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ABSTRACT

Identifying faces in non-frontal poses presents a significant challenge for face recognition (FR) systems. In this
study, we delved into the impact of yaw pose variations on these systems and devised a robust method for detecting
faces across a wide range of angles from 0° to ±90°. We initially selected the most suitable feature vector size
by integrating the Dlib, FaceNet (Inception-v2), and “Support Vector Machines (SVM)” + “K-nearest neighbors
(KNN)” algorithms. To train and evaluate this feature vector, we used two datasets: the “Labeled Faces in the Wild
(LFW)” benchmark data and the “Robust Shape-Based FR System (RSBFRS)” real-time data, which contained
face images with varying yaw poses. After selecting the best feature vector, we developed a real-time FR system
to handle yaw poses. The proposed FaceNet architecture achieved recognition accuracies of 99.7% and 99.8% for
the LFW and RSBFRS datasets, respectively, with 128 feature vector dimensions and minimum Euclidean distance
thresholds of 0.06 and 0.12. The FaceNet + SVM and FaceNet + KNN classifiers achieved classification accuracies
of 99.26% and 99.44%, respectively. The 128-dimensional embedding vector showed the highest recognition rate
among all dimensions. These results demonstrate the effectiveness of our proposed approach in enhancing FR
accuracy, particularly in real-world scenarios with varying yaw poses.
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1 Introduction

The identification of human faces [1] is crucial for distinguishing individuals from one another
and identifying them for surveillance [2] applications. Intelligent system-based [3] detection and
recognition are the two stages of FR for various applications, ranging from user authentication
on devices to forensics [4] and intruder detection. Unlike fingerprint and signature authentication
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methods that require active user participation [5], FR identifies a person without direct interaction
with the user. The advancement of video surveillance [6] has transformed the manual process into an
interconnected intelligent control system [7]. This system discusses the phenomenon of FR in “Closed
Circuit Television (CCTV)” images and future implementations of FR systems in live video streaming.
Notably, there is a growing need for FR technology to identify faces in crowded areas, which plays
a pivotal role in emerging research on FR systems to enhance biometric verification accuracy and
efficiency while minimizing human errors and waiting time in queues.

The literature claims that factors such as pose variations [8], occlusions, facial expressions, and
lighting conditions [9–12] can have an impact on the performance of FR algorithms. Conversely,
research suggests that face datasets with greater pose variations [13] can strongly improve the per-
formance of FR systems. Wu et al. developed a simulator and refiner module to generate frontal face
images for the “three-dimensional (3D)” face images using the Deep Pose-Invariant Face Recognition
Model [14]. To handle faces that have large pose variations, a novel method has been developed
for learning pose-invariant feature embeddings [15]. This approach involves transferring the angular
knowledge of frontal faces from the teacher network to the student network. Tao et al. proposed
the Frontal-Centers Guided Loss (FCGFace) method to acquire highly discriminative features for
face recognition. FCGFace achieves this by dynamically adjusting the distribution of profile face
features and reducing the disparity between them and frontal face features at various stages of training,
resulting in compact identity clusters [16]. Sengupta et al. presented a special data collection called
“Celebrities in Frontal-Profile” that includes data from 500 different individuals with 4 images of
profile faces in controlled and unconstrained environments [17].

In their study, Perez-Montes et al. introduced an evaluation subset containing various pose
angles [18], ranging from 0° to 20°. They achieved a maximum verification score of 93.5% using the
MobileFaceNet algorithm [19]. It is essential to train the model with various pose images to improve
recognition in an unconstrained environment. This finding suggests that incorporating more pose
variations in the dataset can help address the challenges posed by individuals facing the surveillance
camera from different angles. In this study, the authors utilize a real-time dataset of 13 pose variations
and attain a superior recognition rate for frontal-profile faces compared to advanced techniques.
Furthermore, selecting the optimal feature vector size based on an examination of the Euclidean
distance metric enhances the performance of the system.

2 Related Work

Addressing yaw pose variations is crucial for enhancing face recognition performance. Several
studies have addressed this challenge using different methodologies. Pose-aware feature aggregation
for FR has been introduced in recent work. This approach initially detects the facial features,
predicts the pose of the face using a deep neural network, and subsequently extracts unique features
using a model built on ResNet [20]. These features were aggregated using weighted feature maps
from the different ResNet layers. The approach achieved an impressive accuracy of 96.91% when
evaluated on the LFW dataset, covering a wide range of yaw angles from −90° to 90°. This research
highlights the effectiveness of pose-aware feature aggregation in improving the FR across diverse pose
variations. Naser et al. developed a system integrating “Multi-task Cascaded Convolutional Networks
(MTCNN)”, FaceNet, and “Support Vector Classifier (SVC)” to detect faces with yaw pose variations
from 0° to ±90°, achieving a high accuracy of 96.97% [21]. Gimmer et al. developed Syn-YawPitch,
a 1000-identity dataset with different yaw-pitch angles and showed that pitch angles exceeding 30°
significantly affect biometric performance [22]. The method proposed by Choi et al. leverages an
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angle-aware loss function inspired by ArcFace to provide a large margin for significantly rotated faces,
ensuring better feature extraction for varying face angles and improving recognition accuracy [23].

The paper introduces the Large-Pose-Flickr-Faces Dataset (LPFF), a collection of 19,590 real
large-pose face images designed to address the pose imbalance problem in current face generators. By
integrating the LPFF dataset with existing datasets such as Flickr-Faces-HQ Dataset (FFHQ), a new
dataset known as FFHQLPFF is created, which is further augmented by a horizontal flip to balance
the pose distribution. To ensure a focus on large-pose data, the LPFF dataset is rebalanced by dividing
it into subsets based on data densities rather than yaw angles. The “Efficient Geometry-aware (EG)
3D” face reconstruction model is utilized to extract camera parameters from the dataset. Although
the LPFF dataset shows improvements, it still grapples with semantic attribute imbalances, such as
the entanglement between smile-posture attributes [24].

The “Hypergraph De-deflection and Multi-task Collaborative Optimization (HDMCO)” method
is a FR technique that employs advanced optimization for enhanced performance. It embeds hyper-
graphs in image decomposition to address pose deflection and extracts robust features using a feature-
encoding method. In addition, HDMCO jointly optimizes tasks for improved recognition. Specifically,
discrimination enhancement method is based on non-negative matrix factorization and hypergraph
embedding, which extracts near-frontal images from pose-deflected images [25]. The “Two-Gradient
Local Binary Pattern (TGLBP)”, designed for effective small-pose face recognition. This method
achieves superior accuracy and robustness against noise. It consists of “Chinese Academy of. Sciences
(CAS)-Pose, Expression, Accessory, and Lighting (PEAL)” face database, which comprises 99,450
face images of 595 Chinese men and 445 Chinese women, capturing diverse variations in terms of
background, illumination, accessories, expressions, and gestures. Despite the encouraging outcomes
demonstrated by the TGLBP algorithm, this study acknowledges the constraints it faces in addressing
large-scale rotations in human faces [26].

3 Methodology

The proposed FR system is illustrated in Fig. 1. This section provides a detailed description of the
method implemented for achieving pose-invariant FR. A key component of any FR system involves
converting a raw image of a human face into a one-column dimensional vector, known as face feature
embedding. Determining the optimal Euclidean distance threshold is crucial for establishing a decision
boundary that distinguishes whether an individual belongs to the same identity or a different one.
FaceNet utilizes a deep convolutional neural network, exploring two main architectures: the original
Zeiler & Fergus-style [27] networks and the more recent Inception-type models. Specifically, the deep
FR algorithm (without the transfer learning approach) uses an optimized Inception-v2 architecture
with 164 layers. This architecture effectively selects the finest feature vector dimension, ensuring
accurate identification of individuals across different yaw poses, as discussed in Section 4.

3.1 Input CCTV Image Acquisition and the RSBFRS Database

A full-HD Dahua “Pan-Tilt-Zoom (PTZ)” camera was connected to a high-end graphics card-
equipped workstation for edge computing [28]. This camera has a resolution of 2 megapixels and
captures 25–30 frames per second. Data acquisition was performed for various pose angles ranging
from −90° to +90° with one frontal face and 12 non-frontal-profile faces [29]. Consequently, the
RSBFRS dataset [30] comprises of 8983 samples of 691 individuals, with each having 13 different
pose images of size 1920 × 1080 pixels. This uniform diversity in the dataset makes it a unique dataset
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for addressing yaw poses. The training and test split ratio divided the training and validation datasets
into 80:20 and later into 50:50 (RSBFRS data) throughout the process.

Figure 1: Proposed method for multiple FRs

3.2 Face Detection and Dlib Face Alignment Technique

Before training the face recognition system, we performed Face Alignment and Resampling. The
input images from both the RSBFRS and LFW databases were subjected to face alignment using
the Dlib library. Following facial alignment, the images were resampled to a standardized size of
96 × 96 pixels using OpenCV. This normalization step ensures that the input data fed into the face
recognition system have consistent size and alignment, thereby enabling accurate feature extraction
and model training. Each participant contributed 13 pose-variation samples as input. The primary
focus is to obtain a pose-invariant FR system, so the Dlib [28] open-source library provides useful
information about facial landmarks, making the face alignment procedure easier. Dlib utilizes a pre-
trained face detector consisting of a “Histogram of Oriented Gradients (HoG)” and a Linear SVM.
HoG determines information regarding the texture and shape of facial images by calculating the
distribution of gradient orientations in tiny regions of the image. This method focuses on specific facial
features, such as the outer corners of the left and right eyes and the tip of the nose. These points aid
in aligning faces with varying yaw angles. A linear SVM classifier was used to distinguish between the
face landmarks and background regions based on HOG feature descriptors. The linear SVM algorithm
determines the optimal hyperplane to divide positive (landmark) and negative (non-landmark) samples
in the feature space. This is accomplished by mathematically addressing the optimization problem, as
shown in Eq. (1).

minw,b

1
2

‖w‖2 subject to yi (w.xi + b) ≥ 1 for i = 1, . . . , N (1)
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where w is the weight vector, b is the bias term, xi is the feature vector for the ith sample, yi is the
class label for landmark and N is the number of training samples. Hence, the Dlib detector detects
the faces in a given image using landmark localization. These landmarks serve as reference points for
subsequent tasks, such as face alignment, where the detected landmarks are used to normalize and
align the face images. After detecting the face, each input image was passed through a face alignment
block to resample into an image size of 96 × 96, followed by normalization.

3.3 Optimized FaceNet Architecture Details with the Tuning of Feature Vector Dimensions

In this section, we delve into feature extraction using the Inception-v2 network. The Inception
architecture aims to identify the optimal sparse structure for a convolutional network and supple-
menting it with dense components to provide a c lose approximation. Fig. 2 illustrates a fundamental
version of the inception module, where 1 × 1, 3 × 3, and 5 × 5 convolutional filters are applied to the
input, followed by max pooling. The concatenated outputs from this module are then passed to the
subsequent inception module.

Figure 2: Inception-v2 architecture details

Generally, deep neural networks are expensive. Szegedy et al. [29] proposed a strategy to reduce
operation costs by introducing a 1 × 1 convolution before the 3 × 3 and 5 × 5 convolutions, as depicted
in Fig. 2b. Although counterintuitive, 1 × 1 convolutions are significantly more cost-effective than
their larger counterparts (5 × 5 convolutions), and the smaller number of input channels also aids in
cost savings. A 1 × 1 convolution was placed after the max pooling layer. The primary network layer
implementation details of the inception module have been taken from the literature [31], focusing
only on the top layer changes and optimization of the architecture using the “Root Mean Square
Propagation (RMSProp)” optimizer. Optimization consists of L2 regularization by replacing the fixed
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learning rates with variable learning rates. Based on the average of the squared gradients over time, the
RMSProp method adaptively adjusts the learning rate for each parameter. Consequently, the chosen
learning rate was 0.0004 for fast convergence.

An input image of shape 96 × 96 × 3 is fed into the first convolution layer of the Inception-v2
module because the input size for “Neural Network4 (NN4)” is 96 × 96, followed by a max-pooling
layer. Subsequently, two sets of inception modules with a down-sampling component named Inception
3a, Inception 3b, Inception 4a, and Inception 4e are connected; before the dense layer, two inception
modules are added with an average pooling layer. When the receptive field is too small, the higher layers
do not incorporate 5 × 5 convolutions, apart from the decreased input size. A dense layer follows the
convolutional base with 128 hidden units, followed by an L2 normalization layer—these two outermost
layers—are known as embedding layers of size 128 [32]. It employs the weights nn4.small, 2. v1 model,
which was pretrained. Suppose the number of hidden neurons in a neural network is less than 16; in
this case, it does not possess the potential to learn enough relevant patterns to differentiate between
facial and non-facial features. Based on the analysis, if the neural network consists of more than 16
neurons, it performs better in classification problems. We plan to create dense units of sizes 32, 64,
128, and 256.

The modified 164-layered Inception-v2 architecture details are depicted in Fig. 2c. The architec-
ture comprises convolutional layers, batch normalization, activation functions, max pooling, and local
response normalization layers, which form the fundamental components of the initial network. We
considered multiple filter sizes for each layer. The Inception-v2 model was utilized in two distinct
phases. In the first phase, the entire Inception-v2 model was loaded with the corresponding weight
file, and the model was trained for a publicly available dataset (LFW) and custom real-time data
(RSBFRS). Once trained, all layers of the model, including those specific to different stages, such
as inception 3a, 3b, 3c, 4a, 4e, 5a, and 5b, are frozen. Their weights remained unchanged during
subsequent training, preserving the knowledge acquired from the initial training phase. Only the dense
layer with dense unit 32 is further trained for all the input images, converted into feature vectors of
size 32 × 1, and stored as a database. Similar operations were performed for the 64 × 1, 128 × 1, and
256 × 1. These features were then utilized for classification using SVM and KNN.

In the second phase, denoted as Phase II in Fig. 1, we aimed to reduce the training time and
complexity, a pre-trained Inception-v2 model with a specific feature vector dimension of 128 × 1 was
used to extract face features in live video streaming. The obtained face vector was then compared
with the stored vector database with Euclidean distance as a metric able to recognize both known and
unknown faces.

3.4 Triplet Loss

The selection of triplets plays a crucial role during the training process. These triplets should
contain positive pairs (za

i , zp
i ) and negative pairs (za

i , zn
i ) that are challenging to distinguish, meaning

that their difference in distance within the embedding space should be minimal, ideally less than the
specified margin α. If the chosen triplets do not match this condition, the network may struggle to
learn meaningful embedding. Therefore, in each training iteration, a new set of triplets must be chosen,
depending on the embeddings obtained in the previous iteration. This iterative procedure ensures that
the network consistently learns and acquires knowledge from data effectively. An anchor and positive
image pair outputs a smaller value for triplet loss, thus forming the same identity. However, the anchor
and negative image pairs have a higher triplet loss value, thus representing a different identity. The
triplet-selection criteria are shown in Fig. 3.
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Figure 3: The triplet loss training concept

The embedding is given as f (z) ∈ R
d. It maps an image z into a d-dimensional Euclidean space

and forces the embedding to reside on the surface of the d-dimensional hypersphere as ‖f (z)‖2 = 1.
This study [33] proposed a loss to guarantee that a given image za

i (anchor) of a particular person is
closer to all other pictures zp

i (positive) of that person than it is to any image zn
i (negative) of a different

person. Fig. 3 illustrates this. The expression for the triplet loss L [1] is given in Eqs. (2) and (3):
∥∥f (za

i ) − f (zp
i )

∥∥2

2
+ α <

∥∥f (za
i ) − f (zn

i )
∥∥2

2
(2)

∀( f (za
i ), f (zp

i ), f
(
zn

i

) ∈ τ (3)

α denotes the margin between positive and negative pairs. The τ set contains all possible triplets
that appear in the training set and has a size of N. L is the quantity that is minimized and given as

L = ∥∥f (za
i ) − f (zp

i )
∥∥2

2
− ∥∥f

(
za

i

) − f
(
zn

i

)∥∥2

2
+ α (4)

3.5 SVM + KNN Classification

The feature vectors extracted by Inception-v2 were then used as inputs to the SVM + KNN
classifiers for face recognition. In a high-dimensional feature space, SVM is trained to differentiate
the feature representations of distinct individuals, whereas KNN labels test samples according to the
major class of their nearest neighbors. KNN classifies a data point by assigning it to the class that
is most prevalent among its k closest neighbors, where k is a value determined by the user. Here we
select, k = 5. This classifier uses a regularization parameter. This can be expressed mathematically as
follows:

minw,b

1
2

‖w‖2 + C
∑N

i=1
ξi subject to yi (w.xi + b) ≥ 1 − ξi and ξi ≥ 0 for i = 1, . . . N (5)

where C is the regularization parameter. In summary, the proposed system initially uses Dlib to detect
faces in an image and extract face landmarks (specifically, the outer eyes and nose tip) for integration
with the feature extraction block. Then, a resampled face image of size 96 × 96 was passed through
(Inception-v2) FaceNet to extract their embeddings. Finally, the vector of feature embeddings was
classified using SVM + KNN to determine the identity of the detected face.

4 Results and Discussion

To implement this architecture in real-time scenarios, the open datasets LFW and RSBFRS (which
contain 8983 images) were fed into the Inception-v2 model. After training with these datasets, each
face image was transformed into vectors of dimensions 32 × 1, 64 × 1, 128 × 1, and 256 × 1. This
system generates a vector of 128 points that represents a person’ s face and is effective for identifying
similar faces. A feature vector of the identity is compared with each feature vector of the other
identities. To identify known faces in the datasets, we developed a model that utilizes linear SVM and
KNN to classify normalized face embeddings. This approach effectively distinguishes between vectors
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by training a linear SVM on face-embedding data, enabling accurate classification. The Euclidean
distance was calculated for the feature vectors of the image pairs. Thus, recognition occurs. Further
details of these results are provided below.

4.1 Experimental Setup for Data Collection and Database Used

Fig. 4 illustrates the experimental setup for RSBFRS data collection. This camera setup provides
a unique advantage in that it allows individuals to be identified from a distance. The performance
of the developed algorithm was assessed using two datasets, LFW [34] and RSBFRS. The developed
algorithm is verified using the LFW dataset. The database consisted of 13,233 face images collected
from the web of 1680 individuals for training and validation. Additionally, CCTV videos were
created to investigate the challenge of recognizing faces in an unconstrained environment. The dataset
comprises 700 videos.

Figure 4: The complete setup for face data collection using the Dahua PTZ camera

The LFW dataset is widely utilized in FR research, with a primary focus on frontal poses.
However, this dataset may lack diversity in terms of extreme yaw angles, potentially limiting the
exposure of developed methods to challenging non-frontal poses and affecting their generalization
to real-world scenarios with greater pose variations. The datasets used for evaluation may also exhibit
some limitations and biases, particularly concerning the diversity of the represented yaw poses. Since
the face data collection was conducted under constant illumination and lighting conditions, this is
particularly relevant. The lack of diversity in yaw poses at certain angles and the uniform lighting
conditions in the dataset pose significant limitations and biases for evaluation. In future work,
addressing these issues by incorporating a more diverse range of yaw poses and capturing data under
various lighting conditions will enhance the overall FR system performance. The RSBFRS dataset is
collected at certain angles, and there might be a chance to omit angles from ±30° to ±90°. The yaw
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poses in the dataset are distributed as follows: To the right: +10, +30, +45, +60, and +90 degrees, To
the left: −10, −30, −45, −60, and −90 degrees. Hence, certain yaw angles may be underrepresented,
affecting the FR system performance for specific pose variations.

4.2 Results of Facial Alignment and Detection of Yaw Pose Images in the LFW and RSBFRS Datasets

As stated in Section 2, the preprocessing step is carried out consistently for all training and testing
samples in the face detection module. Before modeling, the data undergoes preprocessing. Upon
loading the database, Dlib and OpenCV execute the face detection process. Fig. 5a shows an example
of an input face image from the LFW database. Fig. 5b illustrates the detection output, as shown in
Fig. 5c. A resized image output of 96 × 96 pixels is displayed. Dlib utilizes the detected face points
to resize and crop all input images to a standard dimension of 96 × 96 pixels, ensuring that facial
images are transformed into a consistent size, disregarding the position of the key points on the face.
It is important to normalize the phase-embedding vectors since they are typically measured using a
distance metric.

Figure 5: (a) Input face image from the LFW database, (b) output of face detection, (c) rescaled image
(d) input CCTV image, (e) output window for face detection, (f) output rescaled image

4.3 Comparative Analysis of the Euclidean Distance for Different Yaw Poses

The output Euclidean distance values of the positive and negative image pairs to the number of
dense units are given in Table 1. A single triplet image sample was verified on the LFW and RSBFRS
databases.



754 IASC, 2024, vol.39, no.4

T
ab

le
1:

C
om

pa
ri

so
n

be
tw

ee
n

th
e

E
uc

lid
ea

n
di

st
an

ce
va

lu
es

of
th

e
Y

aw
po

se
im

ag
e

pa
ir

s

D
en

se
un

it
s

Im
ag

e
po

si
ti

ve
pa

ir
(L

F
W

)
Im

ag
e

ne
ga

ti
ve

pa
ir

(L
F

W
)

Im
ag

e
po

si
ti

ve
pa

ir
(R

SB
F

R
S)

Im
ag

e
ne

ga
ti

ve
pa

ir
(R

SB
F

R
S)

d
=

32

d
=

64

d
=

12
8

d
=

25
6



IASC, 2024, vol.39, no.4 755

The number of dense layer units used can significantly affect its performance. Increasing the
number of units improved the accuracy of the model. Simultaneously, the complexity of the model
increases, which can lead to overfitting. On the other hand, decreasing the number of units can reduce
the complexity of the model, but may decrease its accuracy. Thus, striking a balance between the
number of units and the accuracy is crucial. The rows in Table 1 show the difference between the
Euclidean distance values for image-positive and image-negative pairs from the LFW database for
dense units d = 32, 64, 128, and 256. To select the most appropriate threshold value, it is necessary to
evaluate the performance of face verification across a range of distance threshold values. The ground
truth was compared to all embedding vector pairs with the same or different identities at a given
threshold. For example, in the dense unit of 32, the positive and negative pairs of the image show
distance values of 0.25 and 1.56, respectively. Hence, we computed the F1 score and accuracy for
various distance thresholds ranging from 0.3 to 1, with an interval of 0.01. For each threshold value,
we classified pairs of face embeddings as genuine (same identity) or impostor (different identity), based
on whether the distance between the embeddings was below the threshold. We identified a threshold
value that maximized the F1 score, indicating a balance between precision and recall. This threshold
value ensures optimal performance in distinguishing genuine and impostor pairs.

The LFW database has identified a threshold value from the first row of Table 1, which shows
a value of 0.12 for the positive image pair. In the RSBFRS database, the dense unit 32 achieves a
distance value of 0.02 and 0.29 for the positive and negative image pairs, respectively. The iterative
process begins with a threshold value of 0.3 and continues until the optimal value is determined, as
previously discussed. The maximum value for the distance threshold is 0.03, as shown in Table 1. After
multiple iterations through each threshold value, the maximum F1 score was achieved at a threshold
of 0.06. The results show that the dense unit of size 128 and the corresponding feature vector output of
size 128 × 1 provide the minimum distance value of 0.12 for positive image pairs in the LFW database.
Overall, this feature vector provides the minimum distance percentage for both positive and negative
image pairs and can be considered the most suitable for facial recognition in yaw pose variations. The
Table 2 histogram depicts the positive and negative pair distance distributions as well as the decision
boundary. The superior performance of the network can be ascribed to the unique nature of these
distributions. The 128 × 1 dimensional vector exhibits better distributions compared to the other
cases, and all positive pairs groups contain notable outliers. As per the information in Table 1, a feature
vector with a dimension of 64 has a significantly greater Euclidean distance. However, it is important
to mention that the 128 × 1 dense unit produces a relatively lower distance value of 0.02 for similar
images, which appears reasonable in comparison to other dimensions. The findings revealed that a
feature vector size of 128 × 1 outperforms the other values.

Examine a face image measuring 1920 × 1080 pixels, which has been resized to 96 × 96 pixels and
subsequently converted into 32 × 1, 64 × 1, and 128 × 1 feature points. To comprehend the disparity
between 32 × 1 and 64 × 1 feature vectors with 128 points, consider the example depicted in Fig. 6.
The values within the 32 × 1 feature vector range from approximately −0.304 to 0.340, exhibiting
variation in magnitude with certain points close to zero and others demonstrating relatively larger
values. The 64 × 1 feature vector encompasses a broader range than the 32 × 1 vector, spanning
from approximately −0.393 to 0.317, showcasing increased variability within the dataset. The 128
× 1 feature vector indicates feature points ranging from approximately −0.190 to 0.203, revealing a
narrower range of values compared to the 64 × 1 vector. This smaller spread in the 128 × 1 vector
could be attributed to the higher density of data points falling within a more confined range, potentially
resulting in a visually smaller appearance in the box and whisker plot.
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Figure 6: Plot for comparing different feature vectors of sizes 32 × 1, 64 × 1, and 128 × 1

4.4 Comparison of Accuracy between Different Threshold Values and Dense Units

Using the LFW database, the performance of the modified inception architecture was evaluated
for various dimensions of the feature vectors, d = 32, 64, 128, and 256. It achieved better results, with
an FR accuracy of 99.7% for a minimum distance threshold value of 0.12, as shown in Fig. 7a. The
details are presented in Table 3. During validation, at a distance threshold of 0.06 in the RSBFRS data,
the FR system achieved an accuracy of 99.8%, as shown in Fig. 7b. This performance surpasses that
of previous state-of-the-art methods compared in Table 4, and we obtained the highest FR accuracy.
The metric used for calculating the recognition accuracy was computed using Eq. (6). Similarly, the
classification accuracy was computed using Eqs. (7) and (8). Let ytrain and ytest be the actual labels for the
training and test sets respectively. ŷSVM and ŷKNN are the predicted labels, Ntest is the number of samples
in the test set. The classification accuracy for the SVM and KNN for the test set can be calculated as:

Recognition Accuracy = Number of correct predictions
Total Number of predictions

× 100 (6)

AccuracySVM = 1
Ntest

∑Ntest

i=1
1

(
ŷSVM [i] = ytest [i]

)
(7)

AccuracyKNN = 1
Ntest

∑Ntest

i=1
1

(
ŷKNN [i] = ytest [i]

)
(8)

Table 3: Comparison between the distance threshold and output FR accuracy of LFW

Dense units Distance threshold Face verification accuracy

d = 32 0.17 99.6%
d = 64 0.14 99.7%
d = 128 0.12 99.7%
d = 256 0.15 99.7%
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Figure 7: Plot of the highest FR accuracy, F1 score vs. distance threshold of the Inception-v2 model

Table 4: FR accuracy comparison of different methods on the LFW dataset

Method Loss Accuracy (%)

Deepfakes [35] Softmax 97.3
DeepFace+ [36] Contrastive loss 97.7
VGGface [37] Triplet loss 98.9
DeepID2 [38] Contrastive loss 99.1
DeepID3 [39] Contrastive loss 99.5
FaceNet [40] Triplet loss 99.6
Optimized inception-v2 (Proposed) Triplet loss 99.7

4.5 Comparison of Classification Accuracy for Different Feature Vector Values

To achieve a higher classification accuracy, the LFW dataset was split into training and testing
data at an 80:20 ratio. The accuracy can be further improved by incorporating additional features.
The step-by-step progress in classification accuracy using the SVM and KNN techniques with the
Inception-v2 model is shown in Table 5. Among these approaches, the FaceNet + KNN method
achieved the highest accuracy of 87.71% for d = 256. The RSBFRS dataset was split into two parts.
Half of the data were used to train the SVM and KNN classifiers, and the other half were used for
testing. Table 5 shows the accuracy of the SVM and KNN classification techniques. The FaceNet
+ KNN classification method achieves the highest accuracy of 99.44% when the output dimension
is 128 × 1. Therefore, it can be concluded from the table that feature vectors of sizes 64 and 128
provided better classification results than those of the other dimensions. In addition, a vector size of
128 yielded a lower Euclidean distance for positive image pairs, thereby improving the classification
rate. According to the analysis, the optimal feature vector size was 128 × 1.

In Table 5, the significant disparities in classification accuracy between the LFW and RSBFRS
datasets can be attributed to several factors. One of the key factors is that the RSBFRS has uniform
diversity in yaw pose images in the database for 691 individuals with 1920 × 1080 resolution. Despite
the smaller number of images in the RSBFRS dataset, it exhibits better class separability and reduced
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data imbalance compared to the LFW dataset. SVM and KNN classifiers performed optimally
when the classes were well-separated and balanced. The RSBFRS dataset, which focuses on yaw
pose variations, provides a more balanced representation of different classes, facilitating a better
classification performance. The LFW dataset contains yaw pose face data. The dataset includes
images with a few yaw angles and 250 × 250 resolution, allowing for the study of face recognition
across different head orientations. The maximum angle of the face poses in the LFW dataset is not
explicitly mentioned in the LFW database repository. However, the RSBFRS dataset introduced in
our work encompasses a broader range of yaw pose variations, capturing facial images under diverse
conditions. The trained model performed adequately on the LFW dataset with similar frontal faces,
and its performance degraded significantly when applied to datasets with yaw pose variations. This
advantage in class separability and reduced data imbalance in the RSBFRS dataset allows SVM and
KNN classifiers to make more accurate distinctions between classes, resulting in higher classification
accuracy compared to the LFW dataset.

Table 5: Comparison between SVM and KNN classification accuracy

Dense unit LFW RSBFRS

FaceNet + SVM FaceNet + KNN FaceNet + SVM FaceNet + KNN

32 × 1 54.21% 86.31% 96.75% 98.04%
64 × 1 59.15% 86.94% 99.12% 99.23%
128 × 1 59.51% 87.62% 99.41% 99.44%
256 × 1 64.41% 87.71% 98.96% 99.26%

The focus of our study lies in investigating a substantial number of pose variation samples,
positioning it as a pioneering approach for pose-invariant recognition. A comparison of performance
is illustrated in Table 6. The developed inception model underwent rigorous training using pose
variation samples from the RSBFRS dataset. This method cannot be contrasted with pose variant
models, 3D models, and synthetic data generation techniques. The main objective of this research is to
tackle the challenge of yaw-pose variation without employing synthetic data. The proposed approach
consistently achieves a higher level of accuracy than previous techniques, as shown in Table 6, across a
range of pose angles. It offers a comprehensive evaluation of the proposed approach in comparison to
existing methods across various databases and yaw-angle ranges. The effectiveness of each method was
quantitatively measured in terms of accuracy or recognition rate, providing insight into their relative
strengths in dealing with non-frontal poses. As a result, this approach emerges as a well-suited solution
for facial recognition with pose variations.

The high recognition accuracy attained using the proposed approach can be attributed to several
key factors. Primarily, the combination of Dlib and FaceNet algorithms enables the extraction of
discriminative features from face images, even when the poses are not frontal. The selection of a
128-dimensional embedding vector as the feature representation demonstrates the importance of
dimensionality reduction in capturing pertinent facial information. Establishing minimum Euclidean
distance thresholds of 0.06 and 0.12 further refines the recognition process by setting a criterion for
determining the similarity between face embeddings. Fine-tuning these thresholds ensures that only
highly similar embeddings are considered matches, thereby bolstering the accuracy of the recognition
system. The utilization of SVM + KNN classifiers complements the feature extraction process by
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effectively learning discriminative patterns from the extracted embeddings. The incorporation of real-
time data from the RSBFRS ensures that the model can be effectively generalized to real-world
scenarios with varying yaw poses.

Table 6: Performance comparison of different approaches for yaw pose variations

Database Technique Yaw angle Accuracy/Recognition rate

LFW Pose-guided attention
[41] mechanism, “Deep
neural network (DNN)”

−90° to +90° 97.21%

Multi-PIE,
CASIA-WebFace

Clustering algorithm,
DNN [42]

−90° to +90° 95.6%

LFW,
MegaFace

Adaptive
normalization,
DNN [43]

−90° to +90° 96.71%

LFW ResNet, DNN [44] −90° to +90° 97.51%
LFW,
RSBFRS (real-time
data)

Dlib, Inception-v2,
SVM + KNN

−90° to +90° 99.8%

4.6 Limitations and Practical Applications

Although the proposed approach demonstrates promising results in addressing yaw pose varia-
tions and enhancing face recognition accuracy, several limitations should be addressed. The effective-
ness of this approach may be influenced by the size of the training dataset used. Although the RSBFRS
dataset used in this study contains a substantial number of images with yaw pose variations, it can be
improved with a higher number of images. The reliance on pre-trained models, such as the Inception-
v2 architecture, may introduce limitations related to model generalization and adaptation to specific
domains or datasets. The performance of this approach may be sensitive to environmental factors
such as lighting conditions and camera angles. The computational requirements of this approach,
particularly during the training and inference stages, may pose limitations in resource-constrained
environments or real-time applications.

The proposed approach holds significant potential for practical applications in real-world sce-
narios, especially in improving the functionality of facial recognition systems when dealing with
challenging conditions characterized by non-frontal poses. In public places and crowded environments,
accurately identifying individuals in non-frontal positions enhances public safety and security mea-
sures. Security personnel can efficiently identify individuals of interest and respond to potential threats
more effectively, thereby contributing to overall public safety. Additionally, in access control systems
utilized in workplaces, educational institutions, or residential complexes, the proposed approach can
streamline the authentication process by accurately confirming the identities of individuals, regardless
of their yaw pose.

5 Conclusion

This study systematically investigates the influence of yaw pose variation on the accuracy of facial
recognition systems. We developed a robust solution to detect faces ranging from 0° to ±90°. Our
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approach, which integrates Dlib, FaceNet, and SVM + KNN, outperforms the existing methods.
This method achieved a maximum recognition accuracy of 99.8% for RSBFRS CCTV data, with
a minimum Euclidean distance value of 0.06. Similarly, the LFW data show a 99.7% recognition
accuracy for a 0.12 distance threshold, confirming its ability to handle yaw pose variations better than
existing approaches. We found that a feature vector dimension of 128 × 1 was optimal for both the
positive and negative yaw image pairs. Furthermore, the supervised learning models, SVM and KNN,
achieved a maximum classification accuracy of 87.71% for the LFW benchmark dataset and 99.44%
for the real-time RSBFRS database. With the inclusion of 12 significant yaw pose variation images,
the FR performance was improved with reduced computation time, making the system more efficient
and accurate in a crowded environment. The FR system effectively recognizes faces from different
angles (yaw positions). To further improve the accuracy rate, future works can focus on several factors.
Expanding the RSBFRS dataset to include more real-time yaw pose image pairs beyond ±90° for all
the individuals, ensures the uniformity between samples to create a more consistent and representative
training dataset. Also, the addition of ear contours/features in the Dlib module could further improve
recognition performance in yaw poses. This approach demonstrated significant accuracy compared
to most known baseline methods, highlighting the potential use of a pose-invariant FR system in
surveillance applications.
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