (20)

where B is the bandwidth of the channel, and SNR is the Signal-to-Noise Ratio.



IASC, 2024, vol.39, no.5 965

Figure 7: Cumulative distribution of CNN and CNN+LSTM

When the SNR is close to 0, the term (1 + SNR) is close to 1, and the logarithm term
log2 (1 + SNR) is close to 0. As a result, the Capacity is also close to 0 bps, regardless of the available
bandwidth B. This means that on an extremely noisy channel with an SNR close to 0, the channel
capacity is effectively zero. No meaningful information can be transmitted through the channel due to
the overwhelming noise. The channel is essentially unusable for reliable data transmission. Therefore,
node n that has Capacity ≥ 1 is considered good channel quality and starts to measure its distance
from the server.

The nearest distance between the node n and server s is determined using the K-Nearest Neighbor
(KNN) algorithm. The KNN algorithm works in three steps. First, select the value of k, which
represents the number of nearest neighbors that need to be considered. It differs based on the total
number of nodes. Second, calculating the distance using Euclidean distance as

dis(n, s) = (
d

(
xi − xj

) + d
(
yi − yj

))2
(21)

where (xi, yi) are the coordinates of the node point,
(
xj, yj

)
are the coordinates of the server point, and

d is the distance between (xi, yi), and
(
xj, yj

)
in a two-dimensional plane.

Finally, finding the nearest neighbor nodes, the k points with the smallest distance to the server
are the nearest neighbors.

Because the first round doesn’t have a previous global update, the nodes are selected randomly.
The proposed algorithm starts from the second round, only node n with good channel quality and
the nearest distance from the server is selected for aggregation. The procedure of the MNS scheme is
described in Algorithm 2.

Algorithm 2: MNS algorithm
Require: Node n ∈ N, current local update wn

t+1, and previous two global updates wt at round t and
wt−1 at round t − 1, B, and SNR.
1. for each round t = 1, 2, . . . , T do
// Importance local update
2. for each node n ∈ N in parallel do

(Continued)



966 IASC, 2024, vol.39, no.5

Algorithm 2 (continued)
3. Compute the difference between wt−1 and wt in (18)
4. Check the relevance between wn

t+1 and Δwt

5. if r(wn
t+1, �wt) = 1 then

6. Define wn
t+1 as a relevant update on a relevant node n

7. else
8. Define wn

t+1 as an irrelevant update
9. end if
10. end for
// Channel quality and nearest distance
11. for each n ∈ N in parallel do
12. Compute capacity in (20)
13. if Capacity(n) ≥ 1
14. Compute Euclidean distance (n, s) in (21)
15. Select the node and upload the relevant wn

t+1 for aggregation
16. else
17. Ignore the node
18. end if
19. end for
20. end for

4.4 Convergence Analysis

In this section, the fundamental convergence analysis that affects the node side and server side on
its training is performed. First, the technical assumptions are made. Then, the convergence result is
presented.

A. Assumptions

First, we make the following four assumptions for convergence analysis.

Assumption 1. (�-smooth) Each local loss function Ln (w) is differentiable and �-smooth. For all w
and w∗, we have

Ln (w) ≤ Ln (w∗) + (∇Ln (w∗), w − w∗) + l
2

‖w − w∗‖2 (22)

Assumption 2. (μ-strongly convex). Let L1, . . . , Ln are μ-strongly convex. For all w and w∗

Ln (w) ≥ Ln (w∗) + (∇Ln (w∗), w − w∗) + μ

2
‖w − w∗‖2 (23)

Assumption 3. (Unbiased and bounded stochastic gradient with bounded variance). Let ξ n
t represent

the random sample dataset from node n, and gn(wn
t ) of Ln

(
wn

t

)
ae unbiased with the variance bounded

by σ 2
n that measures the level of stochasticity

Eξn
t ∈Dn

∥∥gn(wn
t , ξ

n
t ) − ∇Ln(wn

t )
∥∥2 ≤ σ 2

n (24)

Further, the expected squared norm is bounded by G2

Eξn
t ∈Dn

∥∥gn(wn
t , ξ n

t )
∥∥2 ≤ G2 (25)



IASC, 2024, vol.39, no.5 967

Assumption 4. (Partial participation). As discussed before, only subset of nodes is selected to
participate in model aggregation in each communication round t. Let N be the selected subset of

nodes. The probability of each node n to be selected for model aggregation is P = N
N

. Assuming the

data is balanced and non-IID, thus the model aggregation at the server is represented as

wt = wt − N
N

∑n

n=1
∇Ln(wn

t ) (26)

B. Convergence result

Based on the previous assumptions, the following results are obtained.

Theorem 1. Based on Assumptions 1–4, we assume � = 2
μ

with ι = 4�

μ
and N = �

μ
, then, the

DFSL algorithm with N nodes selected for participation satisfies

E[L(wT)] − L∗ ≤ N
ι + T − 1

ł
(

2W
μ

+ μι

2
E ‖w − w∗‖2

)
(27)

where W = ∑N

n=1 σ 2
n + 6l + 8G2

(
1 − N

N

)

Proof. By defining ∇Ln = E ‖w − w∗‖2 and setting ∇Ln ≤ w
ι + t

with �
2
μ

and ι > 0, we have

w = max
{

�2W
�μ − 1

, (ι + 1)E ‖w1 − w∗‖
}

(28)

≤ �2W
�μ − 1

, (ι + 1)E ‖w1 − w∗‖

≤ 4W
μ2

, (ι + 1) E ‖w1 − w∗‖

Then by �-smooth of L(·) and let N = ι

μ
,

E [L (wt)] − L∗ ≤ ι

2
∇t ≤ ι

2
W

2t + ι
≤ N

t + ι

(
2W
μ

+ μ(ι + 1)

2
E ‖w1 − w∗‖

)
(29)

The convergence of the model is stable without extra communication overhead. Moreover, the
convergence performance doesn’t affect the number of selected nodes, but the speed of convergence
increases with the increasing number of selected nodes. The convergence rate achieves an order of
O(1/T).

4.5 Complexity Analysis

Suppose the total number of nodes is N, each with a local data size S, model parameter size W ,
and Q nodes selected for participation for model aggregation in each communication round, with each
node conducting R local rounds.



968 IASC, 2024, vol.39, no.5

1. Node-side computation complexity: The computation complexity of each local update is based
on the number of samples updated in each round and the number of communication rounds.
The time complexity of local updates for each node is O(RS).

2. Server-side computation complexity: The computation on the server side is divided into model
training, model aggregation, and weight update. For model training, as on the node side,
the time complexity of local updates for each node is O(RS). For model aggregation, the
complexity is based on the number of nodes participating in aggregation and the size of
model parameters. Therefore, the time complexity of model aggregation is O(QW). For weight
update, the weight at the server is recalculated depending on the sampling count of all nodes.
The time complexity is O(N).

3. Communication overhead analysis: Four communications between the node and server, includ-
ing forward propagation transmission from the node to the server, backward propagation
transmission from server to the node, aggregation from node to the server, and global update
from server to the nodes. The time complexity for the first three communications is O(QW),
and for the aggregation, it is O(NW). The total communication overhead is O(QW) + (NW).

5 Data Description and Preprocessing

This section describes the datasets used in implementation and data preprocessing, including
different techniques.

5.1 Datasets Description

The CICDDoS2019 [38] and LITNET-2020 [39] datasets are used to direct this work. These
datasets are designed for the types of DDoS attacks. The details of the CICDDoS2019 and LITET-
2020 datasets are as follows.

5.1.1 CICDDoS2019

A new network intrusion dataset has been selected named CICDDoS2019, designed in 2019; the
dataset consists of a large number of various types of DDoS attacks that can be carried out using
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) at the application layer.
The taxonomy of the DDoS attacks in the dataset is implemented in terms of reflection-based and
exploitation-based attacks. The dataset is organized in two days for training and testing evaluation.
The training set contains 12 different types, and the testing set contains 7 types of DDoS attacks.
The dataset has more than 80 features, which were extracted using the CICFlowMeter tool. The
distribution of the CICDDoS2019 data is described in Table 2.

5.1.2 LITNET-2020

The LITNET-2020 NetFlow is a new dataset obtained from a real-world academic network. The
network topology of the dataset consists of two parts: senders and collectors. The senders are Cisco
routers and Fortige (FG-1500D) firewalls, which were utilized to process NetFlow data and send it to
the collectors. The collector is a server with appropriate software that is responsible for receiving,
storing, and filtering data. The LITNET-2020 dataset represented real-world examples of normal
and attack traffic with 12 types of DDoS attacks. The total flow of the data samples is 45,492,310
flows, categorized into normal data with 45,330,333 flows and attack data with 5,328,934 flows. The
LITNET-2020 dataset consists of 85 network features divided into 49 features that are specified to the
NetFlow V9 protocol, 15 features are supplemented by the data extender, 19 features are offered to



IASC, 2024, vol.39, no.5 969

recognize attack types, and 2 additional features to determine the attack type and normal traffic. The
distribution of attacks in the dataset. The distribution of LITNET-2020 data is described in Table 3.

Table 2: Data distribution of CICDDoS2019

Types of attack No. of flows

Benign 56,863
DNS 5,071,011
LDAP 2,179,930
MSSQL 4,522,492
NetBIOS 4,093,279
NTP 1,202,642
SNMP 5,159,870
SSDP 2,610,611
SYN 1,582,289
TFTP 20,082,580
UDP 3,134,645
UDP-Lag 366,461
WbDDoS 439
Total 911,963,349

Table 3: Data distribution of LITNET-2020

Type of attack No. of flows No. of attack flows

Smurf 3,994,426 59,479
ICMP-flood 3,863,655 11,628
UDP-flood 606,814 93,583
TCP SYN-flood 14,608,678 3,725,838
HTTP-flood 3,963,168 22,959
LAND attack 3,569,838 52,417
Blaster worm 2,585,573 24,291
Code red worm 5,082,952 1,255,702
Spam bot’s detection 1,153,020 747
Reaper worm 4,377,656 1176
Scanning/Spread 6687 6232
Packet fragmentation 1,244,866 477
Total 45,330,333 5,328,934

5.2 Data Preprocessing

In data preprocessing, we divide the task into five steps, including features mapping, computing
the missing value, feature selections, data normalization, and data imbalance.



970 IASC, 2024, vol.39, no.5

5.2.1 Features Mapping

The data features in IoMT don’t contain only numeric values. So, a mapping technique is required
to convert the categorical values to numeric values. One-Hot Encoding (OHE) technique converts the
categorical features to integer format to be more expressive. The OHE transforms a single value with
n features and d distinct values to d binary values with n features. Each feature indicates the presence
of 1 or the absence of 0 of the dichotomous binary value. Using the OHE technique helps the deep
learning models deal with the numeric values effectively.

5.2.2 Computing Missing Value

The datasets always consist of many missing values, which come from different reasons such as
data failure or corruption during its recording, unreliable data transmission, and system maintenance
and storage issues. The missing value is calculated using a linear interpolation method as

EF (xi) =
{∑i+5

k=i−5 PkUk × Averagelocal if xi ∈ NaN
xi if xi /∈ NaN

(30)

The Averagelocal computed as

Averagelocal = 1
10

×
∑i+5

i−5
f (xi) (31)

where xi represents the data value, if xi is a null or non-numeric value, it is described as NaN. The Pk

is the imputed data point between 0 and 1, and it is chosen to be 0.10 because the smallest value gives
better performance. The Uk represents a binary value based on the threshold value of k. The threshold
value is computed as

Uk =
{

0 if xk < Averagelocal

1 if xk ≥ Averagelocal

(32)

5.2.3 Features Selection

Feature selection improves the quality of prediction during the selection of feature inputs. Feature
selection is the process of converting the set of features into a subset that contains the features that are
important to solve the detection problem and discard the unneeded features. In this paper, a Mutual
Information (MI) technique is used for features selection. The criteria of selecting features are the
dependency where the features that have high dependencies between them are noted as best features.
The MI procedure is shown in the following steps:

Step 1: From the training set sample, the input-output variables can be represented as X and Y
where S = {X , Y}.

Step 2: The MI value between input and output variables MI(Xi, Y) measures the dependencies
between them as

MI (X , Y) =
∑

x∈X

∑
y∈Y

P (x, y) log
P(x, y)

P (x) P(y)
(33)

where P (x) and P (y) are the marginal distributions, and P(x, y) is the joint probability of X and Y .

Step 3: Remove the values which are less than other values and maintain the remaining values
in vector M. The input-output variables represented as Snew. The Snew is sorting in descending order
according to MI value from vector M.



IASC, 2024, vol.39, no.5 971

Step 4: Define the number of selected features represented as f . Select the first f input-output
variables from Snew as the selected feature to form set Sf .

Step 5: Select the variable with the highest MI value as the first variable in S. Select jth variables
(1 ≤ j ≤ f ) from Sf and calculate the MI(S, Xj) values. The threshold is represented as α. If
MI

(
S, Xj

) ≤ α, S = S ∪ Xj. Otherwise, Xj will have less dependency and needs to be removed.

Step 6: Repeat Steps 4 and 5 until all variables are chosen.

5.2.4 Normalization

Normalization is a scaling method used to convert all features into a common scale. The minimum
and maximum values range of the continuous feature in CICDDoS2019 and LITNET-2020 are
different. A Min-Max is a popular method used to facilitate arithmetic processing, and the range
of values of each feature is uniformly linearly mapped in the range between 0 and 1. The Min-Max
scaling method can be defined as

Fscal = F − Fmin

Fmax − Fmin

(34)

where Fscal represents the scaling data point, Fmin, and Fmax represent the minimum and maximum value
of the input feature F .

5.2.5 Data Imbalance

The CICDDoS2019 and LITNET-2020s datasets are not perfectly balanced. The imbalanced
dataset is solved using a Synthetic Minority Over-sampling Technique (SMOTE) [40]. SMOTE is an
over-sampling technique used to avoid overfitting; it allows the generation of synthetic samples for the
minority categories. It is based on the KNN algorithm, where it takes a sample from the dataset and
considers its nearest neighbors in the feature map. If (x1, x2) is an example of a minority class and if
its nearest neighbor is chosen as (x́1, x́2), then the data point is synthesized

(X1, X2) = (x1, x2) + random (0, 1) × � (35)

where � = {(
x́1 − x1

)
,
(
x́2 − x2

)}
and random (0, 1) represent a random value in range [0, 1].

6 Experiments and Results

This section describes the experimental setup and the comparative analysis of the proposed DFSL
system with baseline distributed algorithms such as FedAvg, Vanilla SL, and SplitFed with different
experiments.

6.1 Experimental Setup

The experiment in this work is conducted with the following practical setting: Python version 3.7.3
and PyTorch library version 1.2 with Anaconda and CUDA version 10.1. We use a Dell laptop with
CPU i5-1235U, 64-bit, GPU GTX 1050, and OS (Windows 11). The system consists of 10 fog nodes
distributed at different distances from the server. We assume all fog nodes have the same computing
capabilities. We use the 80:20 ratio (80% for the training set and 20% for the testing set). Using a high
training set helps to ensure that the model is trained on enough datasets to capture the patterns and
relationships in the data, and to learn more complex patterns. The tasks are assumed to be independent
of each other. The parameter settings that are used in implementation are described in Table 4.



972 IASC, 2024, vol.39, no.5

Table 4: Parameter settings

Parameter Value

Parameters of channel model

No. of nodes N 10
No. of BS antennas M 256
Transmission power Pn 24 dBm
Bandwidth B 40 MHz
Data rate (each node) 10 Mbps
CPU frequency CPUn 2.5 GHz

Hyper-parameters of CNN and CNN+LSTM

Learning rate 0.01
Communication round T 10
Batch size 128
Epochs 100
Dropout 0.1
Optimizer Adam

6.2 Performance Analysis

The proposed DFSL is compared with a baseline of distributed learning algorithms such as
FedAvg, Vanilla SL, and SplitFed. The experiment is implemented with two datasets (CICDDoS2019
and LITNET-2020) on CNN and CNN+LSTM models to test the effectiveness of the proposed
DFSL. The learning performance is implemented and compared based on four scenarios. First,
the training loss and accuracy are tested with different cut layers. Second, the training time and
communication overhead are tested with different numbers of nodes. Third, the adaptive aggregation
of the DFSL will be compared with different aggregation methods. Finally, the proposed MNS scheme
will be compared with different selection schemes.

6.2.1 Experiment 1: Performance Analysis of the DFSL with Different Cut Layers

The first experiment evaluates the proposed DFSL with different metrics such as loss, accuracy,
and detection rate with different cut layers. Changing the cut layer point plays a huge role in the
model’s effectiveness to get better results. We consider two types of model splitting represented by
C = {C1, C2}, where C2 means more layers assigned to the nodes. A smaller C should lead to a better
performance because it corresponds to a larger part of the model server side, which better mitigates
the non-IID issue. However, the results show that as C2 increases (i.e., more layers at the node side),
the model performance increases. The impact of the cut layer becomes more significant, under which a
larger C is more beneficial. To understand the reason behind this, we considered the evaluation with 10
nodes waiting for patience = 10 rounds. We observe that the loss generally decreases, and accuracy and
detection rate increase in C2, meaning a larger C leads to better model training. Also, the performance
of CNN+LSTM is better than CNN, where adding LSTM layers positively affects the performance.



IASC, 2024, vol.39, no.5 973

As shown in Fig. 8, the loss of DFSL outperforms FedAvg, Vanilla SL, and SplitFed with 0.07
and 0.02 at C2 in CICDDoS2019, and 0.05 and 0.01 in LITNET-2020 for CNN and CNN+LSTM,
respectively. As shown in Fig. 9, the accuracy of DFSL outperforms FedAvg, Vanilla SL, and SplitFed
with 98.99% and 99.70% at C2 in CICDDoS2019 and 99.50% and 99.87% in LITNET-2020 for CNN
and CNN+LSTM, respectively. For detection rate, the DFSL outperforms the baseline algorithms
with 98.14% and 99.60% at C2 in CICDDoS2019 and 98.89% and 99.60% in LITNET-2020 for
CNN and CNN+LSTM, respectively. This improvement in loss and accuracy can be attributed to
the adaptive aggregation method with predetermined the maximum loss and accuracy score.

In contrast, there is no big variation between FedAvg and SplitFed, as both apply the same
aggregation strategy. For Vanilla SL, it scored the worst values in terms of loss, accuracy, and detection
rate. It is very sensitive to data distribution. In fact, for both FedAvg and Vanilla SL, some knowledge
forgetting while learning is evident when trained in non-IID settings.

Figure 8: Loss performance of CNN and CNN+LSTM (a) CICDDoS2019; (b) LITNET-2020



974 IASC, 2024, vol.39, no.5

Figure 9: Accuracy performance of CNN and CNN+LSTM (a) CICDDoS2019; (b) LITNET-2020

When comparing the DFSL with the other approaches, we note that our DFSL has more
hyper-parameters to tune when the cut layer is large. We conclude that a carefully specified way of
determining the maximum accuracy and loss score and comparing it with average scores for each
local update can benefit the most when applied in the DFSL system.

As shown in Tables 5 and 6, we observe that the proposed DFSL can detect DDoS attacks
effectively enhancing learning performance. Based on these results, using the C2 version of our model
has a better performance for detection.

Table 5: Classification results in CICDDoS2019

Algorithm CNN (C1) CNN (C2) CNN+LSTM (C1) CNN+LSTM (C2)

Loss ACU (%) DR (%) Loss ACU (%) DR (%) Loss ACU (%) DR (%) Loss ACU (%) DR (%)

Vanilla SL 0.30 83.02 82.90 0.25 88.98 88.22 0.22 89.99 89.54 0.20 90.39 89.76
FedAvg 0.22 90.10 89.54 0.12 91.76 90.99 0.17 93.89 93.10 0.12 96.44 96.13
SplitFed 0.20 90.75 89.88 0.11 92.23 91.65 0.15 94.10 92.99 0.10 96.99 96.56
DFSL 0.08 97.65 96.48 0.07 98.99 98.14 0.05 98.88 98.20 0.02 99.70 99.30



IASC, 2024, vol.39, no.5 975

Table 6: Classification results in LITNET-2020

Algorithm CNN (C1) CNN (C2) CNN+LSTM (C1) CNN+LSTM (C2)

Loss ACU (%) DR (%) Loss ACU (%) DR (%) Loss ACU (%) DR (%) Loss ACU (%) DR (%)

Vanilla SL 0.29 85.50 84.99 0.24 90.33 89.20 0.20 92.90 92.51 0.17 94.22 93.70
FedAvg 0.22 92.28 90.89 0.10 93.99 93.54 0.15 96.90 95.88 0.11 98.39 96.99
SplitFed 0.19 92.79 92.18 0.08 94.14 93.65 0.13 97.33 96.49 0.10 98.99 98.32
DFSL 0.07 98.12 97.40 0.05 99.50 98.89 0.02 99.43 98.66 0.01 99.87 99.60

6.2.2 Experiment 2: Performance Analysis of the DFSL with Different Number of Nodes

In this experiment, the training time and communication overhead are tested. We test the training
time and communication overhead with different numbers of nodes, including N = 10, 30, and 50
nodes. In Vanilla SL, only one node takes the whole bandwidth in each round because of its sequential
training. In contrast, FedAvg, SplitFed, and DFSL are trained in parallel, so all selected nodes will
share the whole bandwidth in each round. The performance was assessed on testing sets following the
final communication round T . We observe that the increasing number of nodes increases the training
time and communication overhead. In addition, the performance of CNN is better than CNN+LSTM
because the model size negatively affects the training time and communication overhead, where a large
model size needs to transmit more model parameters. So, the following results reflect the CNN result
values.

Fig. 10 shows the training time performance in CICDDoS2019 and LITNET-2020. The FedAvg
has the highest training time compared with Vanilla SL, SplitFed, and DFSL, with 60 and 80 min in
CICDDoS2019 and LITNET-2020, respectively, when the number of nodes is 10. The reason behind
this is that in FedAvg, the allocated bandwidth to each node is decreasing. SplitFed achieves the highest
training time after FedAvg with 60 and 80 min in CICDDoS2019 and LITNET-2020, respectively,
when the number of nodes is 10. The Vanilla SL achieves acceptable results with 47 and 55 min in
CICDDoS2019 and LITNET-2020, respectively. Compared to FedAvg, Vanilla SL, and SplitFed,
DFSL spends less training time. The DFSL dynamically tunes the amount of computation assigned to
the selected nodes at each round of training, resulting in a significant reduction in the overall training
time per round. It achieves a total training time of 18 and 38 min in both datasets.

Fig. 11 shows the communication overhead in CICDDoS2019 and LITNET-2020. In terms of
communication overhead, the performance degrades with increasing the number of nodes. When
the nodes are 10, the DFSL has the lowest communication overhead with 25 and 31 MB in
CICDDoS2019 and LITNET-2020, respectively. In contrast, FedAvg, Vanilla SL, and SplitFed with
random node selection have high communication overhead. The Vanilla SL achieves 64 and 79 MB
in CICDDoS2019 and LITNET-2020, respectively. The FedAvg has better performance than Vanilla
SL, it achieved 50 and 64 MB in CICDDoS2019 and LITNET-2020, respectively. For SplitFed, it
outperforms FedAvg and Vanilla SL with 59 and 70 MB. Finally, the DFSL with the proposed MNS
scheme performs effectively on the performance. Selecting only the nodes with important update, good
channel quality, and the nearest distance from the server reduces the communication overhead.



976 IASC, 2024, vol.39, no.5

Figure 10: Training time performance (a) CICDDoS2019; (b) LITNET-2020

Figure 11: (Continued)



IASC, 2024, vol.39, no.5 977

Figure 11: Communication overhead performance (a) CICDDoS2019; (b) LITNET-2020

Tables 7 and 8 summarize the training time and communication overhead results with the
increasing number of nodes for CNN and CNN+LSTM in CICDDoS2019 and LITNET-2020.

Table 7: Training time and communication overhead results in the CNN model

Algorithm No. of nodes Training
time (min)

Communication
overhead (MB)

Training
time (min)

Communication
overhead (MB)

CICDDoS2019 LITNET-2020

Vanilla SL
10 47 64 55 79
30 55 90 69 95
50 80 100 80 110

FedAvg
10 60 50 80 64
30 67 66 77 73
50 79 87 87 90

SplitFed
10 52 59 75 70
30 67 78 70 81
50 69 91 67 99

DFSL
10 18 25 38 31
30 35 38 45 57
50 41 50 57 71



978 IASC, 2024, vol.39, no.5

Table 8: Training time and communication overhead results in the CNN+LSTM model

Algorithm No. of nodes Training
time (min)

Communication
overhead (MB)

Training
time (min)

Communication
overhead (MB)

CICDDoS2019 LITNET-2020

Vanilla SL
10 50 87 68 90
30 71 100 75 103
50 89 120 100 130

FedAvg
10 86 71 90 77
30 90 80 100 80
50 100 96 130 96

SplitFed
10 80 84 83 37
30 86 97 100 51
50 90 110 119 80

DFSL
10 45 33 51 37
30 50 48 58 51
50 65 67 69 80

6.2.3 Comparing the Proposed Adaptive Aggregation with Other Aggregation Methods

The proposed adaptive aggregation in DFSL is compared with the three aggregation methods:
geometric median [41], Krum aggregation function [42], and Fourier Transform [43], as shown in
Table 9. We find that our aggregation method is more effective compared with the other methods.
Determining the maximum score for accuracy and loss in each round enhances learning performance
and makes the convergence more stable. Finally, we observe that our aggregation method gives more
convergence stability without need for extra communications..

Table 9: Comparison of the proposed adaptive aggregation with existing aggregation methods

Method/Ref. Accuracy (%)

Geometric median [41] 64.30
Krum function [42] 93.50
Fourier transform [43] 80.83
Proposed aggregation 99.87

6.2.4 Comparing the Proposed MNS Scheme with Other Selection Schemes

The proposed MNS scheme is compared with other selection schemes, such as BC, BN2, BS-BN2,
and MAB-BC-BN2 schemes, as shown in Table 10. The MNS proves its effectiveness in reducing
communication overhead compared with the other selection schemes. The dynamic selection of
irrelevant updates and their exclusion during the training process helps to save computation and



IASC, 2024, vol.39, no.5 979

communication resources. Testing the performance of the MNS scheme by increasing the number
of nodes proves that the MNS can be deployed in real-world IoMT with negligible additional
computation overhead and thus can be implemented on a large scale.

Table 10: Comparison of the MNS scheme with other selection schemes

Scheme Communication overhead (MB)

BC 78
BN2 71
BC-BN2 40
MAB-BC-BN2 65
Proposed MNS 25

6.2.5 Scalability Analysis

The above sections explain experiments in scenario with different nodes, including 10, 30, and 50
nodes, to test the training time and communication overhead. We assess DFSL’s performance across
increasing DFSL sizes, measuring main metrics such as accuracy and convergence time (including ten
rounds). To create the DFSL of extra sizes, we have increased the number of nodes up to 90 nodes.

The experiment has been executed 10 times for each DFSL size at each iteration. Fig. 12 shows
the average accuracy and convergence time in LITNET-2020 dataset. The Figure shows that DFSL
has consistent performance stability when the number of nodes increases. Furthermore, these results
validate our proposed DFSL is stable with a large number of nodes.

Figure 12: Scalability performance of the DFSL (a) accuracy; (b) convergence time

Therefore, with a few numbers of nodes, a low value on a few training sets can significantly
impact on the overall average. In scenarios with more nodes, DFSL learns all attacks more accurately,
although it consistently produces an accuracy below 0.93 when the number of nodes is 90.



980 IASC, 2024, vol.39, no.5

The global model’s ability to perform well greatly impacts the DFSL process’s convergence time.
By adding new nodes, the global model is learned more quickly, which has proven critical for the
process’s convergence.

7 Discussion

In summary, the experiments’ results prove that the DFSL detects DDoS attacks with low loss
value and high detection accuracy compared with the FedAvg, Vanilla SL, and SplitFed. In addition,
it achieved low training time and communication overhead compared with FedAvg, Vanilla SL, and
SplitFed.

In the first experiment, the DFSL training enhanced the model’s performance in terms of loss and
accuracy when more layers were trained at the node side. We observe that the model’s performance
achieves high accuracy and low loss by applying the early stopping strategy. In addition, we observe
that the performance in LITNET-2020 is better than CICDDoS2019 performance; it contains more
features and data to train. In the second experiment, stopping the model at a certain point when the
model stops improvement helps to reduce training time. In contrast, the proposed MNS scheme helps
to reduce communication overheads. It aims to decrease the communication rounds where only the
important local update with good channel quality and the nearest node are selected for aggregation.
It dynamically selects the relevant updates during the training process to avoid consuming computation
and communication resources.

The model performance in CICDDoS2019 is better than LITNET-2020 in the second experiment,
where more features need more training time and communication to transmit the model parameters.

Even though the proposed framework achieves acceptable results in terms of loss, accuracy,
training time, and communication overhead, there are four implementation challenges and limitations
of the proposed system, including:

1. Achieving consistent accuracy: The data heterogeneity in IoMT across different nodes makes
it a challenge to maintain constant accuracy results. Some nodes that have more heterogeneity
rates need more training time for convergence.

2. Anomalies data complexity: Notwithstanding our preprocessing efforts, some nodes sporadi-
cally presented anomalous data patterns. These could be attributed to distinct local network
behaviors, which sometimes inject noise through model training.

3. Real-time data: Although the proposed system is examined with two non-IID datasets pro-
posed for DDoS attacks, it needs to be examined on real-time data to test its effectiveness.

4. Real-time application: Although the proposed system is simulated by PyTorch, it needs to be
examined in a real-time IoMT application.

8 Conclusion

A novel distributed FSL (DFSL) system is proposed in this paper to detect Distributed Denial
of Service (DDoS) attacks in the IoMT networks while enhancing detection accuracy and reducing
training time and communication overhead. The proposed system uses Federated Split Learning (FSL)
to take advantage of each approach. The proposed system is tested on two DL models, including the
Convolutional Neural Network (CNN) and a hybrid model that combines CNN and Long Short-
Term Memory (LSTM) to determine the best model to detect DDoS attacks and test the effectiveness
of the system. The procedure of the proposed system starts with initialization and model splitting,
local model training, and adaptive aggregation. The adaptive aggregation method is designed based



IASC, 2024, vol.39, no.5 981

on the early stopping strategy to enhance learning performance and reduce training time. In addition,
a Multi-Node Selection (MNS) based BC-BN2 selection scheme is proposed to reduce communication
overhead with three selection metrics: the importance of local update, channel quality, and the nearest
distance from the server. The performance results of the proposed system are compared with a baseline
of distributed learning such as FedAvg, Vanilla SL, and SplitFed algorithms with different cut layers
and increasing number of nodes. The results show the effectiveness of the proposed system where it
can detect DDoS with an accuracy of 99.70% and 99.87%, and it achieved 18 and 38 min training time
and 25 and 31 MB communication overhead in CICDDoS2019 and LITNET-2020, respectively. In
future work, we aim to address the current limitations. We will further explore advanced convergence
strategies with robust anomalous data management. In addition, we will deploy the proposed system
in real IoMT scenarios to assess its feasibility in resource-constrained devices and networks.

Acknowledgement: The authors would like to extend their sincere thanks and gratitude to the
supervisor for his support and direction of this research.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm their contribution to the paper as follows: study conception
and design: Rasha Almarshdi; data collection: Rasha Almarshdi; analysis and interpretation of results:
Rasha Almarshdi, Etimad Fadel, Nahed Alowidi, Laila Nassef; draft manuscript preparation: Rasha
Almarshdi, Etimad Fadel, Nahed Alowidi, Laila Nassef. All authors reviewed the results and approved
the final version of the manuscript.

Availability of Data and Materials: The data supporting the contributions of this study are open-
source and available at https://www.unb.ca/cic/datasets/ddos-2019.html and https://epubl.ktu.edu/
object/elaba:61188126/ (accessed on 22 September 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] S. A. Chelloug and M. A. El-Zawawy, “Middleware for Internet of Things: Survey and challenges,” Intell.

Autom. Soft Comput., vol. 24, no. 2, pp. 309–318, 2018. doi: 10.1080/10798587.2017.1290328.
[2] D. Wang, D. Chen, B. Song, N. Guizani, X. Yu and X. Du, “From IoT to 5G I-IoT: The next generation

IoT-based intelligent algorithms and 5G technologies,” IEEE Commun. Mag., vol. 56, no. 10, pp. 114–120,
Oct. 2018. doi: 10.1109/MCOM.2018.1701310.

[3] S. Markkandan, S. Sivasubramanian, J. Mulerikkal, N. Shaik, B. Jackson and L. Naryanan, “Massive
MIMO codebook design using gaussian mixture model based clustering,” Intell. Autom. Soft Comput., vol.
32, no. 1, pp. 361–375, 2022. doi: 10.32604/iasc.2022.021779.

[4] N. Javaid, A. Sher, H. Nasir, and N. Guizani, “Intelligence in IoT-based 5G networks: Oppor-
tunities and challenges,” IEEE Commun. Mag., vol. 56, no. 10, pp. 94–100, Oct. 2018. doi:
10.1109/MCOM.2018.1800036.

[5] M. Deepender, U. Shrivastava, and J. K. Verma, “A study on 5G technology and its applications in
telecommunications,” IEEE Xplore, vol. 7, pp. 365–371, 2021. doi: 10.1109/ComPE53109.2021.9752402.

https://www.unb.ca/cic/datasets/ddos-2019.html
https://epubl.ktu.edu/object/elaba:61188126/
https://epubl.ktu.edu/object/elaba:61188126/
https://doi.org/10.1080/10798587.2017.1290328
https://doi.org/10.1109/MCOM.2018.1701310
https://doi.org/10.32604/iasc.2022.021779
https://doi.org/10.1109/MCOM.2018.1800036
https://doi.org/10.1109/ComPE53109.2021.9752402


982 IASC, 2024, vol.39, no.5

[6] A. Sonavane, A. Khamparia, and D. Gupta, “A systematic review on the internet of medical things:
Techniques, open issues, and future directions,” Comput. Model. Eng. Sci., vol. 137, no. 2, pp. 1525–1550,
2023. doi: 10.32604/cmes.2023.028203.

[7] H. -C. Chen and S. -S. Kuo, “Active detecting DDoS attack approach based on entropy measurement for
the next generation instant messaging app on smartphones,” Intell. Autom. Soft Comput., vol. 25, no. 1, pp.
217–228. doi: 10.31209/2018.100000057.

[8] S. Innes, “Banner Health paid $1.25 million to resolve Federal Data Breach Probe,” The Arizona Repub-
lic, 2023. Accessed: Feb. 03, 2023. [Online]. Available: https://www.azcentral.com/story/money/business/
health/2023/02/04/banner-health-paid-1-25-million-to-resolve-federal-data-breach-probe/69871530007/.

[9] Y. Ko, K. Choi, H. Jei, D. Lee, and S. Kim, “ALADDIN: Asymmetric centralized training for dis-
tributed deep learning,” in Proc. 30th ACM Int. Conf. Inform. Knowl. Manage., 2021, pp. 863–872. doi:
10.1145/3459637.3482412.

[10] S. Kamei and S. Taghipour, “A comparison study of centralized and decentralized federated learning
approaches utilizing the transformer architecture for estimating remaining useful life,”Reliability Eng. Syst.
Saf., vol. 233, May 2023, Art. no. 109130. doi: 10.1016/j.ress.2023.109130.

[11] N. N. Thilakarathne et al., “Federated learning for privacy-preserved medical internet of things,” Intell.
Autom. Soft Comput., vol. 33, no. 1, pp. 157–172, 2022. doi: 10.32604/iasc.2022.023763.

[12] O. Gupta and R. Raskar, “Distributed learning of deep neural network over multiple agents,” J. Netw.
Comput. Appl., vol. 116, pp. 1–8, Aug. 2018. doi: 10.1016/j.jnca.2018.05.003.

[13] Z. Zhang, A. Pinto, V. Turina, F. Esposito, and I. Matta, “Privacy and efficiency of communications in
federated split learning,” IEEE Trans. Big Data, vol. 9, no. 5, pp. 1380–1391, Oct. 2023. doi: 10.1109/TB-
DATA.2023.3280405.

[14] M. M. Amiria, D. Gunduzb, S. R. Kulkarni, and H. V. Poor, “Convergence of update aware device
scheduling for federated learning at the wireless edge,” IEEE Trans. Wirel. Commun., vol. 20, no. 6, pp.
3643–3658, 2021. doi: 10.1109/TWC.2021.3052681.

[15] X. Liu, Y. Deng, and T. Mahmoodi, “Wireless distributed learning: A new hybrid split and fed-
erated learning approach,” IEEE Trans. Wirel. Commun., vol. 22, no. 4, pp. 2650–2665, 2022. doi:
10.1109/twc.2022.3213411.

[16] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future direc-
tions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, May 2020. doi: 10.1109/MSP.2020.2975749.

[17] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “FedAvg with fine tuning: Local updates lead to
representation learning,” May 2022. doi: 10.48550/arxiv.2205.13692.

[18] J. Shen, X. Wang, N. Cheng, L. Ma, C. Zhou, and Y. Zhang, “Effectively heterogeneous federated learning:
A pairing and split learning based approach,” in GLOBECOM 2023–2023 IEEE Glob. Commun. Conf.,
Kuala Lumpur, Malaysia, Dec. 2023, pp. 5847–5852. doi: 10.1109/GLOBECOM54140.2023.10437666.

[19] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning for health: Distributed deep learning
without sharing raw patient data,” in Proc. Int. Conf. Learn. Rep. (ICLR) Workshop AI Social Good, 2019,
pp. 1–7. doi: 10.48550/arXiv.1812.00564.

[20] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “SplitFed: When federated learning
meets split learning,” Proc. AAAI Conf. Artif. Intell., vol. 36, no. 8, pp. 8485–8493, Jun. 2022. doi:
10.1609/aaai.v36i8.20825.

[21] C. Huang, G. Tian, and M. Tang, “When minibatch SGB meets splitfed learning: Convergence analysis
and performance evaluation,” 2023. doi: 10.48550/arXiv.2308.11953.

[22] Y. Mu and C. Shen, “Communication and storage efficient federated split learning,” in Proc. : ICC 2023-
IEEE Int. Conf. Commun., May 2023, pp. 2976–2981. doi: 10.1109/icc45041.2023.10278891.

[23] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed comparison of communication efficiency
of split learning and federated learning,” 2019, arXiv:1909.09145.

[24] Y. K. Saheed and M. O. Arowolo, “Efficient cyber attack detection on the internet of medical things-smart
environment based on deep recurrent neural network and machine learning algorithms,” IEEE Access, vol.
9, pp. 161546–161554, 2021. doi: 10.1109/ACCESS.2021.3128837.

https://doi.org/10.32604/cmes.2023.028203
https://doi.org/10.31209/2018.100000057
https://www.azcentral.com/story/money/business/health/2023/02/04/banner-health-paid-1-25-million-to-resolve-federal-data-breach-probe/69871530007/
https://doi.org/10.1145/3459637.3482412
https://doi.org/10.1016/j.ress.2023.109130
https://doi.org/10.32604/iasc.2022.023763
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1109/TBDATA.2023.3280405
https://doi.org/10.1109/TWC.2021.3052681
https://doi.org/10.1109/twc.2022.3213411
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.48550/arxiv.2205.13692
https://doi.org/10.1109/GLOBECOM54140.2023.10437666
https://doi.org/10.48550/arXiv.1812.00564
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.48550/arXiv.2308.11953
https://doi.org/10.1109/icc45041.2023.10278891
https://doi.org/10.1109/ACCESS.2021.3128837


IASC, 2024, vol.39, no.5 983

[25] M. Manimurugan, S. Al-Mutairi, M. M. Aborokbah, N. Chilamkurti, S. Ganesan and R. Patan, “Effective
attack detection in internet of medical things smart environment using a deep belief neural network,” IEEE
Access, vol. 8, pp. 77396–77404, 2020. doi: 10.1109/ACCESS.2020.2986013.

[26] M. Usman, M. A. Jan, X. He, and J. Chen, “P2DCA: A privacy-preserving-based data collection and
analysis framework for IoMT applications,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1222–1230,
Jun. 2019. doi: 10.1109/JSAC.2019.2904349.

[27] J. Ren, J. Guo, W. Qian, H. Yuan, X. Hao and J. Hu, “Building an effective intrusion detection system by
using hybrid data optimization based on machine learning algorithms,” Secur. Commun. Netw., vol. 2019,
pp. 1–11, Jun. 2019. doi: 10.1155/2019/7130868.

[28] S. P. K. Gudla, S. K. Bhoi, S. R. Nayak, and A. Verma, “DI-ADS: A deep intelligent distributed denial
of service attack detection scheme for fog-based IoT applications,” Math. Probl. Eng., vol. 2022, pp. 1–17,
Aug. 2022. doi: 10.1155/2022/3747302.

[29] R. Priyadarshini and R. K. Barik, “A deep learning based intelligent framework to mitigate DDoS
attack in fog environment,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 3, pp. 825–831, 2022. doi:
10.1016/j.jksuci.2019.04.010.

[30] Y. Zhang, Y. Liu, X. Guo, Z. Liu, X. Zhang and K. Liang, “A BiLSTM-based DDoS attack detection
method for edge computing,” Energies, vol. 15, no. 21, Oct. 2022, Art. no. 7882. doi: 10.3390/en15217882.

[31] P. Verma, J. G. Breslin, and D. O’Shea, “FLDID: Federated learning enabled deep intrusion detection in
smart manufacturing industries,” Sensors, vol. 22, no. 22, Nov. 2022, Art. no. 8974. doi: 10.3390/s22228974.

[32] V. Rey, P. M. Sánchez Sánchez, A. Huertas Celdrán, and G. Bovet, “Federated learning for
malware detection in IoT devices,” Comput. Netw., vol. 204, Feb. 2022, Art. no. 108693. doi:
10.1016/j.comnet.2021.108693.

[33] Y. Alhasawi and S. Alghamdi, “Federated learning for decentralized DDoS attack detection in IoT
networks,” IEEE Access, vol. 12, pp. 42357–42368, Jan. 2024. doi: 10.1109/ACCESS.2024.3378727.

[34] F. Yu, B. Zeng, K. Zhao, Z. Pang, and L. Wang, “Chronic poisoning: Backdoor attack against
split learning,” Proc. AAAI Conf. Artif. Intell., vol. 38, no. 15, pp. 16531–16538, Mar. 2024. doi:
10.1609/aaai.v38i15.29591.

[35] S. Abuadbba et al., “Can we use split learning on 1D CNN models for privacy preserving training?,” in
Proc. 15th ACM Asia Conf. Comput. Commun. Secur., 2020, pp. 305–318. doi: 10.1145/3320269.3384740.

[36] M. A. Khan, V. Shejwalkar, A. Houmansadr, and F. M. Anwar, “Security analysis of SplitFed learning,”
in Proc. ACM Conf. Embed. Netw. Sens. Syst., Nov. 2022. doi: 10.1145/3560905.3568302.

[37] F. Li, J. Lin, and H. Han, “FSL: Federated sequential learning-based cyberattack detection for industrial
Internet of Things,” Ind. Artif. Intell., vol. 1, Mar. 2023, Art. no. 4. doi: 10.1007/s44244-023-00006-2.

[38] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing realistic distributed denial of
service (DDoS) attack dataset and taxonomy,” in Proc. 2019 Int. Carnahan Conf. Secur. Technol. (ICCST),
IEEE, Oct. 2019, pp. 1–8. doi: 10.1109/CCST.2019.8888419.

[39] R. Damasevicius et al., “LITNET-2020: An annotated real-world network flow dataset for network
intrusion detection,” Electronics, vol. 9, no. 5, May 2020, Art. no. 800. doi: 10.3390/electronics9050800.

[40] A. Fernandez, S. Garcia, F. Herrera, and N. V. Chawla, “SMOTE for learning from imbalanced data:
Progress and challenges, marking the 15-year anniversary,” J. Artif. Intell. Res., vol. 61, pp. 863–905, Apr.
2018. doi: 10.1613/jair.1.11192.

[41] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for federated learning,” IEEE Trans.
Signal Process., vol. 70, pp. 1142–1154, 2022. doi: 10.1109/TSP.2022.3153135.

[42] R. Taheri et al., “Robust aggregation function in federated learning,” in Proc. 6th Int. Conf. Inform. Knowl.
Syst., Cham, Springer Nature Switzerland, 2023, pp. 168–175. doi: 10.1007/978-3-031-51664-1_12.

[43] E. M. Campos, A. Jose, L. Ramos, and A. Skarmeta, “FedRDF: A robust and dynamic aggregation
function against poisoning attacks in federated learning,” 2024. doi: 10.48550/arXiv.2402.10082.

https://doi.org/10.1109/ACCESS.2020.2986013
https://doi.org/10.1109/JSAC.2019.2904349
https://doi.org/10.1155/2019/7130868
https://doi.org/10.1155/2022/3747302
https://doi.org/10.1016/j.jksuci.2019.04.010
https://doi.org/10.3390/en15217882
https://doi.org/10.3390/s22228974
https://doi.org/10.1016/j.comnet.2021.108693
https://doi.org/10.1109/ACCESS.2024.3378727
https://doi.org/10.1609/aaai.v38i15.29591
https://doi.org/10.1145/3320269.3384740
https://doi.org/10.1145/3560905.3568302
https://doi.org/10.1007/s44244-023-00006-2
https://doi.org/10.1109/CCST.2019.8888419
https://doi.org/10.3390/electronics9050800
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1109/TSP.2022.3153135
https://doi.org/10.1007/978-3-031-51664-1_12
https://doi.org/10.48550/arXiv.2402.10082

	Distributed Federated Split Learning Based Intrusion Detection System
	1 Introduction
	2 Literature Review
	3 Problem Formulation
	4 Proposed Distributed FSL System
	5 Data Description and Preprocessing
	6 Experiments and Results
	7 Discussion
	8 Conclusion
	References


