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ABSTRACT

Operating System (OS) is a critical piece of software that manages a computer’s hardware and resources, acting
as the intermediary between the computer and the user. The existing OS is not designed for Big Data and
Cloud Computing, resulting in data processing and management inefficiency. This paper proposes a simplified
and improved kernel on an x86 system designed for Big Data and Cloud Computing purposes. The proposed
algorithm utilizes the performance benefits from the improved Input/Output (I/O) performance. The performance
engineering runs the data-oriented design on traditional data management to improve data processing speed by
reducing memory access overheads in conventional data management. The OS incorporates a data-oriented design
to “modernize” various Data Science and management aspects. The resulting OS contains a basic input/output
system (BIOS) bootloader that boots into Intel 32-bit protected mode, a text display terminal, 4 GB paging memory,
4096 heap block size, a Hard Disk Drive (HDD) I/O Advanced Technology Attachment (ATA) driver and more.
There are also I/O scheduling algorithm prototypes that demonstrate how a simple Sweeping algorithm is superior
to more conventionally known I/O scheduling algorithms. A MapReduce prototype is implemented using Message
Passing Interface (MPI) for big data purposes. An attempt was made to optimize binary search using modern
performance engineering and data-oriented design.
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1 Introduction

An operating system (OS) is a critical piece of software that manages a computer’s hardware
and resources, acting as the intermediary between the computer and the user. They are essential
for the proper functioning of a computer, from the smallest electronic device to the largest exascale
supercomputer in the world [1,2] and all the servers that make up the Internet.

The popularity of cloud computing and big data has sky-rocketed in recent years. This is mainly
due to the power, cost-effectiveness, and flexibility that cloud computing offers to people all around the
world. Cloud computing provides a platform to deliver various computing services over the Internet.
These services can include storage, servers, software, analytics, databases, raw computing power, and
many more. It is fair to say that a large portion of the online world now exists on the cloud.
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Big data, on the other hand, has been revolutionized by cloud computing [3–5]. No longer are
traditional data management techniques limited by IT infrastructure. Now, organizations can easily
deploy a scalable and flexible platform for collecting, storing, and analyzing massive amounts of data.
This has given them the ability to extract insights from data and make informed business decisions far
better than ever before, and on a far larger scale.

What the general public does not realize is that the vast majority of this magic is powered by
Hard Disk Drives (HDD) in data centers around the world. The reality is that HDDs are completely
dominant in the cloud computing space. HDDs are very cheap and very scalable at massive scales,
compared to Solid-State Drives (SSD) which dominate the client computing space. This means that
cloud computing and big data can be optimized for HDD performance, something that is surprisingly
lacking in the OS space. There are several problem statements. Firstly, there are not many options
for operating systems and this lack of choices extends to embedded systems as well. In addition to
that, the current operating systems do not take advantage of hard drive firmware I/O optimization
procedures [6–8]. They are also not optimized for big data and cloud computing [9–11]. Furthermore,
the adoption of data-oriented design and modern computing concepts in data science is very poor
outside of the widely used libraries [12,13]. Lastly, with a new platform, it is now required new data
management solutions. Previously implemented solutions no longer work out of the box on our new
big data operating system. Therefore, we have to develop our own solutions.

The first aim of this paper is to develop a simple kernel (OS) on an x86 system that is designed for
big data and cloud computing purposes. The next aim is to implement a big data algorithm that could
be run on this kernel in order to perform big data processing while utilizing the performance benefits
from the improved I/O performance. The final aim is to perform performance engineering to imple-
ment data-oriented design on traditional data management to improve the speed of data processing
by reducing the memory access overheads that are present in conventional data management.

2 Related Work
2.1 Operating System

According to Silberschatz et al. [14], a simple definition of an operating system is software that
manages the hardware of a computer. It acts as the mediator between a user and the computer hardware
[13]. They also provide a platform in which application programs run. An operating system can also
be considered a resource allocator and a control program that manages the execution of programs and
processes within a computer.

A typical computer system can be divided into four parts:

• The Hardware: This encompasses the central processing unit (CPU), the memory, the storage,
various I/O devices, and other processing units such as the graphics processing unit (GPU).

• The Operating System: This is what it would be working on. This has already been defined just
above this list.

• The Application Programs: These are software created to run on top of an operating system
that uses computer resources to solve users’ computing problems.

• The User: This is the end user of the computer. Their entire system would be designed with the
end user in mind.
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A brief top-down overview of a computer system is shown in Fig. 1 below.

Figure 1: A typical computer system

2.2 Real-Time Systems

A system is defined as a real-time system when we require a quantitative expression of time to
describe the behavior of the said system [15,16]. Real-time refers to the quantitative description of time.
The concepts of real-time systems are widely used in embedded systems due to the nature of embedded
systems in general [17–19]. For example, in an automated machine assembly plant, as machines get
assembled on conveyor belts, they have imposed a time constraint where the assigned work must be
completed before the work is passed on to the next process on the conveyor belt.

There are a few key characteristics of real-time systems that distinguish real-time systems from
non-real-time systems [20,21]. Some key characteristics are as follows:

• Time Constraints. Every single real-time task is associated with some form of time constraint.
Every task would be assigned a deadline which states a time limit in which the task must be
completed.

• Different Criteria for Correctness. In real-time systems, for a result to be considered correct,
they must both produce the logically correct result as well as meet the imposed deadline. Failure
to meet the deadline would be considered a failure or an incorrect result.

• Embedded. The sheer majority of real-time systems are embedded systems. An embedded
system would use sensors to collect information which is then passed on to a real-time computer
for processing.

• Safety-Criticality. Reliability and safety are usually considered two separate metrics in tradi-
tional non-real-time tasks. In lots of real-time systems, the opposite is true. Reliability and safety
are usually tightly correlated. A safe system does not inflict damage when it fails whereas a
reliable system does not fail regularly.

While these are important characteristics of real-time systems, it does not mean that all real-
time systems have all these characteristics [22–24]. For instance, missing the deadline may lead to
system failure, degraded performance, or unsafe conditions. Real-time systems often have additional
correctness criteria related to timing. Producing the right output at the wrong time can also be as
problematic as producing the wrong output. Real-time systems encompass a diverse range of other
characteristics that have not been addressed in this discussion, indicating the complexity and variability
within this field [25–27].
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3 Methodology
3.1 GCC (GNU Compiler Collection) Cross-Compiler

We need to prepare our own cross-compiler if we are to have any hope of implementing our own
data-oriented operating system. For this paper, a GCC cross-compiler is used where it can build for a
generic target (i686-elf). This would mean that the cross-compiler would have no headers or libraries
for the development operating system. This is crucial. Otherwise, the native compilers would just
assume that we are developing on the same platform and produce various undesirable results.

3.2 Quick Emulator (QEMU) Emulator

QEMU is an open-source machine emulator [28] that serves to emulate hardware that we can run
our kernel on (see Fig. 2). It provides options for many different types of architectures which means
we can emulate running our kernel on various devices. However, for this paper, the generic i686 target
is elected instead.

Figure 2: The QEMU emulator in action

Most of the development of this system would be performed on the QEMU emulator rather than
real hardware. This is because it is much easier to debug and develop on QEMU as compared to
developing directly on the real hardware. With QEMU, it would have access to the GNU DeBugger
(GDB), something it would not have access to if it were to develop directly on bare metal. Another
issue is the matter of security. If it were to accidentally execute dangerous code, it would not damage
the actual hardware.

3.3 Memory Management

For the operating system to be functional, it needs to be able to manage its own memory. In this
sense, a memory management system that consists of two primary sections are implemented:
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a. The Heap.
b. The Stack.

The implementation of the heap that has been chosen is one that splits memory into 4 KB chunks
because 4 KB sectors are widely used in the storage industry. It utilizes an allocation table that points
to all available chunks in memory. Each entry in the allocation table would correspond to the state of
the associated chunk. An entry would consist of 1 byte (8 bits).

Besides memory allocation, the operating system can contain paging which allows us to remap
memory addresses from one address to another. Paging works by default on Intel CPUs with 4 KB
blocks. When paging is enabled, the memory management unit (MMU) will automatically look at the
page tables to resolve virtual addresses into physical addresses.

An example of the implementation of paging is shown in Fig. 3 below.

Figure 3: Example of paging

3.4 Custom I/O Scheduler for Cloud Computing and Big Data

We would implement a custom I/O scheduler for big data and cloud computing purposes. The I/O
scheduler should be designed in such a way that it takes advantage of HDD performance features. The
I/O scheduler should also be able to prioritize tail latency and latency optimizations to improve cloud
service delivery.

3.5 Big Data Processing Using MapReduce

For this paper, a simple MapReduce prototype should be developed to demonstrate that big data
processing is possible in a distributed fashion across the cloud.
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In order to successfully implement MapReduce, the following steps (as shown in Fig. 4) need to
be taken.

Figure 4: Implementation of the MapReduce

The first step is to divide the data into smaller chunks to be distributed among a cluster of
computers through data partitioning. Next, in the mapping process, the partitioned are chunks into
intermediate key-value pairs. The next process is shuffling. In this step, we group the key-value pairs
into their respective keys. This is to ensure all values with the same key are processed by the same
reduced task. Finally, it is the reducing process, whereby each group of data is reduced into a final
result. It intends to implement the MapReduce algorithm only as a prototype or a proof-of-concept
as implementing it on the new kernel would require Herculean effort: the entire TCP/IP stack would
be implemented on a new platform. That is simply unfeasible.

4 Experimental Results
4.1 OS

Most of the work in this paper is very abstract and thus, it may be difficult to present. A lot of
work has been done on things that do not produce output that is meaningful to the human eye. Fig. 5
shows a simple screenshot of the OS in action as emulated in QEMU.

Figure 5: A sample run of the OS on QEMU
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Even though the screenshot may not look like much, there is actually a lot going on here.
The very fact that this screenshot exists means that the terminal and print functions have been
successfully implemented. The text color could also be changed using the available colors provided
by x86 VGA mode.

The first line shows that the OS has booted in Intel x86 16-bit real mode and successfully loaded
into protected mode. This means that we can now access the full capabilities of an x86 computer.

The terminal also claims that the heap and interrupt descriptor table have been successfully
initialized. We can prove these claims. Firstly, let’s prove that the heap has indeed been successfully
initialized. In this case, the OS also has paging enabled. Some memory was attempted to be allocated
using the “kmalloc” function (see Fig. 6).

Figure 6: Running kmalloc and kfree on the kernel heap

In Fig. 6, we can see that ptr1 requests 50 bytes. Since a heap block is 4096 bytes, we expect 4096
bytes to be allocated to ptr1. ptr2 request 5000 bytes. This means that 8192 bytes should be allocated
to ptr2 and subsequently, 8192 bytes to ptr3.

Now, kfree() was called on ptr1 which marks the block that ptr1 was occupying as free memory.
Therefore, we can expect ptr4 to be allocated 4096 bytes on the exact same block that ptr1 was. The
debugging results are shown in Fig. 7.

Figure 7: Results of running kmalloc and kfree on the heap

This is exactly what was expected. 4096 (0 × 1000) bytes was allocated to ptr1 at virtual address
of 0 × 1403000. The virtual address is due to paging. The physical address is actually 0 × 1000000.
The rest of the pointers were allocated and freed exactly as expected.

Now, we look at the interrupt descriptor table. A keyboard interrupt was created as entry 0 × 21
on the interrupt descriptor table. When a keypress is detected, the interrupt is triggered and the text
“Keyboard pressed!” should become visible on the terminal (see Fig. 8).
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Figure 8: Keyboard press detected as interrupt routine

Basic HDD Serial Advanced Technology Attachment (SATA) I/O has also been implemented. We
can attempt to read 3 bytes from the virtual disk (virtual because we are not using a real HDD) with
the code snippet depicted in Fig. 9. By using the GDB debugger, we can see that these 3 bytes have
been read into the buffer (see Fig. 10).

Figure 9: Attempting to read 3 bytes from the Logical Block Addressing (LBA) 0 on the virtual HDD

Figure 10: The first 3 bytes of the buffer after reading 3 bytes from the virtual HDD

We can attempt to verify this by using a hex editor to examine the memory of the virtual HDD.
Using blesses, we can inspect 0 × 00 on os.bin which corresponds to LBA 0 (see Fig. 11).
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Figure 11: The contents of the first 3 bytes of the virtual HDD

By looking at the first 3 bytes, we see the hexadecimal 0 × EB, 0 × 22, and 0 × 90. Translating
them to unsigned decimals gives the following output:

• 0 × EB : 235
• 0 × 22 : 34
• 0 × 90 : 144

This is exactly what was read to the buffer. This proves that the OS can indeed read/write
from HDDs.

4.2 I/O Scheduling Algorithms Prototype

For the implementation of simple I/O scheduling algorithm prototypes, Fig. 12 shows the results.

Figure 12: The simulation of 3 common I/O scheduling algorithms on 100,000 I/O operations

This is just a simple simulation that does not assume much nor does it test the actual stringent
running environments of HDDs in real life. However, we can easily see some differences between these 3
algorithms. First, First-Come-First-Serve (FCFS) is very slow on paper. However, it may theoretically
have the lowest latency and tail latency relative to the other algorithms. This can make it suitable for
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cloud service providers. Some major cloud service providers do indeed use such scheduling. Shortest-
Seek-Time-First (SSTF) seems much more efficient at first glance. However, it switches the direction of
the head very often. This causes significant latency overhead that cannot be captured by these simple
prototypes. It would consider this algorithm to be a beginner’s trap because it may look good on paper
but really causes massive latency and tail latency. This is because, if the HDD continuously has I/O
commands coming in, the furthest LBA operations from the current head LBA may take very long
to execute or worse, never execute. This is a significant problem for cloud service providers. However,
if low-latency I/O is not desired in some number crunching and big data tasks, this algorithm may
provide high throughput.

Finally, we have the Sweeping algorithm. This algorithm is my modification of the elevator
algorithm. Most people naively believe that sweeping an HDD both ways is better for performance.
Unfortunately, the opposite is true. Most enterprise HDDs sold today use a variation of the sweeping
algorithm. The sweeping algorithm minimizes the impact of inertia by reducing HDD head direction
changes. They also attempt to reduce latency and tail latency by sweeping the regions in the HDD
evenly. The fault with the elevator algorithm is that by sweeping both ways, some I/O operations have
practically doubled latency and tail latency.

4.3 MapReduce Prototype

The MapReduce prototype [29] is a simple prototype to count the number of words in a large text
file. This is a classical Big Data problem. This prototype was implemented in MPI. The prototype aims
to efficiently count the words in a large text file by splitting the files between distributed computers,
counting the words separately, and then merging them all together.

By running the program locally on a 4-core i5-10210U Intel processor, it was able to count the
words in all the works of Shakespeare in approximately 0.04 s. This program is designed to be scalable
using a network of distributed computers in a Big Data configuration.

The top 20 words written by Shakespeare are shown in Fig. 13. We can also look at a graph of the
effective CPU utilization also obtained using VTune as depicted in Fig. 14.

Figure 13: Top 20 most frequent words used by William Shakespeare in all his published work
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Figure 14: Effective CPU utilization of the MapReduce prototype

There is clearly still a lot of room for improvement and scalability. Ideally, the “Effective Physical
Core Utilization” should approach 100%. This program has only achieved 25% so far. However, these
results may be unreliable as the application execution time was too short to perform reliable profiling.
Further testing using much larger datasets and several computers connected through an external
network may be required in order to perform actual real-world performance evaluation [30].

4.4 Binary Search Optimization

We have also implemented 4 different binary search operations to look for better data recovery.
These algorithms are (a) Naive algorithm, (b) std: lower bound, (c) Branchless algorithm, and (d)
Branchless with prefetch.

Some benchmarks with Google benchmarks can be observed in Fig. 15. Each iteration searches
for 9 elements in the array. The number beside the benchmark name represents the search array size.

Unfortunately, the results were unexpected, and thus further examination was halted. The
expectation was that each benchmark type should be faster than the one preceding it. There seems to
be some problem with the benchmarks and further examination will be required. However, assuming
that everything went as expected, we could still further improve the performance of binary search by
improving the data layout of the dataset. An ordinary sorted dataset would look like Fig. 16.

However, through better data management, we could instead separate the data according to “hot”
data and “cold” data. Doing so should produce a dataset that looks like in Fig. 17. This layout takes
advantage of data locality. For example, searching for 15 would very likely load 23 into the CPU cache
as well, reducing cache misses.
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Figure 15: Google benchmark results of the binary search algorithms

Figure 16: How an ordinary sorted dataset would look like. The arrow represents a sample binary
search being performed

Figure 17: A dataset sorted by “hot” and “cold” data

5 Conclusion

In conclusion, the aim of the paper is to develop an x86 operating system. The operating system
features its own BIOS bootloader, memory management, paging, SATA driver, big-data I/O scheduling
prototypes, data-oriented design, and a MapReduce prototype.

The intention is to be able to create our own system from scratch without any dependencies from
other vendors and possess full control over the technology stack. With the ability to create a big-data-
oriented OS with insights from real-time systems, we can even create embedded systems OS suited for
big-data purposes. This is ideal as there has been a massive rise in IoT technology in the past decade.

There have also been massive pushes for performance engineering in Computer Science, especially
within the last 15 years, since CPU hardware advances are no longer as fast as they used to be [31].
Performance engineering has been slowly dripping into Data Science as most data scientists are simply
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unaware of this entire field. However, there have been some major leaps in very recent times. One of
the large steps forward is the very recent introduction of the Mojo programming language, a language
for Data Science with performance engineering directly incorporated into the language.

Acknowledgement: We would like to express our sincere gratitude to the anonymous reviewers for
their insightful comments and constructive feedback, which have significantly improved the quality of
this manuscript.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Selwyn Darryl Kessler; data collection: Selwyn Darryl Kessler; analysis and interpretation
of results: Selwyn Darryl Kessler and Kok-Why Ng; draft manuscript preparation: Selwyn Darryl
Kessler, Kok-Why Ng and Su-Cheng Haw. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: The data to be used in this paper is self-created with the purpose
of simulating the efficiency of the 3 common I/O scheduling algorithms.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] W. Wu et al., “Autonomous crowdsensing: Operating and organizing crowdsensing for sensing automa-

tion,” IEEE Trans. Intell. Veh., vol. 9, no. 3, pp. 4254–4258, 2024. doi: 10.1109/TIV.2024.3355508.
[2] K. Volkov, “Vectorized numerical algorithms to solve internal problems of computational fluid dynamics,”

Algorithms, vol. 17, no. 2, pp. 50, 2024. doi: 10.3390/a17020050.
[3] M. Malami Idina, “The concept of big data and solutions of cloud computing,” Int. J. Adv. Eng. Manag.

Res., vol. 8, no. 2, pp. 99–106, 2023. doi: 10.51505/ijaemr.2023.8210.
[4] A. K. Sandhu, “Big data with cloud computing: Discussions and challenges,” Big Data Min. Anal., vol. 5,

no. 1, pp. 32–40, 2022. doi: 10.26599/BDMA.2021.9020016.
[5] B. Berisha, E. Mëziu, and I. Shabani, “Big data analytics in cloud computing: An overview,” J. Cloud

Comput., vol. 11, no. 1, pp. 62, 2022. doi: 10.1186/s13677-022-00301-w.
[6] S. Mazumdar and S. Dhar, “Hadoop as big data operating system–The emerging approach for managing

challenges of enterprise big data platform,” in 2015 IEEE 1st Int. Conf. Big Data Comput. Serv. Appl.,
BigDataService 2015, 2015. doi: 10.1109/BigDataService.2015.72.

[7] Y. Mei and F. Fu, “Secure big data computing based on trusted computing and key management,” Adv.
Intell. Syst. Comput., 2021. doi: 10.1007/978-3-030-62743-0_70.

[8] M. Prince and P. M. Joe Prathap, “A novel approach to design distribution preserving framework for big
data,” Intell. Autom. Soft Comput., vol. 35, no. 3, pp. 2789–2803, 2023. doi: 10.32604/iasc.2023.029533.

[9] P. Pang et al., “Async-Fork: Mitigating query latency spikes incurred by the fork-based snapshot mecha-
nism from the OS Level,” in Proc. VLDB Endow., 2023. doi: 10.14778/3579075.3579079.

[10] X. Zhang and Q. Zhu, “HiCa: Hierarchical cache partitioning for low-tail-latency QoS over
emergent-security enabled multicore data centers networks,” in IEEE Int. Conf. Commun., 2020. doi:
10.1109/ICC40277.2020.9148825.

https://doi.org/10.1109/TIV.2024.3355508
https://doi.org/10.3390/a17020050
https://doi.org/10.51505/ijaemr.2023.8210
https://doi.org/10.26599/BDMA.2021.9020016
https://doi.org/10.1186/s13677-022-00301-w
https://doi.org/10.1109/BigDataService.2015.72
https://doi.org/10.1007/978-3-030-62743-0_70
https://doi.org/10.32604/iasc.2023.029533
https://doi.org/10.14778/3579075.3579079
https://doi.org/10.1109/ICC40277.2020.9148825


646 IASC, 2024, vol.39, no.4

[11] E. Asyabi, E. Sharafzadeh, S. A. SanaeeKohroudi, and M. Sharifi, “CTS: An operating system CPU
scheduler to mitigate tail latency for latency-sensitive multi-threaded applications,” J. Parallel Distrib.
Comput., vol. 133, no. 4, pp. 232–243, 2019. doi: 10.1016/j.jpdc.2018.04.003.

[12] K. Benaissa, S. Bitam, and A. Mellouk, “On-board data management layer: Connected vehicle as data
platform,” Electronics, vol. 10, no. 15, pp. 1810, 2021. doi: 10.3390/electronics10151810.

[13] V. Gupta and N. Tyagi, “Operating system-concept and comparison,” J. Oper. Syst. Dev. Trends, vol. 7, no.
2, pp. 24–30, 2020. doi: 10.37591/joosdt.v7i2.2561.

[14] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating Systems Concepts Essentials, 2nd ed. John Wiley &
Sons Inc., 2013.

[15] P. K. Mahato and A. Narayan, “QMine: A framework for mining quantitative regular expressions from
system traces,” in Companion 2020 IEEE 20th Int. Conf. Softw. Qual., Reliab., Secur., QRS-C 2020, 2020.
doi: 10.1109/QRS-C51114.2020.00070.

[16] A. Abdelli, “Time distance-based computation of the DBM over-approximation of preemptive real-
time systems,” J. Logical. Algebr. Methods Program., vol. 136, no. 3, pp. 100927, 2024. doi:
10.1016/j.jlamp.2023.100927.

[17] J. Adelt, J. Gebker, and P. Herber, “Reusable formal models for concurrency and communication in custom
real-time operating systems,” Int. J. Softw. Tools Technol. Transf., vol. 26, no. 2, pp. 229–245, 2024. doi:
10.1007/s10009-024-00743-4.

[18] A. Thirion, N. Combes, B. Mulliez, and H. Tap, “BCG-VARS: BallistoCardioGraphy vital algo-
rithms for real-time systems,” Biomed. Signal Process. Control, vol. 87, no. 8, pp. 105526, 2024. doi:
10.1016/j.bspc.2023.105526.

[19] T. Komori, Y. Masuda, and T. Ishihara, “Virtualizing DVFS for energy minimization of embedded dual-os
platform,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. E107.A, no. 1, pp. 3–15, 2024.
doi: 10.1587/transfun.2023KEP0002.

[20] Y. Ye, Z. Nie, X. Liu, F. Xie, Z. Li and P. Li, “ROS2 real-time performance optimization and evaluation,”
Chin. J. Mech. Eng., vol. 36, no. 1, pp. 1, 2023. doi: 10.1186/s10033-023-00976-5.

[21] M. Hassan, “DISCO: Time-compositional cache coherence for multi-core real-time embedded systems,”
IEEE Trans. Comput., vol. 72, no. 4, pp. 1163–1177, 2023. doi: 10.1109/TC.2022.3193624.

[22] N. Mrewa, A. Mohd Ramly, A. Amphawan, and T. K. Neo, “Optimizing medical iot disaster management
with data compression,” J. Inform. Web Eng., vol. 3, no. 1, 2024. doi: 10.33093/jiwe.
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