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ABSTRACT

In the textile industry, the presence of defects on the surface of fabric is an essential factor in determining fabric
quality. Therefore, identifying fabric defects forms a crucial part of the fabric production process. Traditional fabric
defect detection algorithms can only detect specific materials and specific fabric defect types; in addition, their
detection efficiency is low, and their detection results are relatively poor. Deep learning-based methods have many
advantages in the field of fabric defect detection, however, such methods are less effective in identifying multi-
scale fabric defects and defects with complex shapes. Therefore, we propose an effective algorithm, namely multi-
layer feature extraction combined with deformable convolution (MFDC), for fabric defect detection. In MFDC,
multi-layer feature extraction is used to fuse the underlying location features with high-level classification features
through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.
On this basis, a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of
irregularly shaped fabric defects. In this approach, Roi Align and Cascade-RCNN are integrated to enhance the
adaptability of the algorithm in materials with complex patterned backgrounds. The experimental results show
that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with
complex shapes, at the expense of a small increase in detection time.
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1 Introduction

Fabric is closely related to human life and industrial production. Automated textile equipment has
greatly improved the production efficiency of fabric as science and technology have rapidly developed.
Broadly, defects will be introduced due to the production environment, equipment faults, etc. Current
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statistics indicate that the price of fabrics with defects may need to be discounted by 50% [1]. Therefore,
in order to bring improved economic benefits to fabric manufacturers, defect detection is an essential
step to ensure fabric quality. Defect detection is traditionally performed by a skilled fabric inspector
who locates and classifies the defects [2]. The efficiency of a skilled worker working by eye can evaluate
fabrics with a width of about 1.8 m at a speed of around 12 m per minute. However, it is difficult to
guarantee the accuracy of manual detection due to the influence of objective factors such as variable
light and fabric speed and subjective factors such as worker fatigue and experience level [3]. In addition,
it is highly time-consuming to train an operator to identify complex fabric defects, resulting in low
production efficiency.

In recent decades, many solutions have been proposed to detect defects in specific materials
including plain fabric, white gauze and single striped fabric, such as Fourier transform [4], Gabor
filter [5] and Wigner distribution. These methods usually require different parameters to be set for
different defects in different fabric materials. They can only detect a single fabric material or a single
defect type and thus have relative limitations in terms of their defect detection and classification.

With the boom of artificial intelligence research and the arrival of big data era, deep learning
methods are widely used in edge computing [6–8], data analysis [9–11], image recognition [12], object
detection [13–18], image denoizing [19] and other fields. The principle of deep learning is to establish
the neural network structure by simulating the operation mode of the human brain. In terms of
fabrics, human vision will focus first on obvious features such as the pattern, color, shape and edge
contour of the fabric, which more easily attract people’s attention. In deep learning, through the
hierarchical description of fabric defect features, different convolution templates are used to gradually
extract more complex visual shapes, and the fabric’s texture information can be expressed through
the combination of features of these data. Overall, deep learning methods can automatically extract
features from input images effectively without the need for complex hand-designed features. In recent
years, deep learning has been gradually applied in the field of fabric defect detection, using methods
such as region-based convolutional neural networks (RCNN) [20], which can achieve good detection
results for common fabric defects. However, for multi-scale and complex shape defects, these methods
usually do not achieve satisfactory detection results, thus resulting in low detection accuracy. Given
the shortcomings of current fabric defect detection methods, this paper proposes a multi-layer feature
extraction approach combined with deformable convolution (MFDC) for fabric defect detection. The
main contributions of the study are as follows:

1. This paper proposes a generic fabric defect detection method based on deep learning. By
integrating Roi Align and Cascade-RCNN approaches, the adaptability of the defect detection
algorithm in patterns with complex backgrounds is enhanced by increasing the intersection
over union (IOU) threshold, with a clear reduction in close false positions observed.

2. Multi-layer feature extraction is applied to improve the detection accuracy of multi-scale fabric
defects by combining the semantic features of the upper and lower layers. In addition, visual
information from the bottom layer fabric defect features is used to improve the algorithm’s
detection ability of small defects.

3. Deformable convolution is used to enhance the generalization ability of the algorithm to handle
complex shape defects and more accurately extract the characteristics of fabric defects. This
approach improves the detection accuracy of fabrics with complex shapes and extreme aspect
ratio fabric defects.
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2 Related Work

Considerable progress has been achieved in fabric defect detection following decades of research.
Traditional methods can only identify whether the fabric has defects but cannot accurately determine
the location of the fabric defects. Additionally, most traditional fabric defect detection algorithms can
only deal with plain fabric without background patterns or large fabric defects. Abouelela et al. [21]
used median, mean, variance and other features to detect defects based on texture segmentation;
their proposed method can meet the requirements of real-time detection, however, it is ineffective
for images containing irregular textures. Hu et al. [22] combined wavelet analysis with a Fourier
transform for fabric defect detection. The defects identified by the Fourier transform are then denoized
by wavelet shrinkage to achieve the purpose of unsupervised detection. Karlekar et al. [23] proposed
a wavelet filtering method by combining morphology and a wavelet transform. This method was used
to model fabric texture and fabric defects and detect defects in horizontal, vertical and diagonal lines.
Zhu et al. [24] obtained the size of the image detection window through the autocorrelation function
and calculated the gray level co-occurrence matrix between the image template and the fabric image; in
their approach, the appropriate threshold was specified manually to achieve fabric defect detection. By
extracting texture information from the gray level co-occurrence matrix, Thakare et al. [25] proposed
an improved gray level co-occurrence matrix detection method that combines texture information with
self-organizing mapping as the basis for fabric defect classification.

Traditional defect detection methods have high requirements for the regularity of fabric texture
and background—complex fabric textures will lead to poor defect detection performance. In recent
years, convolutional neural networks (CNNs) have been widely used in defect detection, and the
approaches used can be divided into two categories, namely, one-stage algorithms, represented by
SSD [26] and YOLO [27], and two-stage algorithms based on candidate regions represented by Faster
RCNN. Li et al. [28] proposed a focal loss [29] method based on ResNet50 to solve the problem
of poor detection effects caused by uneven fabric image samples. Although these two methods are
feasible, they also have some limitations, such as requiring extensive computing resources, resulting in
slow recognition speed and low recognition accuracy. Zhao [30] proposed an improved non-maximum
suppression algorithm, which considers the similarity between defect types in the detection process.

Compared with general defect detection, fabric defect detection has unique characteristics. The
size of defects within the same fabric type of fabric can vary markedly. Some defects occupy more
than half of the image while others occupy only a few pixels, leading to poor detection effects in
two-stage defect detection algorithms such as Faster-RCNN [31]. YOLO [27] is a typical one-stage
algorithm with high detection speed but low detection accuracy; therefore, researchers have proposed
many improved algorithms based on YOLO, such as using PAN-Net [32] or SPP-net [33] as the
network backbone model, using a MISH activation function [34], and adding a K-mean [35] clustering
algorithm to improve the detection performance. However, despite these refinements, the detection
effects of YOLO and other one-stage defect detection algorithms are still poor in terms of handling
small-sized defects.

3 Multi-Layer Feature Extraction Combined with Deformable Convolution

At present, although researchers have proposed many effective fabric defect detection algorithms,
all such approaches have only weak ability to detect multi-scale defects and fabric defects with complex
shapes. To solve this problem, in this study, multi-layer feature extraction combined with deformable
convolution (MFDC) is proposed for fabric defect detection. First, the fabric image after data
enhancement is passed through the ResNet50 backbone network using multi-layer feature extraction
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technology [36]; the upper and lower layer defect feature semantics are then combined to improve the
detection accuracy of multi-scale fabric defects. Second, fusion of the deformable convolution module
[37] can effectively extract features of complex-shaped defects, improving the extraction ability and
detection accuracy of complex-shaped and extreme aspect ratio fabric defects. Finally, Roi Align and
Cascade-RCNN [38] are integrated; by continuously increasing the IOU threshold strategy, this paper
improves the Cascade-RCNN network model, thereby reducing close false positions and improving
defect detection and location accuracy. The architecture of the proposed MFDC can be seen in Fig. 1.

Figure 1: The architecture of the proposed MFDC

3.1 Multi-Layer Feature Extraction

Due to improper production equipment, manual operation and other related factors, various
defects will be formed during the fabric production process. The size and shape of these fabric defects
can differ markedly. For some small defects, the differences in pixel values between the defect and
the background area are small, therefore, such defects are often not detected. Traditional CNN-based
methods use featurized image pyramid or pyramidal feature hierarchy approaches [39] to solve this
problem. The featurized image pyramid approach uses a set of multiple images with different resolu-
tions generated from the same image. The image is then continuously hierarchically down-sampled
to generate different features and predict them. Finally, the prediction results for all the feature
sizes are counted. Although this method solves the problem of multi-scale defects through multi-
scale feature extraction and can improve the detection ability of small-sized defects effectively, it also
greatly increases memory usage and model computation requirements, thus increasing the difficulty of
training the network. The pyramidal feature hierarchy method directly detects fabric defects on feature
maps with different resolutions. Although this method will not add much computational overhead, it
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nonetheless causes some issues. For example, the semantic information of the underlying features is
insufficient: although small defects can be detected, they are often wrongly classified. In addition,
high-level feature image resolution is not enough to detect small defects. To solve these two problems,
multi-layer feature extraction is applied in this work to improve the detection performance, the details
of which are shown in Fig. 2.

Figure 2: Multi-layer feature extraction networks

In Fig. 2, the size of the input image is 512 × 512. The first part of the multi-layer feature extraction
is the backbone of the forward-propagating CNN, which calculates a feature hierarchy with a scaling
step size of 2. The size of the feature map is then gradually scaled through convolution and pooling. In
this process, the feature maps are arranged from large to small according to their resolution, forming a
pyramid structure. Several adjacent layers may output feature maps of the same scale, so we put these
feature maps in the same stage, and the last layer of each stage contains the most obvious features. We



730 IASC, 2024, vol.39, no.4

take the output of this feature layer as part of the feature extraction of fabric defects. The output of
each block can be marked as {C1,C2,C3,C4,C5}, in order.

The second part of the proposed approach is a semantic fusion structure. Feature maps with
higher resolution and stronger semantics can be obtained by the nearest neighbor upsampling method,
and the top output C5 (size = 16 × 16); on the left in Fig. 2 can be obtained by lateral connection.
After the number of channels is adjusted through 1 × 1 convolution, the obtained result is the top-level
of the semantic fusion structure, labeled as P5 (size = 7×7). The output C4 (size = 32×32) is selected
through lateral connection; M5 is then upsampled twice by the nearest neighbor interpolation method,
and C4 is added to the upsampled results, with the result marked as P4 (size = 32 × 32). By analogy,
P3, P2 and P1 can also be obtained. Since C1 is only obtained by one convolution of the original
image and contains almost no semantic information, P1 does not need to be calculated. Since the
aliasing effect generated in the upsampling process will affect the subsequent prediction, we perform
a 3 × 3 convolution of all the feature maps obtained by upsampling to eliminate the influence of the
aliasing effect and generate the final feature map. We use the top-down path and horizontal connection
to combine low-resolution and semantic strong defect feature information with high-resolution and
semantic weak defect location information. The resulting feature pyramid has rich semantics at all
levels, thus improving the detection accuracy of multi-scale fabric defects, especially for small-sized
defects.

3.2 Deformable Convolution Module

Generally, the shape of fabric defects varies markedly as a result of different fabric materials
and different manufacturing equipment, and fabric defects with complex shapes are commonly
classified incorrectly. Traditional algorithms usually employ two strategies to solve this problem.
One is to expand the number of defect samples to enhance the model’s ability to adapt to the scale
transformation of fabric defects; the other is to propose feature-based algorithms for specific defect
types. However, both methods have disadvantages. The first approach has low generalization ability
due to the limitations of the input fabric defect samples and thus cannot be generalized to general
defect detection. The second method type has difficulty in dealing with overly complex fabric defects.
The convolution units of traditional defect detection algorithms sample fixed positions of the feature
map, however, different positions may occur due to different defect scales or deformed objects, thus
their detection performance is poor. In this paper, in order to accurately locate the defects, a deformable
convolution method is applied to adapt the scale and receptive field size, thereby improving the
algorithm’s ability to model complex defects.

As shown in Fig. 3, the deformable convolution [38] adds a displacement to the normal sampling
coordinates of fabric defects to make the receptive field more representative of the object’s actual shape.
In the traditional defect detection algorithm, the output of y (p0) for each location p0 on the feature
map y can be expressed as:

y (p0) =
∑
pn∈R

w (pn) · x (p0 + pn) (1)

where R is a convolution kernel operator (e.g., 3 × 3), and pn is the enumeration of the positions in R.
In deformable convolution, R is obtained with offsets δpn, where n = 1,2,3,...,N. Eq. (1) can then be
written as:

y (p0) =
∑
pn∈R

w (pn) · x (p0 + pn + δpn) (2)
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Figure 3: Deformable convolution

The fixed-scale convolution is converted into irregular convolution by this offset, and the feature
sampling is carried out in the irregular and offset position pn + δpn.

Since the offset is usually a decimal, non-integer coordinates cannot be used in such discrete data,
thus the eigenvalues in Eq. (2) need to be completed by bilinear interpolation so that x(p) can be
expressed by:

x (p) =
∑

q

G (q, p) · X (q)

= G (q, p) = g (qx, px) · g
(
qy, py

)
=

∑
q

max (0, 1 − |qx − px|) · max
(
0, 1 − ∣∣qy − py

∣∣) · x (q) (3)

where p = p0 + pn + δpn represents any position. The coordinate q corresponding to the receptive
field before the deformable convolution is selected from all the positions in the feature map x, and G
represents the two-dimensional bilinear interpolation kernel function.

3.3 The Improved Cascade-RCNN

In CNN-based fabric defect detection algorithms, an IOU threshold is required to define positive
or negative samples. If a lower IOU threshold is set for training, more noise will be generated. However,
if a higher IOU threshold is used for training, the number of positive training examples will decrease
drastically, commonly resulting in training model overfitting. In addition, detectors trained using a
single IOU threshold often do not produce optimal results when tested with other IOU thresholds.
The traditional method to solve these two problems is iterative bounding box regression [39], which
states that a single box regression is insufficient to generate accurate positional information, thus,
multiple iterations are required to fine-tune the bounding box, as shown in Eq. (4).

f ′ (x, b) = f · f · f · · · f (x, b) (4)

After each iteration, the distribution of the bounding box changes to a certain extent, however,
the algorithm’s classifier is trained based on the initial bounding box, and a single IOU threshold will
generate more outliers. A single regressor cannot achieve good results at all IOU thresholds; therefore,
proposals of differing quality will correspond to detection branches with different abilities. Detection
branches trained under different IOU thresholds can achieve superior detection results. To solve this
problem, this paper proposes an improved Cascade-RCNN approach, as shown in Fig. 4.
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Figure 4: An improved Cascade-RCNN. Labels C1, C2 and C3 are categories, and B1, B2 and B3 are
BBoxes

In Fig. 4, the regression was divided into three stages with three regressors (regressor1, regressor2
and regressor3). As shown in Eq. (5), the three detectors are trained by increasing the IOU thresholds
gradually, with the different stages corresponding to different IOU thresholds. This method can help
to eliminate outliers and close false positives and adapt to the new proposal distribution. The output
of the previous detector is used as the input for the later higher-quality detector. In this way, we can
ensure that there are sufficient positive samples on each branch to reduce overfitting. The regression
function of the Cascade-RCNN can be written as:

f ′ (x, b) = fT · fT−1 · fT−2 · · · f1 (x, b) (5)

In Eq. (5), T is the number of cascade stages, b is the data distribution of the corresponding stage,
each branch fT is optimized by the training data bt on each branch, cascaded regression is a resampling
procedure that changes the distribution of hypotheses to be processed by the different stages. The
multiple specialized regressors {ft, ft−1, · · · , f1} are optimized for the resampled distributions of the
different stages. This opposes to the single f, these differences enable more precise localization than
iterative BBox, with no further human engineering. And the loss function can be expressed as:

L
(
xt, g

) = Lcls

(
ht

(
xt

)
, yt

) + β [yt ≥ 1] Lloc

(
ft

(
xt, bt

)
, g

)
(6)

where bt is derived from the output of b1 after all branch operations and can be expressed as bt =
ft−1(xt−1, bt−1), g is the ground truth value of data xt, β = 1 is the trade-off coefficient, [.] is the indicator
function, and yt is the label of data xt at stage t for a given threshold. At each stage t, the R-CNN
includes a classifier ht and a regressor ft optimized for IOU threshold ut, where ut > ut−1. This
guarantees a sequence of effectively trained detectors of increaseing quality. By repeating the same
cascade procedure, the quality of the hypotheses is sequentially improved, higher quality detectors
only need to operate under higher quality hypotheses, this enables high quality object detection.

In Cascade-RCNN, the role of ROI Pooling is to pool the corresponding area into a fixed-size
feature map within the overall feature map based on the position coordinates of the preselected box,
with subsequent classification and regression operations performed within the preselected box. The
position coordinates of the preselected box obtained by regression are usually floating point numbers,
and the pooled feature map requires a fixed size. Therefore, there are two quantization processes for
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ROI Pooling; the first is to quantify the boundaries of the candidate box into integer coordinate values,
and the second is to divide the quantized boundary area into M × M units on average and quantify
the coordinates of each unit. After two quantification stages, there is a certain deviation between the
candidate box and the initial position of the regression process. When the fabric defect size is small,
this deviation will lead to lower detection accuracy. To address this problem, ROI Align is used to
replace ROI Pooling, and bilinear interpolation is used to obtain pixel values whose coordinates are
floating point numbers. The candidate area is divided into M × M units such that the floating point
number boundary and each unit coordinate are not quantized. Four coordinate positions are fixed in
each cell—the values of these four positions are calculated by bilinear interpolation and the maximum
pooling operation is then performed. The backpropagation for ROI Pooling can be expressed as:

∂L
∂xi

=
∑

r

∑
j

P (i, j)
∑

j

[i = i∗(r, j)]
∂L
∂yrj

(7)

where xi is the pixel on the feature map before the pooling operation, i∗(r, j) is the source of the pixel
value of yrj, and yrj is the jth pixel on the rth area after the pooling operation. The backpropagation for
ROI Align can be written as:

∂L
∂xi

=
∑

r

∑
j

[d (i, i∗ (r, j)) < 1] (1 − Δh) (1 − Δw)
∂L
∂yrj

(8)

where d(.) represents the distance between two points, and Δh and Δw are the difference between
the abscissa and ordinate of xi and xi∗(r,j). The advantages of ROI Align are its ability to solve the
misalignment problem caused by the two quantization processes of ROI Pooling and its capacity to
enhance the detection accuracy of small-sized fabric defects.

4 Experiment
4.1 Experimental Datasets

To verify the effectiveness of the proposed MFDC method, this paper uses two public datasets,
namely the Ali Tianchi dataset (2019 Ali Tianchi Guangdong Industrial Intelligent Manufacturing
Innovation Competition dataset) and ZJU-Leaper [40], for experiments. Figs. 5 and 6 show the
detailed statistics of the ZJU-Leaper and Ali Tianchi datasets, respectively.

(a) (b)

Figure 5: (Continued)
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(c) (d)

Figure 5: Data analysis (ZJU-Leaper dataset)

(a) (b) 

 (c) (d)

Figure 6: (Continued)
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(e)                                                                                 (f)

Figure 6: Data analysis (Ali Tianchi dataset)

ZJU-Leaper: Group4 of the ZJU-Leaper dataset released by Zhejiang University was used in
the analysis. Group4 consists of three kinds of fabric materials, comprising 3721 defective images
and 14,884 undefective images with an image resolution of 512 × 512. In our experiment, all data
were randomly divided into a training set and a test set in a 4:1 ratio. Fig. 5 shows the details of the
ZJU-Leaper training set. Fig. 5a shows the length–width ratio of fabric defects, and Fig. 5b shows
the distribution of fabric defect area. The standard COCO dataset format is used in this paper, i.e.,
Small (s < 32), Medium (32 ≤ s < 96), and Large (96 ≤ s < +∞). The fabric defect area s can be
expressed as:

s =
√

w × h (9)

where w and h represent the width and the height of the fabric defect, respectively. Fig. 5c shows the
number of defects in the fabric images, and Fig. 5d is the height and width scatter plot of the fabric
defect.

Ali Tianchi: This dataset was released by Ali company. In contrast to the ZJU-Leaper dataset,
this dataset provides numerous high-resolution images with a resolution of 4096 × 1800. In addition,
this dataset contains 15 fabric defect category types with more complex fabric background colors. In
this paper, 3107 defective fabric images and 6000 non-defective fabric images were used, which were
randomly divided into a training set and a testing set in a 4:1 ratio. The dataset statistics are shown in
Fig. 6.

Fig. 6a shows the length–width ratio of fabric defects, where the horizontal axis represents the
length–width ratio, and the vertical axis shows the number of images. As shown in Fig. 6, there are
numerous fabric defects with length–width ratios greater than 10, which make fabric defect detection
highly challenging.

Fig. 6b shows the area of the fabric defects, which is similar to that of the ZJU-Leaper dataset.
Fig. 6c shows the number of fabric defects, with up to 20 defects present in each image. Fig. 6d shows
the number of each category of 15 kinds of fabric defects, Fig. 6e shows the number of images showing
each fabric defect type, and Fig. 6f shows a pie chart of the proportion of the various fabric defect types,
illustrating that the proportion of different fabric defects varies greatly.
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4.2 Experiments and Results

In the proposed MFDC model, ResNet50 is used as a backbone and pre-trained parameters in
ImageNet are used for model initialization. The input images are randomly flipped and rotated for
data enhancement. The learning rate of each image was set as 0.00125, the IOU thresholds were set as
0.5, 0.6, and 0.7, and the momentum factor and weight decay factor of optimization parameters were
set as 0.9 and 0.0001, respectively. In this process, we hot-start the learning rate, which helps to slow
down the overfitting phenomenon in the initial stages and keep the distribution stable. To accelerate
the convergence speed of MFDC, the proposed network is pre-trained for a total of 20 epochs.

The IOU threshold is usually used in evaluating the performance of object detection models. When
the overlap between the prediction box and the real box is greater than the IOU threshold value, the
corresponding samples are called positive samples; otherwise, the samples are called negative samples.
IOU can be written as:

IOU = DetectionResult ∩ GroundTruth
DetectionResult ∪ GroundTruth

(10)

Since the two open datasets used in the experiment include many fabric defect types, the use of
visual object detection boxes alone cannot fully and objectively reflect the benefits of the MFDC
model. Therefore, the common evaluation criteria of the COCO standard format data are introduced
as evaluation indicators, including Precision, Recall, Accuracy (ACC) and mAP.

precision = TP
ALLDetection

= TP

TP + FP

(11)

Recall = TP

ALLGroundTruth
= TP

TP + FN

(12)

ACC = TP + TN
TP + TN + FP + FN

(13)

where FP is the number of false positive samples, FN is the number of false negative samples, TP is
the number of true positive samples, and TN is the number of true negative samples. In the fabric
defect detection algorithm, these indexes cannot independently evaluate the detection performance;
therefore, we introduce the average precision (AP) index, which can be written as:

AP =
∫ 1

0

P (R) dR (14)

where R stands for recall, P stands for precision, and AP is the curve integral of P(R). To more
comprehensively verify the detection performance of the proposed MFDC, the average of AP (mAP)
is also used as the evaluation index.

mAP = 1
N

1∑
N

APN (15)

To demonstrate the superiority of the proposed MFDC algorithm, this paper uses two com-
mon evaluation indicators (mAP and ACC) to estimate the performance of the MFDC. The pro-
posed MFDC is compared with two advanced defect detection-based algorithms (Faster-RCNN and
Cascade-RCNN). Fig. 7 shows the training process of the three algorithms on the Ali Tianchi dataset.
In Fig. 7a, the vertical axis shows the mAP value, which ranges from 0 to 1, and the horizontal axis
shows the training time; the total training process is 20 epochs. As shown in Fig. 7, the average mAP
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of MFDC is 0.52, which is much higher than both Faster-RCNN and Cascade-RCNN. A similar
conclusion can be drawn from Fig. 8a.

m
A

P

Epoch
A

C
C

Iter

(a) (b)

Figure 7: Comparison of experimental results of Ali Tianchi

m
A

P

Epoch

A
C

C

Iter

(a)      (b)

Figure 8: Comparison of experimental results of ZJU-Leaper

The ACC values range from 0 to 100. In Fig. 7b, the vertical axis shows the ACC value and the
horizontal axis shows the number of iterations in the training phase. In Fig. 7, the average ACC of the
MFDC algorithm is 97; this algorithm thus achieves higher ACC values than those of Faster-RCNN
and Cascade-RCNN. Similar conclusions can be obtained from Fig. 8. As shown in Figs. 7 and 8,
MFDC has a stronger defect detection ability.

4.3 Ablation Experiment

To further demonstrate the effectiveness of the proposed FAMDC algorithm, a series of ablation
experiments were conducted using three algorithms, namely multi-layer feature extraction, deformable
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convolution module, and the improved Cascade-RCNN. Here, we report the mean of the five results.
The evaluation of these ablation experiments was performed using the Ali Tianchi and ZJU-Leaper
datasets.

As shown in Table 1, on the Ali Tianchi dataset, we use Cascade-RCNN as a benchmark
for comparison. For the Cascade-RCNN+A approach, multi-layer feature extraction improves the
detection capability of multi-scale fabric defects by combining the semantic features of the upper
and lower layers, especially in terms of the detection capability of small defects. The mAP(S) and
mAP indices are improved by 0.111 and 0.061, respectively. For Cascade-RCNN+A+B, deformable
convolution is applied to enhance the generalization ability when dealing with complex shape defects,
and the mAP is increased by 0.033. For MFDC, the improved Cascade-RCNN is added to enhance the
adaptability of the defect detection algorithm in complex pattern backgrounds. In this instance, the
mAP(S) and mAP indices are improved by 0.036 and 0.024, respectively. As shown in Table 1, similar
conclusions can be drawn for the ZJU-Leaper dataset.

Table 1: Comparison of test results of three algorithms

Ali Tianchi dataset ZJU-Leaper dataset

ACC mAP(S) mAP FPS ACC mAP(S) mAP FPS

Faster-RCNN 85.8 0.059 0.351 9.08 85.7 0.084 0.661 30.3
Cascade-RCNN 87.7 0.073 0.398 8.29 87.9 0.097 0.698 26.9
Cascade-RCNN+A 92.4 0.184 0.459 8.12 91.7 0.271 0.729 26.53
Cascade-RCNN+A+B 95.1 0.196 0.492 7.90 94.6 0.288 0.761 25.76
A+B+C (MFDC) 96.7 0.232 0.516 7.81 96.8 0.352 0.768 25.39
Note: A: Multi-layer feature extraction; B: Deformable convolution module; C: Improved Cascade-RCNN. mAP(S): mAP value of fabric

defects with areas less than 32 × 32.

Table 1 indicates the proposed MFDC achieves significantly better mAP and ACC indices than
the other two compared algorithms. In terms of the running time of the compared methods, on the
Ali Tianchi dataset, MFDC achieves 7.81 FPS, a value that is 0.48 FPS and 1.27 FPS slower than
the Cascade-RCNN and Faster-RCNN algorithms, respectively. On the ZJU-Leaper dataset, MFDC
achieves a speed of 24.39 FPS, a value that is 0.11 FPS and 5.91 FPS slower than Cascade-RCNN and
Faster-RCNN, respectively. By comparing the evaluation indexes of the training set and test set on two
public datasets, our results show that the MFDC algorithm can greatly improve mAP and ACC with
a small increase in calculation time. Therefore, the MFDC algorithm has significant advantages in
terms of its average fabric detection accuracy and its ability to correctly identify whether fabric images
contain defects.

Some typical visual results of fabric defect detection by different methods are shown in Fig. 9.
The detection is divided into two parts: one part is the fabric defect type, and the other is a numerical
expression of the algorithm’s confidence, as expressed by values ranging from 0 to 1. For easy to
compare, Fig. 9 is artificially enlarged locally.

Fig. 9a shows a fabric image with a complex background. The results show that all the algorithms
can detect large-sized defects. The Faster-RCNN algorithm fails to detect the small defect due to the
high degree of integration between the defect and the fabric background. Although Cascade-RCNN
can detect the small defect, its confidence level is 0.47, indicating that Cascade-RCNN has a relatively
weak learning ability for such defects. The proposed MFDC algorithm can identify small defects with
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a much higher confidence level of 0.9; therefore, MFDC has a stronger ability to detect fabric defects
against complex backgrounds.

Figure 9: (Continued)
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Figure 9: Visual comparison of experimental results
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In Fig. 9b, the defects are similar to the background of the fabric itself in both color and pattern.
In this instance, Faster-RCNN only identifies one defect. Cascade-RCNN detects the leftmost and
rightmost fabric defects but has serious overlapping of the detection frames, the pattern in the middle
of the fabric image was wrongly detected, and the two fabric defects on the right of the fabric image
are missed. The MFDC can accurately detect the two defects on the right side that are similar to
the background color but can also identify the fabric defects on the fabric pattern accurately without
obvious overlap box phenomenon. This outcome indicates that MFDC has a stronger detection ability
for close false positions and can additionally detect fabric defects that are difficult to recognize with
the naked eye.

Fig. 9c contains various scales and types of fabric defects. Faster-RCNN only detects one obvious
stained defect and misses all other defects. The Cascade-RCNN algorithm detects a defect in the
middle of the image and a relatively small, stained defect in the upper part and misses all other
defects. The MFDC method detects most of the small fabric defects accurately, a with confidence
value exceeding 0.7 in some cases. In addition, MFDC can detect fabric defects with extreme aspect
ratio in the middle of the image. Similar conclusions can be drawn from Fig. 9e.

The defect in Fig. 9d involves missing printing. The shape of this type of defect is usually complex.
The same background pattern has a high degree of randomness and is usually mixed with other
patterns of the fabric’s background. As shown in Fig. 9d, the Faster-RCNN algorithm cannot detect
any defects. Cascade-RCNN only detects defects at four positions with low confidence, with a severe
overlap of frames. In contrast, the MFDC algorithm detects all defects with a confidence level of
around 0.9; therefore, MFDC has a stronger detection ability for defects with complex shapes.

5 Conclusion

This paper presents a multi-layer feature extraction method combined with deformable convo-
lution (MFDC) for fabric defect detection. Using ResNet50 as a backbone network, a multi-layer
feature extraction approach is applied to improve the detection effect of multi-scale fabric defects,
and deformable convolution is incorporated to detect irregularly shaped fabric defects. By integrating
RoiAlign with Cascade-RCNN, close false positives are reduced through the continuously enhanced
IOU threshold, and the detection accuracy is significantly improved. This study’s experimental results
show that the proposed MFDC algorithm can greatly improve detection accuracy, at the expense of
a small increase in detection time, and achieve better mAP and ACC indicator indices compared to
other similar algorithms.

The MFDC proposed in this paper needs enough labeled data as training samples to obtain good
defect detection performance. However, in practical industrial applications, obtaining high-quality
labels can be a bottleneck, due to the time consuming and expensive annotation process. Therefore,
the detection performance of MFDC will decrease with the insufficient data samples. In the future,
this method will integrate an end-to-end semi-supervised detection framework to make it have better
defect detection performance.
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