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ABSTRACT

In the process of fault detection and classification, the operation mode usually drifts over time, which brings great
challenges to the algorithms. Because traditional machine learning based fault classification cannot dynamically
update the trained model according to the probability distribution of the testing dataset, the accuracy of these
traditional methods usually drops significantly in the case of covariate shift. In this paper, an importance-weighted
transfer learning method is proposed for fault classification in the nonlinear multi-mode industrial process. It
effectively alters the drift between the training and testing dataset. Firstly, the mutual information method is utilized
to perform feature selection on the original data, and a number of characteristic parameters associated with fault
classification are selected according to their mutual information. Then, the importance-weighted least-squares
probabilistic classifier (IWLSPC) is utilized for binary fault detection and multi-fault classification in covariate
shift. Finally, the Tennessee Eastman (TE) benchmark is carried out to confirm the effectiveness of the proposed
method. The experimental result shows that the covariate shift adaptation based on importance-weight sampling
is superior to the traditional machine learning fault classification algorithms. Moreover, IWLSPC can not only be
used for binary fault classification, but also can be applied to the multi-classification target in the process of fault
diagnosis.
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1 Introduction

Data-focused fault detection in industrial process has been heavily researched in the past few years,
especially for plant-wide nonlinear chemical processes [1–9]. However, most of the related papers are
focused on fault detection in a single working condition. Since traditional machine learning algorithms
cannot cope with unknown input data, these methods often perform very poorly with different test
samples, so there is a great need in industry for learning models that can learn from many different
datasets for different working conditions [10]. This drawback restricted the effectiveness of fault
detection algorithms for nonlinear multi-mode processes. It is essential to propose some new methods
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to better solve the problem of model transfer under unknown operating conditions or drift of operating
conditions over time.

The actual industrial process usually runs in multiple operating modes [11] because of raw material
fluctuations, seasonal changes in market demand, etc. For large-scale multi-mode industrial fault
detection, the traditional machine learning-based fault detection algorithms cannot detect the drift
of the process working conditions in time, which may lead effect and performance of the pre-designed
fault detection algorithm to continually decline over time. On the other hand, fault detection in
multi-mode chemical processes is usually achieved based on model recognition or model division. A
mathematical model is established based on historical process data to obtain the monitoring indicators
of each model of the multi-model process, and then determine whether the fault has occurred based
on the monitoring indicators, thus issuing alerts in time to avoid serious accidents.

In the existing literature, it is assumed that there is no significant drift in operating conditions,
and the fluctuation characteristics of process variables are stationary sequences (such as Gaussian
distribution, etc.). However, in the actual industrial production environment, the conditions frequently
change during the accumulated long-term operation, which would lead to certain drifts in the
probable distributions of processing variables in the process. On the other hand, since the dynamic
characteristics are determined by the mechanism of the actual production process, the nonlinear
dynamic connection between the process variables and the system output usually does not change
significantly. It is assumed that the training and testing data have the same input distribution, and a
majority of traditional machine learning based methods could not work effectively under covariate
shift. It could be solved by reducing the differentiation of the distribution of the training and testing
data [12–19].

The existing literature regarding fault classification in nonlinear multi-mode processes usually
does not consider the system operating conditions or the time-varying drift in terms of fault char-
acteristics. The operation-condition ranges of the process system plants are assumed to be within
the historical operation-condition ranges. In other words, they assume that there are no unknown
operation conditions during the verification of fault classification in multi-mode processes. However,
these assumptions are unreasonable for the actual industrial chemical process, because the data sample
distributions of the training and testing dataset may not be perfectly consistent, which is due to the
change of working conditions. And data characteristics can be changed due to fluctuations of raw
materials. In addition, conventional data-driven methods work under the assumption that the dataset
used for model training is sufficient, but the effective information or knowledge available in the actual
production process usually is not sufficient to train the fault classification model. Therefore, it is
significant to introduce the transfer learning [20] to the fault classification in the nonlinear multi-
mode process. Transfer learning is a reliable method to solve the issue of deficiency data, and it utilizes
the existing data or knowledge in historical scenes to assist the training process of the model [21]. In
this study, the concept of covariate shift [22] in the transfer learning is introduced, and the importance-
weight sampling is carried out. The contribution in this study can be summarized as:

1) This paper focuses on the application of covariate shifts for the industrial-process fault detection
and classification. We introduced a practical reweighting method (importance weighting) [23], which
can be formally proven that this approach is theoretically reliable [24].

2) The importance-weighted technique is introduced to address the problem of covariate shift. In
this case, a detailed technical analysis and implementation based on such a method is introduced for
a typical chemical process.
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3) A comprehensive experiment to validate the effectiveness of the proposed method is carried out,
in which, the performance analysis of multi-fault classification and binary fault classification under
covariate shift is introduced.

The rest of this paper is organized as following: we provide some basic preliminaries related to
this work in Section 2; Section 3 gives the problem formulation and the detailed algorithm of our
methodologies; we implement the algorithm for a benchmark industrial process in Section 4; the
discussion of results is presented in Section 5; Section 6 conclude the research.

2 Preliminaries
2.1 Mutual Information (MI)

According to the probability theory and information theory, the mutual information (MI) of
two random variables is a measurement of the mutual dependence between them, which is used to
evaluate the amount of information contributed by the appearance of one random variable to the
appearance of another random variable. Different from the correlation coefficient, mutual information
is not limited to real-valued random variables, and generally determines the similarity of the joint
distribution p (x, y) and the product of the decomposed marginal distribution p (x) p (y). In fact, MI
is a measure of mutual dependence between two sets of events.

Formally, the MI of two discrete random variables X and Y can be defined as:

I (X ; Y) =
∑
y∈Y

∑
x∈X

p (x, y) log
(

p (x, y)

p (x) p (y)

)
, (1)

where p (x, y) is the joint probability distribution function of X and Y , and p(x), p(y) are the marginal
probability distribution functions of X and Y , respectively.

Intuitively, MI measures the information shared by X and Y : it measures the degree to which one
of these two variables is known to reduce the uncertainty of the other. For example, if X and Y are
independent of each other, we can conclude that X does not provide any information to Y , and vice
versa, so their MI(X ; Y) = 0. At the other extreme, if X is a deterministic function of Y , and Y is also
a deterministic function of X , then all the information passed is shared by X and Y : the value of X
determines the value of Y , and vice versa. Therefore, in this case, the MI and Y (or X ) alone contain
the same uncertainty, which is called the entropy of Y (or X ). Moreover, this MI is the same as the
entropy of X and the entropy of Y . Indeed, a very special case of this situation is when X and Y are
actually the same random variable.

2.2 Importance-Weight Sampling with Covariate Shift

2.2.1 Definition of Covariate Shift

Covariate shift is first proposed in an article in the field of statistics [24]. It is defined as the
condition in which the input data (i.e., the training and testing dataset) apply different distributions,
and the conditional distribution of the output of a given input data remain unchanged, and such a
condition is defined covariate shift.

It is assumed that the input space of the source and target domain are both X , and the output
space are both Y . The marginal distribution of the source domain PS (x) is inconsistent with the joint
distribution of the target domain PT (x) (i.e., PS (x) �= PT (x)), but the conditional distributions of the
two domains are consistent (i.e., PS (y|x) = PT (y|x)).
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The introduction of covariate shift aims to use labeled source data and unlabeled target data to
learn a model for labeling target data [25]. A common method of covariate shift adaptation is to
compute density ratio weights from unlabeled source data and target data, and then to learn the final
hypothesis by directly minimizing the weighted loss [23].

2.2.2 Overview of Importance Weight Sampling Technique

Given the input variable x ∈ X ⊂ R
d , in which d denotes the input dimensionality, and

the output variable y ∈ Y � {1, . . . , c} that is a set of categories for classification. In supervised
learning, x is usually assumed to be independently drawn from an input probability distribution with
density p (x), and y is independently concluded from a conditional probability distribution with density
p (y|x) [26].

However, with covariate shift, the input distribution of the source domain is inconsistent with that
of the target domain, meanwhile the conditional distribution of the two domains remains unchanged.
It is supposed that the labelled training samples are defined as

{(
xtr

n , ytr
n

)}Ntr

n=1
, where the independent

and identically distributed training input samples xtr
n ∈ R

d are drawn from a probability distribution
with strictly positive density ptr (x), and the training output samples ytr

n ∈ {1, . . . , c} are drawn from
a conditional probability distribution with density p

(
y|x = xtr

n

)
. In contrast, the unlabelled test input

samples are in general unlabelled, then we suppose that xte
n ∈ {

xte
n

}Nte

n=1
⊂ R

d is concluded independently
from a probability distribution with density pte (x). Importance sampling aims to solve the problem of
covariate shift, the importance weight is defined as:

w (x) ≡ pte (x)

ptr (x)
, (2)

with the defined importance weight, the different training and testing input distributions can be
altered. Then, for any function A (x), we can derive the following equation:∫

A (x) pte (x) dx =
∫

A (x) w (x) ptr (x) dx, (3)

with the above expressions, we can conclude that the input distribution (i.e., the input sample weights)
can be altered in the training process of any prescribed machine learning model according to the input
distribution of the testing dataset. Therefore, the importance weighting also utilizes the labelled data
of the source domain and the unlabelled data of the target domain to guide the knowledge transfer.

3 Fault Classification Model
3.1 Feature Selection Using Mutual Information

In this study, there is a hypothesis that samples that are frequently grouped into a category, usually
have greater MI with this category. Then we introduce the general feature selection method based
on MI. The steps of the MI feature selection procedure: 1) divide the dataset; 2) sort these features
according to their MI values; 3) select the top n features and adopt prescribed machine learning model
to train; 4) evaluate the error rate of feature subset on the testing dataset. Through the MI-based
feature selection, these features related to the samples from the process can be sorted by correlation,
but how many features need to be selected depends on prior knowledge.
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3.2 Importance-Weighted Least-Squares Probabilistic Classifier

The multi-mode process probabilistic fault classifier is used to estimate the class-posterior
probability p (y|x) (i.e., to predict a class label yte for a test input point xte), which can be further
utilized in the fault detection of nonlinear multi-mode processes. The class-posterior probability p (y|x)

is formulated as:

p
(
y|x; θ y

) ≡
n=1∑
Nte

θy,nK
(
x, xte

n

)
, (4)

where θ y = (
θy,1, . . . , θy,Nte

)�
is the Nte-dimensional parameter vector and K (x, x′) is a kernel function,

which is used to extend x to a higher-dimensional state space, thus making the simple linear LSPC
classifier applicable in the original low-dimensional probabilistic classifier p (y|x). Then, the commonly
used Gaussian kernel is defined as:

K (x, x′) = exp
(

−‖ x − x′ ‖2

2σ 2

)
, (5)

where σ denotes the Gaussian kernel width. The goal is to minimize the following squared error
performance index Jy, by determining the LSPC parameter θ y:

Jy

(
θ y

) ≡ 1
2

∫ (
p

(
y|x; θ y

) − p (y|x)
)2

pte (x) dx

= 1
2

∫
p

(
y|x; θ y

)2
pte (x) dx

−
∫

p
(
y|x; θ y

)
p (y|x) pte (x) dx + C

= 1
2
θ

�
y Qθ y − q�

y θ y + C,

(6)

where C is a constant, and the elements of the Nte × Nte matrix Q and the Nte-dimensional vector
qy = (

qy,1, . . . , qy,Nte

)�
are defined as:

Qn,n′ =
∫

K
(
x, xte

n

)
K

(
x, xte

n′
)

pte (x) dx, (7)

qy,n ≡
∫

K
(
x, xte

n

)
p (y|x) pte (x) dx. (8)

Then, we can formally approximate Q and qy, using the aforementioned importance weight
sampling method, i.e., the importance weight Eq. (2). As a matter of fact, Q and qy can be expressed
as follows:

Qn,n′ =
∫

K
(
x, xte

n

)
K

(
x, xte

n′
)

ptr (x) w (x) dx, (9)

qy,n = ∫
K

(
x, xte

n

)
p (y|x) ptr (x) w (x) dx

= p (y)
∫

K
(
x, xte

n

)
ptr (x|y) w (x) dx,

(10)

where ptr (x|y) denotes the training input density for a certain class y. Then, using the training samples{(
xtr

n , ytr
n

)}Ntr

n=1
, Q and qy can be estimated in accordance with Eqs. (9) and (10):

Q̂n,n′ ≡ 1
Ntr

n′′=1∑
Ntr

K
(
xtr

n′′ , xte
n

)
K

(
xte

n′′ , xte
′
)

w
(
xtr

n′′
)ν

, (11)
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q̂y,n ≡ 1
Ntr

∑
n′ : ytr

n′ =y

K
(
xtr

n′ , xte
n

)
w

(
xtr

n′
)ν

, (12)

where the class-prior probability p (y) is estimated by N (y)

tr /Ntr, N (y)

tr represents the number of training
samples with label y, and the flattening parameter 0 ≤ ν ≤ 1. As argued in [21], there exists the
problem of bias-variance trade-off (i.e., the importance weights influence the bias and variance of the
IWLSPC model). If ν → 1, the bias gets smaller, but the variance tends to be larger; yet if ν → 0, then
the bias is larger, but the variance is smaller. The problem can be formally described as:

θ̂ y ≡ arg min
θy

[
1
2
θ

�
y Q̂θ y − q̂�

y θ y + λ

2
θ

�
y θ y

]
, (13)

where (λ/2) θ
�
y θ y is a regularization term with the parameter λ ≥ 0 avoiding over-fitting. Then, the

IWLSPC solution is given analytically as:

θ̂ y =
(

Q̂ + λINte

)−1

q̂y, (14)

where INte denotes the Nte-dimensional identity matrix. Considering that the class-posterior probability
is non-negative by its definition, then the solution p̂ (y|x) can be modified as:

p̂ (y|x) ≡ 1
Z

max

(
0,

n=1∑
Nte

θ̂y,nK
(
x, xte

n

))
, (15)

Finally, using the learned class-posterior probability p̂ (y|x), we can predict the class label yte of a
new test sample xte by

ŷte ≡ arg max
y

p̂
(
y|xte

)
, (16)

If there does not exist covariate shift during a steady-state operation of the nonlinear process, i.e.,
pte (x) = ptr (x), the IWLSPC is actually equivalent to the traditional LSPC method.

4 Fault Classification in TE Process
4.1 TE Process

In the field of process system engineering, Tennessee Eastman (TE) process is a widely used
Benchmark for process control [27,28] and fault monitoring [29–31]. The TE process is an open
simulation platform in chemical engineering and process industry, and it’s developed by Eastman
Company from the United States. With the support to the dynamic simulation of a chemical reaction
process, various features in the complex industrial process system can be well simulated with TE
process. The data generated by the TE has complex characteristics (e.g., time-varying, strong coupling,
and high nonlinearity). Therefore, it is widely adopted in fields such as system optimization, process
monitoring and fault diagnosis, and it also can be used to verify the control and fault diagnosis for
industrial chemical processes.

The TE process consists of five units: 1) stripper reboiler, 2) condenser, 3) flash separator, 4) two-
phase exothermic reactor and 5) circulating compressor (as shown in Fig. 1). The process contains a
total of 52 variables, in which 22 are process variables, 18 are component variables and the other 12
are manipulated variables.
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Figure 1: The control structure and flow diagram of TE process

The TE process contains four gaseous raw materials (A, C, D and E), two liquid products (G
and H), and by-products (F) and inert gas (B). The irreversible, exothermic chemical reaction in TE
process is as follows:

A (g) + C (g) + D (g) → G (l)
A (g) + C (g) + E (g) → H (l)

A (g) + D (g) → F (l)
3D (g) → 2F (g)

(17)

The gas components (A, C, D and E) and the inert component (B) are fed into the reactor,
thus forming the liquid products (G and H), where the reaction rate obeys the Arrhenius function
of the reaction kinetics. Coming out of the reactor, the product steam is condensed to liquid and
transferred to a liquid separator, from which a string of steam would be resent to the reactor through
the compressor. Some recirculation shunt should be dismissed to avoid accumulating the by-products
and inert components in the reaction. The condensed products from the separator (Steam 10) are
sent to the stripper. Steam 4 is applied to remove the remaining reagents, in Steam 10, mixed with
the recirculating steam from Steam 5. The products (G and H) are sent to the downstream process.
Most of the by-products are evacuated as gas in the vapor-liquid separator. According to the different
component mass ratios of G and H in the product, the TE process supports 7 operation modes/working
conditions. The simulation platform can set 21 fault modes, e.g., the fault modes of step type, random
change type, slow drift type, valve sticky type, valve stuck type and unknown types.
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4.2 Experiment Setup

The TE process supports a variety of operation modes and a total of 28 prescribed fault types
are given in detail. The simulated multi-mode data can be obtained from the TE process. A number
of typical fault conditions in TE simulation dataset are selected, i.e., the TE process operation data
without fault, and fault status #4, #10, #13, #16, #18 and #28. Then, the implementation process
of the algorithm is described. We continuously extract a group pf time-series samples in different
conditions (including different conditions with 6 faults and the normal condition). As shown in
Table 1, two different operation modes are set up in this experiment.

Table 1: Operation conditions in two different operation modes (mode 1 is set for training, and mode 2
is set for testing)

Settings Mode 1 Mode 2

Production setpoint 22.89 20.2
Strip setpoint 50 50
Sep level setpoint 50 50
Reactor level setpoint 65 65
Reactor press setpoint 2800 2800
Mole % G setpoint 53.8 90.07
yA setpoint 63.14 61.47
yAC setpoint 51 48.79
Reactor temp setpoint 122.9 123
Recycle valve position 0 71.17
Steam valve position 0 1
Agitator setting 100 100

The training dataset contains the samples obtained in mode 1, in which the data in normal
condition and in fault condition is 2400, respectively. Meanwhile the testing dataset contains samples
obtained in mode 2, in which the data in normal condition and in fault condition is 200, respectively.
The data generated in mode 1 is used to train the binary fault classification model, and the data
generated in mode 2 is used to verify the TE process fault classification (i.e., classification accuracy).
Since the training and testing datasets are obtained in different operation modes in TE process, it can
be considered that the probability distribution of input samples in training datasets is different from
that of the testing dataset. There exists the covariate shift phenomenon between the training dataset
in operation mode 1 and the testing dataset in operation mode 2. To reduce the amount of data and
increase the efficiency of the method, it is necessary to select some variables from all process variables,
which have strong correlations with the fault variables. We introduce the mutual information for such
a task. The MI is equivalent to dimensionality-reduction operation on the original data.

In the experiment, the MI-based variable selection works as follows: 1) re-arrange the variables in
the training and testing dataset in the order of MI value; 2) choose 25 variables with largest MI value
in the training and testing dataset, respectively; 3) observe the selected 25 variables, and select all the
common variables among them; 4) calculate the MI value between the selected common variables,
respectively, and remove these variables with low MI value (there is weak correlation or negative
correlation, this operation is to prevent the occurrence of negative transfer); 5) delete other variables,
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the remaining variables are exactly the process variables we need, and these variables selected can be
used to train the model of fault classification.

The MI-based pre-processing can not only reduce the computational workload, but also make
the selected data more effective. On the other hand, in addition to data redundancy, not all the data
are valid for fault classification and fault detection model. Some data have stronger correlation with
the fault, and that the correlation between process variable and fault variable is not always the same.
Besides, there is some data that cannot indicate whether there exist some faults in the process system,
and the data is invalid for fault detection. Therefore, with the MI-based feature selection, we can
extract more useful information for fault classification model and form the reorganized input dataset
for training process. In this way, the data pre-processing can greatly eliminate the invalid samples and
variables, and retain the most relevant variables for fault detection and classification.

The training and testing dataset processed by MI feature selection is input to IWLSPC for fault
detection and classification. Specifically, we perform the testing with binary fault classification and
multiple fault classification. In addition, the IWLSPC is compared with other existing methods in
detail.

5 Experimental Result
5.1 Comparison of Binary Fault Classification Performances under Covariate Shift

Firstly, we apply the proposed method to the binary fault detection and classification of TE
process. In fact, if the binary fault situation refers to the two categories of having some specific faults
or no fault, then binary fault classification is equivalent to the judgement of the process fault, i.e.,
exist or not exist. Therefore, to improve the comparability of different binary fault classification, we
classify all the fault categories with the case without fault, that is, the designed algorithms should be
able to distinguish whether there exist some faults or not in the TE process under covariate shift. The
detailed performance comparison of binary fault classification is shown in Table 2. Taking no fault
and specific fault as the two labels of binary fault classification, the results presented are the accuracy
of fault classification with the testing dataset. In addition, the results marked as ∗ in the table are
the results of data-driven fault classification model trained by the validation dataset with particularly
few samples (only 200 samples), the results are used to demonstrate the effectiveness of importance-
weighted transfer learning under covariate shift.

First, we sorted the correlation of the characteristics related to the fault according to their MI
values, and then selected the most relevant process variables. The pre-processing can not only reduce
the amount of data, but also significantly improve the effectiveness of the data training. We compared
the performance of extracting feature variables with/without MI. As shown in Table 2, by introducing
the MI to the extraction of variables, the IWLSPC can better detect whether a fault exists or not.

Table 2: Comparison of binary fault classification performances under covariate shift (no fault vs.
specific fault)

SVM∗ SVM MI +
SVM∗

MI +
SVM

LSPC∗ LSPC IWLSPC MI +
LSPC∗

MI +
LSPC

MI +
IWLSPC

1 100 91 100 95.5 86 91.25 59.75 100 96 97
2 67.5 56.25 74.5 80 75 75.75 74 87 86.75 95.71
3 71.5 81.5 79.5 82 41 79.25 77.75 83.5 81 84.25

(Continued)
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Table 2 (continued)
SVM∗ SVM MI +

SVM∗
MI +
SVM

LSPC∗ LSPC IWLSPC MI +
LSPC∗

MI +
LSPC

MI +
IWLSPC

4 58 98.25 100 100 69 96.25 95.75 73.5 100 100
5 99.5 83.25 100 99.75 100 64.75 75.75 100 80.25 87.5
7 99.5 89.5 100 100 100 81.5 93 100 91.5 100
8 53.5 83 83 87 90 85.5 72.5 99.5 88 99.25
9 60.5 59.75 68 65 52 60.25 57.25 64.5 72 85
10 45.5 62.75 100 88 40.5 56 58.5 90 90.25 90.25
11 44.5 78.5 61.5 94 47.5 80 74.5 61 94.25 94.5
12 95 89 100 95 71 81.25 64.75 85 85.75 91.75
13 61.5 48.25 64 68.75 64 68.75 45.75 75 83 83.75
14 49.5 59.25 72.5 81.75 72.5 51.75 54.75 75 83 95.5
15 47 34.25 69.5 68.75 47 27.75 47.75 63 50 68.5
16 39.5 46.5 74.5 58 29.5 50 50 80 50 50
17 52.5 67.75 81 78 58 70 72.5 74.5 75 93
18 75.5 87.75 81.5 91.25 79.5 84.25 77.5 95 91.5 99
19 69.5 84.25 82 95.5 46.5 79.5 61.5 88.5 93.75 95.5
20 52.5 57.25 74.5 74.25 55 56 54.5 66.5 73.5 82.5
21 55 46.75 66 51.75 65 41.75 51.25 70.5 53.25 61
22 45.5 59 87.5 63.25 68 59.5 59 77 63.25 72
23 60.5 52.25 90 78.5 57 54.25 56 68 90.5 92
24 78 80.25 79 92.75 31 82.25 80 77 92 87
25 66.5 47.25 85 56.75 67.5 34 61 78.5 56.5 64.5
26 50.5 52.25 87 84 67.5 41 42 96.5 86.75 87.75
27 50 66.75 63 90.5 29 67 66.75 59.5 90 95
28 52 58 74.5 62.75 43 65.5 64.75 62.5 70.5 73.75
Avg. 62.98 67.43 81.41 80.84 61.19 66.11 64.76 79.67 80.31 86.15

Because the training and testing datasets we use are obtained in different operation modes, the
process dynamic characteristics and fault-related information contained in the training and testing
datasets are inconsistent. Once the training process completes, the traditional machine learning based
classifications cannot adapt to the change of operation modes in the testing dataset according to the
sample distribution. The importance weighting used in this study considers the probability distribution
of the test input samples during the training process, and it carries out the weighted re-organization of
the training input samples based on the importance weights, which can improve the accuracy of fault
classification on the testing dataset. As shown in Table 2, for most types of faults, the performance of
the MI-based IWLSPC is better than that of the traditional LSPC, and the total average performance
of 28 fault types is also better than the MI-based LSPC. The result shows that the IWLSPC can better
detect whether there exists a fault under covariate shift. It achieves superior performance to detect
whether there exist some specific faults or there do not exist faults for the current state.

Furthermore, we compared the effectiveness of commonly used machine learning based classifi-
cation algorithms and applied them to the binary fault classification for the TE process. As shown in
Table 2, we can see that in most cases, the IWLSPC achieves excellent fault classification performance.
Although SVM has some advantages in some cases, IWLSPC achieves better fault classification
performances in most of the fault types. However, the reliability of MI + IWLSPC can be guaranteed,
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which is exactly why MI-based IWLSPC outperforms for the total average fault classification accuracy.
It is proven that LSPC and IWLSPC can not only be used to binary fault classification, but also can
be applied to classify multiple faults simultaneously.

In order to demonstrate the effectiveness of importance-weighted transfer learning under covari-
ate shift. We have also conducted experiments with extremely small samples, in which we directly train
the fault classification model on the small dataset. Specifically, we trained the afore-mentioned fault
classification models on the validation set with only 200 samples. This kind of small sample training
is very practical for nonlinear multi-mode industrial processes, because some of the actual industrial
processes usually do not have sufficient historical data under working conditions. The results marked
with ∗ in Table 2 show that the performance of directly training on the validation dataset is poor,
because there is not sufficient data for the training process. However, with the importance-weighted
transfer learning method, the data-driven fault classification model achieves satisfactory performance
even on a small sample verification dataset where the covariate shift exists. It confirms the effectiveness
of the importance-weighted transfer learning method.

5.2 Comparison of Multi-Fault Classification Performance with Other Methods

The probabilistic-based classification method for industrial process fault classification works well.
In this study, we compared the effectiveness of the BP neural network, traditional LSPC and IWLSPC
that is suitable for dealing with covariate shift. It is noted that we used MI to extract feature variables in
both methods, thus mainly focusing on the difference among BP neural network, LSPC and IWLSPC,
i.e., the effectiveness of the importance-weighted method. The detailed comparison is shown in Table 3.

Table 3: Comparison of the accuracy of the BP neural network, traditional LSPC and importance-
weighted LSPC for multi-fault classification under covariate shift

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 7 Total average

MI + BP 64.5 21 0 8 0 100 32.5
MI + LSPC 95.5 39 18.5 100 83 0 56
MI + IWLSPC 92 69.5 89.5 91.5 53.5 38.5 72.42

In Table 3, the effectiveness of the IWLSPC algorithm for multi-fault classification of the TE
process under covariate shift is detailed. According to Table 3, we can conclude that the IWLSPC
achieves better performance for the simultaneous classification for multiple faults in the TE process.
Especially in some cases, the accuracy of the IWLSPC is much higher than that of the traditional
LSPC, which confirms the effectiveness of IWLSPC. In addition, it is noted that although the BP
neural network is extremely effective in the classification of certain types of faults, the classification
performance of this method under different conditions has serious fluctuations, resulting in a very
poor average performance.

6 Conclusion

In this paper, the importance-weighted sampling is introduced to address the problem of inconsis-
tent data distribution in training and testing dataset, and it is designed for the fault classification in the
multi-mode industrial process, especially for the nonlinear multi-mode industrial process. In the case
of covariate shift, it can smoothly adapt to the multi-mode dataset and achieve good performances for
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fault classification. Besides, we have also confirmed that the introduction of MI for feature selection
significantly improves the performance of the fault classifier. This is because the MI can select specific
features closely related to these faults. It not only reduces the computational workload, but also gets
rid of those variables that are irrelevant to fault classification. In order to address the limitations of
the present method, in the future, we will take the ratio of posterior density into consideration, which
is calculated in line with the importance-weight estimation and can theoretically break through the
assumption that the posterior probability does not change between the training and testing phases.
In order to improve the efficiency of feature selection, we will focus on those methods, which can
effectively extract feature combinations to improve the performance of negative migration-enhanced
classifiers. Besides, in the future, we will try other tools to further improve the efficiency of the
optimization.
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