
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2024.047017

ARTICLE

Performance Evaluation of Multi-Agent Reinforcement Learning Algorithms

Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters and Khalid H. Abed*

Department of Electrical & Computer Engineering and Computer Science, Jackson State University, Jackson, MS 39217, USA

*Corresponding Author: Khalid H. Abed. Email: khalid.abed@jsums.edu

Received: 22 October 2023 Accepted: 16 January 2024 Published: 21 May 2024

ABSTRACT

Multi-Agent Reinforcement Learning (MARL) has proven to be successful in cooperative assignments. MARL
is used to investigate how autonomous agents with the same interests can connect and act in one team. MARL
cooperation scenarios are explored in recreational cooperative augmented reality environments, as well as real-
world scenarios in robotics. In this paper, we explore the realm of MARL and its potential applications in
cooperative assignments. Our focus is on developing a multi-agent system that can collaborate to attack or defend
against enemies and achieve victory with minimal damage. To accomplish this, we utilize the StarCraft Multi-Agent
Challenge (SMAC) environment and train four MARL algorithms: Q-learning with Mixtures of Experts (QMIX),
Value-Decomposition Network (VDN), Multi-agent Proximal Policy Optimizer (MAPPO), and Multi-Agent Actor
Attention Critic (MAA2C). These algorithms allow multiple agents to cooperate in a specific scenario to achieve
the targeted mission. Our results show that the QMIX algorithm outperforms the other three algorithms in the
attacking scenario, while the VDN algorithm achieves the best results in the defending scenario. Specifically, the
VDN algorithm reaches the highest value of battle won mean and the lowest value of dead allies mean. Our research
demonstrates the potential for MARL algorithms to be used in real-world applications, such as controlling multiple
robots to provide helpful services or coordinating teams of agents to accomplish tasks that would be impossible for
a human to do. The SMAC environment provides a unique opportunity to test and evaluate MARL algorithms in a
challenging and dynamic environment, and our results show that these algorithms can be used to achieve victory
with minimal damage.

KEYWORDS
Reinforcement learning; RL; multi-agent; MARL; SMAC; VDN; QMIX; MAPPO

1 Introduction

The collaborative Multi-agent Reinforcement Learning (MARL) approach has been seen to be
highly applicable in a range of domains in Reinforcement Learning (RL), such as self-driving cars [1],
sensor networks [2], robot swarms [3,4], and video games [5,6]. RL is a form of machine learning in
which an individual or a group of individuals perform a repeated action in a given setting. Agents
acquire knowledge of the behavior through experimentation and trial. The agent must decide if they
should take the greatest reward immediately or search for states that may generate larger rewards,
despite the delayed outcome. Agents learn through obtaining rewards for desirable behaviors and

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2024.047017
https://www.techscience.com/doi/10.32604/iasc.2024.047017
mailto:khalid.abed@jsums.edu


338 IASC, 2024, vol.39, no.2

punishments for undesirable ones, which are referred to as collisions. The RL applies the Markov
Decision Process (MDP) framework [7] to solve a decision-making problem and discover the optimal
policy through the Q-learning function [8] to estimate the value function and pick an action that gives
the highest expected rewards. The unique architecture of the deep Q-learning Network (DQN) was
defined, which is a different kind of deep neural network (DNN) for dynamic programming functions
[9]. The latest successful autonomous agent algorithms that have been used for controlling the single
agent like the Proximal Policy Optimizer (PPO) algorithm [10] have been extended to the Multi-agents
PPO (MAPPO) [11] algorithm for controlling the MARL in a specific environment.

A MARL system is multiple distributed entities called agents that make decisions autonomously
and communicate within a shared environment [12]. Every agent is trying to search to reach an assigned
goal for which a broad set of skills might be required to build intelligent behavior. For that, RL has been
adapted as a learning framework to provide the required skills for the agents. All agents seek to fulfill
their designated objective, requiring an extensive range of abilities to form intelligent behavior. RL has
adapted as an educational structure to give the agents the abilities. Depending on the task, a complex
interaction between agents may occur, which could result in agents working together or competing
against each other to outperform other competitors. Various MARL algorithms have been used to
solve multi-agent cooperative problems in the StarCraft Multi-Agent Challenge (SMAC) platform,
like the MAPPO algorithm, and the two popular Centralized Training with Decentralized Execution
algorithms, the Value-Decomposition Network (VDN) algorithm [13], Q-learning with Mixtures of
Experts (QMIX) [14], and Multi-agent Actor Attention Critic (MAA2C) algorithm [15]. Creating a
strong MARL system is possible by making use of neural network functions. It is essential to have a
reliable environment to train our agents. Training multiple agents can be conducted through the use
of various MARL environments. Various MARL environments can be used for training the multiple
agents: The Hanabi Challenge [16], OpenAIGym [17], and the most challenging environment SMAC
environment [18]. To Build a strong MARL system using neural network function approximations,
such as QMIX, VDN, MAA2C, and MAPPO algorithms, we need a strong environment to train our
agents in. The SMAC environment has been noted as the optimal context for the MARL system [19].

In this paper, we will use the SMAC environment to train the four MARL algorithms: QMIX,
VDN, MAA2C, and MAPPO. The multiple agents will be trained in defending and attacking scenarios
in two different SMAC MAPs. The agents will learn how to cooperate to win the match with minimum
damage. The performance of the four chosen algorithms was compared to decide which one does better
in the chosen environment. The rest of the paper is organized as follows. In Section 2, we discuss the
related research and relevant work. In Section 3, we present the proposed method. In Section 4, we
present the results, discussion, and limitations. The conclusion is presented in Section 5.

2 Related Works
2.1 Single-Agent Reinforcement Learning

The MDP is one of the most well-known single-agent RL methods, which follows a sequence
of decision-making under uncertain conditions that depicts the relationship between an agent and
its environment. The second single-agent is the value-based approach, which uses value functions;
these functions comprise the state-value function and the action-value function, also known as the Q-
function [20]. A popular network that uses this method is DQN. The third method is the model-based
method. Model-based approaches learn a model of the environment that captures the transition and
reward function. The agent can then use planning to construct the trajectories and use the model to



IASC, 2024, vol.39, no.2 339

find the optimal policy [21]. In our recent work, we employed the PPO algorithm to train a single agent
to explore the environment and avoid obstacles with minimal collisions [22,23].

2.2 Centralized Training with Decentralized Execution

The Centralized Training with Decentralized Execution (CTDE) paradigm presents the state-of-
the-art practice MARL [24]. Agents in the CTDE may communicate and access global information
with each other while being trained; however, this is not allowed during execution. Recently, the use
of CTDE for training and execution has become more common. There has been a growing interest in
the CTDE paradigm in recent years. Some popular algorithms that use the CTDE paradigm are the
Counterfactual Multi-Agent (COMA) algorithm [25], the VDN algorithm, and the QMIX algorithm.
All these algorithms used the CTDE paradigm that was introduced in 2018. The VDN algorithm was
the first to attempt in this field, adopting the summation operation, and the QMIX algorithm uses
the Q-values with a non-linear function of the global state. In MARL, multiple agents interact with
a specific environment and try to reach the destination autonomously. The popular CTDE algorithm
that has been used for solving MARL problems is the QMIX and VDN algorithms. The VDN
algorithm was the first attempt to allow for centralized value-function learning with decentralized
execution [26].

2.3 MARL Algorithms

In MARL, multiple agents interact with a specific environment and try to reach the destination
autonomously. Various algorithms can be used for training multiple agents like QMIX, VDN,
MAA2C, and MAPPO. The recommended function that has been used in RL algorithms is the Q-
learning function. Q-learning is used to learn the optimal action-selection policy for an agent in the
MDP environment. The Q-learning function is a value-based method that learns the optimal action-
value function by iteratively updating the Q-values of state-action pairs using the Bellman equation.
QMIX is a MARL algorithm that was proposed in 2018. QMIX is a value-based approach that
extends the regular Q-learning algorithm to handle multi-agent systems of a large scale with non-linear
interactions and intricate coordination problems. In QMIX, each agent keeps a record of its Q-value
function, which depends on its state and action, as well as the joint state of all agents that is summarized
by the global state. The global state is represented as a combination of local states with each weight
being gained by a distinct expert network. The expert networks are used to connect the local states of
each agent to a global state representation, which is then employed to compute the Q-values. The major
advantage of QMIX is that it can handle large-scale multi-agent systems and complex coordination
problems. Additionally, QMIX can learn successful coordination approaches that are not restricted
to predefined communication or coordination protocols. QMIX outperforms several state-of-the-art
MARL algorithms, especially in SMAC environments. In [27], QMIX algorithms were used to address
the problem of multiple agents’ cooperative control in complex scenarios.

VDN is also a MARL algorithm that was proposed in 2018. VDN is an approach that takes
advantage of the traditional Q-learning algorithm and makes use of value-based principles to handle
multi-agent systems. It does this by breaking down the global Q-value function into individual Q-value
functions. Every agent in VDN upholds its Q-value function, which is conditional on its state, action,
and joint state that captures the state of all agents. The global Q-value function is then computed as the
sum of the local Q-value functions of all agents. The major advantage of VDN is that it can process
large multi-agent systems in a decentralized way, without needing any interaction or coordination
between agents. This allows VDN to scale large numbers of agents and effectively learn coordination
strategies in complex environments. VDN has achieved excellent performance on several benchmark



340 IASC, 2024, vol.39, no.2

tasks, including the SMAC environment. It has achieved competitive results compared with other
state-of-the-art algorithms. In [28], the VDN algorithm was employed to accomplish a multi-agent
task in a set of decomposable games, to reach an optimal Q-function value.

MAPPO algorithm is a MARL algorithm that was proposed in 2019. It assigns each agent their
policy network, which is responsible for transforming the agent’s observations into a probability
distribution regarding the actions they will take. All agents’ policies are trained together using a
centralized critical network, which evaluates the value of the combined state and action space. One
of the major benefits of MAPPO is that it can manage large-scale multi-agent systems independently,
with no need for agents to communicate or coordinate with each other. This enables MAPPO to
accommodate a high number of agents and effectively comprehend coordination strategies in intricate
surroundings. MAPPO has proven to be successful on a variety of benchmark tasks, including
the SMAC environment, and it has achieved competitive results with other state-of-the-art MARL
algorithms. In [11], MAPPO achieves high performance in the popular multi-agent environment
StarCraft II.

The MAA2C is a reinforcement learning algorithm used for training multiple agents to perform
a specific task. The MAA2C algorithm is an extension of the Advantage Actor-Critic (A2C) [29]
reinforcement learning algorithm that works to handle multiple agents’ tasks, optimize the policy for
all agents, and learn the policies that maximize the expected reward. MAA2C agents receive their
observations from the environment and can use this information to update their policy and decide an
action. The agents’ policies are updated in parallel, using the A2C algorithm to maximize the expected
reward. The algorithm has a shared value function, which computes the predicted reward for all the
agents and is used to determine the advantage values for each agent. The MAA2C approach has been
employed in cooperative activity for multi-agent games like SMACLite [30]. It has shown promising
results in improving the coordination and performance of multiple agents working together to achieve
a common goal. In [31], the MAA2C algorithm showed an outstanding performance in terms of the
total throughput in a multi-device-to-device (D2D) cellular communication system as an environment
for multi-agent.

2.4 MARL Virtual Reality Environments

Different MARL environments have been created to support research and the development of
new technologies, offering a wide range of options such as the Hanabi Challenge, OpenAI Gym,
and SMAC. Hanabi Challenge is a multi-agent environment for evaluating the ability of agents to
learn to communicate and collaborate effectively. It was introduced in 2018 and has become a popular
benchmark environment for MARL research. In the game Hanabi Challenge, players collaborate to
arrange cards into colorful “fireworks” by following a specific order. Each player has cards in their
hand that they can see, while the cards held by the other players remain unseen. Players should interact
with each other to give a hint about the cards they hold and what actions they should take, at the same
time being aware of the cards that have already been played. The game aims to acquire the highest score
possible by playing as many cards as possible and to avoid any missteps that would cause the game to
finish. The game is hard to master due to the requirement of players to combine playing cards with
giving accurate hints while avoiding errors, which requires effective communication and cooperation.

The OpenAI Gym is a popular open-source toolkit for developing and comparing RL algorithms.
It has a set of environments for testing and assessing reinforcement learning algorithms, including
classic control tasks, Atari games, robotics tasks, and the most recent multi-agent environments. The
OpenAI Gym has been constructed to give RL algorithms a consistent interface to access. Every



IASC, 2024, vol.39, no.2 341

environment has defined observation and action spaces, a reward function, and an ending condition.
OpenAI Gym offers convenient compatibility with many reinforcement learning frameworks and
algorithms. It also offers a unified approach to evaluate the proficiency of multiple RL algorithms
across a broad array of tasks. The multi-agent environments in OpenAI Gym provide a challenging
platform for evaluating the performance of MARL algorithms in complex and dynamic environments.

SMAC is a virtual environment used for training and testing the MARL algorithms in a strategy
game known as StarCraft II. SMAC is an expansion of the StarCraft II Learning Environment
(SC2LE) and presents multiple challenging exercises that require sophisticated coordination and
strategic skills. Agents in SMAC must move through a complex landscape and constructions and join
forces to reach a shared goal. This landscape shows a variety of activities, such as safeguarding a base
from enemy action and attacking the enemy base. Agents need to understand and utilize successful
communication as well as collaboration procedures and show adept planning and decision-making
capabilities. SMAC offers a testing environment that is both realistically demanding and challenging
for the assessment of MARL algorithms because it requires that agents learn to communicate and
cooperate in a complicated environment. It also provides a flexible platform for developing and testing
new MARL algorithms.

The above-mentioned Virtual Reality (VR) environment is an example but not limited number of
the available testing and training environments in VR form.

3 Methodology

This section will discuss the tool that has been used for the training, the four MARL algorithms,
and the SMAC training environment. The method that we will explain in this section can be used to
design multi-agent systems, such as drones [32].

3.1 Training Platform (Epymarl)

In this work, the Epymarl tool [33] has been used to train four algorithms VDN, QMIX, MAA2C,
and MAPPO in the SMAC environment. Epymarl has almost all the MARL algorithms available to
use and is compatible with many MARL environments, especially the SMAC environment. Epymaral
is stable because it is PyTorch base and gives more reasonable metrics for any scenarios like a battle
won mean, dead allies mean and dead enemies mean. For the software components that have been
used in this work, we use Ubuntu 20.04 Python 3.8, with PyTorch 1.7.1 [34], and the CUDA Toolkit
11.7.1 [35]. The hardware that we used for the training in this work is CPU Cor i7 11800H, with
32 GB RAM and RTX 3080 laptop GPU, with CUDA Toolkit 11.7.1, and PyTorch 1.7.1.

3.2 Algorithms

In this work, VDN, QMIX, MAA2C, and MAPPO algorithms have been used to train multiple
agents in the SMAC environment. We have chosen two scenarios from the SMAC environment
(attacking and defending) to train. All the agents learn how to work with other agents in a specific
scenario and every algorithm gives a different result. All the algorithms have been trained for two
million iterations in the two scenarios, and at the end, a comparison was made to choose the best-
performing algorithm for each scenario.



342 IASC, 2024, vol.39, no.2

3.3 Training Environment (SMAC)

We have chosen the SMAC environment as a training environment for training VDN, QMIX,
MAA2C, and MAPPO algorithms. This environment contains a lot of different maps. We have chosen
two maps: The first one represents the attacking scenario called SMAC_MAP_3M, and the second is
named SMAC_MAP_Corridor, which represents the defending scenario. In the attacking scenario,
the agent learned how to cooperate with the other agent and attack the enemies to win with less
damage, while in the defending scenario, the agents learned how to stay alive as much as possible
and assist the other agents to win the game. Reinforcement learning agents are trained to perform
specific actions in a particular environment, and those actions can be repeated in different scenarios
in another environment. The idea of attack and defense could potentially apply to the study of mobile
attacks in cooperative learning as well [36]. Fig. 1 shows the initial status of each environment, where
Fig. 1A illustrates the attacking scenario environment, and Fig. 1B illustrates the defending scenario
environment. For The SMAC_MAP_3M, the four algorithms trained 3 agents against 3 enemies, and
we call this the simple scenario because we have three vs. three agents. While in the defending scenario
map (Corridor), is a complex scenario because we have 6 trained agents against a huge wave of enemies.
We had trained agents to perform a cooperative strategy for attacking or defending and winning the
match with less damage. In the first scenario, multiple agents were trained to learn the art of attacking
and the second scenario trained them on defending tactics. The agents were instructed to attack and
defend to achieve success with minimal harm. VDN, QMIX, MAA2C, and MAPPO algorithms were
employed to train the multiple agents in the SMAC environment. Attaching and defending scenarios
were chosen to examine the performance of the four algorithms in the SMAC environment. The two
scenarios utilized the same algorithms, but they were trained with different concepts. This enables a
better evaluation of the performance of each algorithm in guiding and accomplishing tasks with two
types of performing teams, attacking team, and defending team. The attacking environment method is
illustrated in Fig. 2A and the defending procedure is outlined in Fig. 2B. The amount of reward each
agent obtains depends on their survival and if their team has won. Finally, the most successful action
was considered for agents in the next rounds.

Figure 1: Shows the initial status for the two environments used in this work, where (A) repre-
sents the SMAC map that has been used for the attacking scenario named MAP_3M, and (B)
SMAC_MAP_Corridor represents the environment that was used for the defending scenario

In Table 1, we summarize our method of this work; we have trained MARL algorithms like VDN,
QMIX, MAA2C, and MAPPO, to design multiple agents’ systems, and every agent was trained for
two in two scenarios attacking and defending. We have classified the 3M map as a simple task for the
agents because it is only 3 trained agents attacking 3 enemies. The Corridor map has been classified
as a complex task because 6 trained agents defended their position against 24 enemies, and held their
position as much as they could to win the match. Later, the algorithm that gives the highest result is
chosen as the best one.



IASC, 2024, vol.39, no.2 343

Figure 2: The method of this work, where (A) represents the structure of training multiple agents in
the attacking scenario, and (B) represents the structure of training multiple agents in the defending
scenario

Table 1: The summary table of our method in this work

Algorithm SMAC_MAP Training_steps

VDN 3M (Attacking) (Simple)
Corridor (Defending) (Complex)

Two millions

QMIX 3M (Attacking) (Simple)
Corridor (Defending) (Complex)

Two millions

MAA2C 3M (Attacking) (Simple)
Corridor (Defending) (Complex)

Two millions

MAPPO 3M (Attacking) (Simple)
Corridor (Defending) (Complex)

Two millions

4 Results

In this section, we will review the research results for our algorithms, and compare them. We have
trained the four algorithms in the SMAC environment.

4.1 The Attack Scenario Results

SMAC map 3M has been used as a training environment to train our algorithms and construct
an agent that can work together with other agents to win the game. The win in this scenario is not the
only factor in judging the algorithms. It is necessary to analyze which algorithm achieved the highest
result and the rate at which the algorithms operated. Fig. 3 shows a screenshot from the simple task



344 IASC, 2024, vol.39, no.2

environment MAP_3M, the green lines represent the agent’s attacking direction. During the training
process with this map, the three agents begin their search for the target, as shown in Fig. 3A. Some
of these agents were able to find the target and initiate the cooperative attack, as shown in Fig. 3B.
Finally, the three agents attack the enemy together, as shown in Fig. 3C.

Figure 3: Screenshot from the training of the attacking scenario SMAC map 3M (Simple task), the
three green circles represent the training agent, and the three red circles represent the enemies, (A) the
agents start to search for the target. (B) Two of the agents could find the target and start the cooperative
attack. (C) All three agents attack the target

We created one model for each algorithm to evaluate which algorithm offers the best performance
for the Simple attacking scenario. The four algorithms (MAA2C, MAPPO, QMIX, and VDN) were
trained with two million iterations of training. The performance and speed of our algorithms were
evaluated by considering the value of battle won mean, dead allies mean, and dead enemies mean
metrics in this situation. These metrics represent the amount of victory achieved by each agent for each
algorithm in each match. The QMIX algorithm was identified as producing the highest value, with
a reliable increase compared to other algorithms. The VDN algorithm provides the second greatest
value for the battle Won mean, and this increase is more reliable than what was seen in the MAA2C
and MAPPO algorithms.

This work reported that MAPPO and MAA2C algorithms had the poorest performance, but
MAA2C outperformed MAPPO, with MAPPO’s result dropping from 0.6 to 0.1 while MAA2C held
on 0.5 at the latter stages of training. According to the battle-won mean value comparison, the QMIX
and VDN algorithms give the best results, while the MAA2C was more effective than MAPPO. Fig. 4
shows the value of the battle won mean for each algorithm.

Figure 4: The battle won means comparison for the four algorithms in SMAC map 3M MAPPO with
blue, VDN with red color, QMIX with green color, and MAA2C with black color



IASC, 2024, vol.39, no.2 345

We employed the Max function to identify the maximum value of the battle won mean achieved for
every algorithm and at which iteration. At iteration number 1,301,528, the QMIX algorithm achieved
the highest battle-won mean of 0.939 in the training, while the VDN algorithm got the second highest
value of the battle-won mean of 0.815 at iteration number 1,701,973. The MAA2C and MAPPO
algorithms produced nearly identical outcomes, the MAA2C achieving the third greatest value for
the battle won mean at iteration number 1,407,231 with a value of 0.787, and the MAPPO algorithm
achieving the weakest result of 0.782 at iteration 81,193. The QMIX algorithm was the best one and
the MAPPO was the worst one. During the initial stages of training any machine learning algorithm,
it is not in a stable state. Our selected algorithms (MAPPO, VDN, QMIX, MAA2C) achieve stability
after 500,000 iterations. The long-term stability of the algorithm is important to demonstrate its
performance and accuracy. However, neither MAPPO nor MAA2C exhibit such stability.

The results of the battle won demonstrate that the QMIX and VDN algorithms provide the highest
performance in this scenario. The meaning of the dead allies means metric gives how many trained
agents have been killed in one iteration, while the meaning of the dead enemies means gives how many
enemies have been killed in each iteration. Fig. 4 illustrates a comparison of the mean values of dead
allies and dead enemies for the four algorithms over two million iterations. The highest performing
algorithm produces the lowest value of dead allies mean and should generate the highest value of dead
enemies mean too. Our investigation demonstrated that the QMIX algorithm had the lowest value
of dead allies mean and the highest value of dead enemies mean, while the VDN algorithm provided
the second lowest value for the dead allies and the second highest value for the dead enemies. For
the MAA2C and MAPPO algorithm, MAA2C got third place for both dead allies and dead enemies,
while the result of the MAPPO was the worst in this work for the attacking scenario. QMIX and VDN
algorithms were given the best result for both dead allies and dead enemies in this scenario.

The Min function was employed to identify the minimum value of dead allies mean and the
number of iterations that occurred, while the Max function was employed to identify the maximum
value of dead enemies mean. QMIX algorithm got the lowest value in Fig. 4A with value 0.593 and
got the maximum value in Fig. 4B with value 2.923, both at iteration number 1,902,029, and the VDN
algorithm got the second lowest value in Fig. 5A with value 1.117 and achieved the second biggest
value in Fig. 5B with value 2.754 at iteration number 1,501,765. while the MAA2C and MAPPO
algorithms’ results were the worst in this work, the MAA2C got the third lowest value in Fig. 5A with
a value of 1.917 and the third highest value in Fig. 5B with value equal to 2.785 at iteration number
1,245,522, while the MAPPO algorithm got a value equal to 1.982 in Fig. 5A and in Fig. 5B 2.768 both
at iteration 81,193. According to the results of Figs. 5A and 5B, the QMIX and VDN algorithms give
the best value, making them the best algorithms in this work for the attacking scenario with SMAC
map_3M.

4.2 The Defending Scenario Results

This scenario is considered more challenging because the agent is required to master survival
strategies and collaborate with other agents to achieve victory in the game. The results were analyzed
to check which algorithm worked faster and could reach the highest value with the three metrics: Battle
won mean, dead allies mean and dead enemies mean. Fig. 6 shows a screenshot from the complex task
environment MAP Corridor, the green lines represent the agent’s attacking direction. At the beginning
of the training process, the agents start searching for the target, as seen in Fig. 6A. Then, a few of
these agents discovered the target and started the cooperative attack, like the agents shown in Fig. 6B.
Finally, all the agents collaborate and launch an assault attack on the enemies, as illustrated in Fig. 6C.



346 IASC, 2024, vol.39, no.2

Figure 5: (A) Dead allies mean, and (B) Dead enemies mean, the comparison for the four algorithms in
SMAC map 3M, MAPPO with blue color, VDN with red color, QMIX with green color and MAA2C
with black color

Figure 6: Screenshot from the training of the defending scenario SMAC map Corridor (Complex task),
the six green circles represent the training agent, and the 24 red circles represent the enemies, (A)
the agents searching for the target. (B) Two of the trained agents could find the target and start the
cooperative attack. (C) All three agents attack the target

We evaluated the four algorithms (MAA2C, MAPPO, QMIX, and VDN) to evaluate which
algorithm produced a successful result for the defending scenario. We have chosen the SMAC map
Corridor as our training environment to check the performance and speed of every algorithm to see
which agent succeeded in the defending scenario and kill more enemies faster to win the match without
losing allies. The battle won means representing the successfully won value for the multiple agents for
every algorithm in every match. We can pick the algorithm that gives us the best outcome in terms of
the battle won mean. Fig. 7 shows a comparison of the highest value of the battle-won mean reached by
every algorithm. The VDN algorithm generated the highest value with a rapid rise at the first million
iterations, while the QMIX algorithm created the second highest value for the battle won mean at the
end of training. The MAPPO and MAA2C algorithms gave the poorest results in this work, however,
MAA2C could not produce a result and stayed at zero, while the MAPPO eventually attained 0.01. In



IASC, 2024, vol.39, no.2 347

the defending scenario, VDN had the best performance compared to the other algorithms. Its values
started increasing earlier during the training process and eventually reached the highest value of all.
The high performance of VDN and QMIX algorithms reflects the proper mechanism those algorithms
work on. The VDN performs to reach the goal that the total reward has an additivity property, while
QMIX always assumes that the overall reward should be in line with the monotonic constraint. Our
results showed that the VDN and QMIX can observe a higher level of state information during the
training stage and a much deeper class of action-value functions.

Figure 7: The battle won means comparison for the four algorithms in SMAC map Corridor MAPPO
with blue, VDN with red color, QMIX with green color, and MAA2C with black color

By employing the Max function, we could determine the highest value of battle won mean value
achieved by the four algorithms in a specific number of iterations. The VDN algorithm had the
greatest battle-won mean score of 0.068 at iteration 1,788,419 of the training, and the QMIX algorithm
followed with a score of 0.033 at 1,828,764 iterations. The outcomes of MAA2C and MAPPO were
near zero, where MAPPO got 0.01 at iteration 2,040,165, achieving the third highest value, while the
result of MAA2C achieved was zero. In this scenario, the VDN algorithm was the best one, and the
MAA2C was the worst one. The defending scenario has revealed that the QMIX and VDN algorithms
have the highest mean value of the battle won.

The dead allies and dead enemies mean are the next metrics used to verify the performance of
our algorithms; the dead allies mean metric indicates the number of trained agents killed in a single
iteration, while the dead enemies mean indicates the number of enemies killed at every iteration.
According to the available performance evaluation metrics in the chosen environment, the dead
enemies refer to the accuracy and dead allies refer to loss. Fig. 8 shows a comparison of the highest
value of the dead allies and dead enemies mean reached by the four algorithms that were trained
for two million iterations. The best algorithm must give the smallest value of dead allies mean and
the biggest value of dead enemies means. The results indicated that the VDN algorithm achieved the
minimum value of dead allies mean and the second highest value of dead enemies mean, while the
QMIX algorithm got the second smallest value of the dead allies mean and the greatest value of dead
enemies mean. The worst result in this work was achieved by the MAA2C and MAPPO algorithms,
where the value of these algorithms was almost zero. QMIX and VDN algorithms were given the best
result for the dead allies and dead enemies in this scenario.



348 IASC, 2024, vol.39, no.2

Figure 8: (A) Dead allies mean, and (B) Dead enemies mean comparison for the four algorithms in
SMAC map 3M, MAPPO with blue color, VDN with red color, QMIX with green color, and MAA2C
with black color

The VDN algorithm had the lowest recorded mean value in Fig. 8A with 5.337 and had the second
highest mean value in Fig. 8B with 14.421, both were achieved at iteration 86,4360. At iteration number
2,134,850, the QMIX algorithm achieved the second smallest value in Fig. 8A with 5.752 and the first
highest value in Fig. 8B with 15.137. Additionally, the results of the MAA2C and MAPPO algorithms
were the poorest in this scenario. The MAA2C had the third smallest value in Fig. 8A at 5.800 and the
third greatest value in Fig. 8B at 1.480, both at iteration 1,217,486. The MAPPO algorithm had the
poorest results for both Figs. 8A and 8B in this scenario. The results in Figs. 8A and 8B, indicate that
the QMIX and VDN algorithms have the highest performance in the defending scenario; therefore,
these are the most suitable algorithms for this scenario.

To summarize the outcomes of the four algorithms across two scenarios, this work implemented
four algorithms, QMIX, VDN, MAA2C, and MAPPO, in two various scenarios, attacking and
defending. Four algorithms were tested on two scenarios, with some providing excellent results and
others giving poor results. We examined the outcomes of the algorithms in the SMAC MAP_3M
the simple task, where QMIX produced exceptional results, achieving the highest battle won mean,
dead enemies mean, and the lowest dead allies mean. In the same scenario, the VDN algorithm
gives the second highest value for the battle won mean, dead enemies mean, and the lowest value
in dead allies mean. The other two algorithms, MAA2C ranked third and MAPPO, yielded the lowest
results. During the complex task scenario SMAC MAP Corridor, both QMIX and VDN demonstrated
impressive results. Specifically, the VDN algorithm demonstrated the best performance in terms of
the battle-won mean and dead allies mean, while QMIX excelled in dead enemies mean. The results of
MAA2C and MAPPO in this Complex scenario were poor and nearly equal to zero. Table 2 shows the
highest values achieved by the four algorithms MAPPO, VDN, QMIX, and MAA2C for the metrics
battle won mean, dead allies mean and dead enemies mean in the two scenarios (3M, Corridor).



IASC, 2024, vol.39, no.2 349

Table 2: The summary table for comparison of the highest performance of the four algorithms for the
battle won means, dead allies mean, and dead enemies mean metric in this work

Algorithm Environment Battle won mean Dead allies mean Dead enemies mean

MAPPO 3M (Simple)
Corridor (Complex)

0.782
0.01

1.982
5.820

2.754
1.480

VDN 3M (Simple)
Corridor (Complex)

0.815
0.068

1.117
5.337

2.768
14.421

QMIX 3M (Simple)
Corridor (Complex)

0.939
0.033

0.593
5.752

2.923
15.137

MAA2C 3M (Simple)
Corridor (Complex)

0.787
0.00

1.917
5.800

2.785
2.890

4.3 Discussion

The results of this work showed that the four MARL algorithms, namely QMIX, VDN, MAPPO,
and MAA2C algorithms were successful in both attacking and defending scenarios in the SMAC
environment. The trained algorithms provide us with a different result in every scenario. Examination
of this work revealed that the QMIX algorithm was the most successful in the attacking scenario. The
QMIX achieved the greatest success in terms of the three metrics battle won mean, dead allies mean and
dead enemies mean, while the VDN algorithm was the most effective in the defending scenario, with
battle won mean increasing from the start of the training and yielding the greatest value of battle won
mean dead allies mean. Moreover, QMIX generated the largest dead enemies mean in the defending
scenario and achieved the second smallest value of dead allies mean of 5.752 and the first highest
value of dead enemies mean of 15.137. The comparison we made for the four chosen algorithms was
based on the performance of the four algorithms in the chosen environments. This performance can
be affected by the type of the chosen environment to train each algorithm. For instance, Yu et al.
[11] compared the performance of different MARL algorithms including MAPPO and QMIX in 22
different environments and scenarios. In some of the chosen scenarios in [11], MAPPO did better than
QMIX, especially in terms of the number of wins in each scenario. In [14], four MARL algorithms
including QMIX and VDN were compared in the SMAC environment with eight different scenarios
and the results showed that QMIX was the best algorithm in all the chosen scenarios as we confirmed
in this work. In this work, we were able to run a comparison in the SMAC environment between
four MARL algorithms in two different scenarios (defending and attacking) which are the most
commonly used in terms of battles. Our research demonstrates the effectiveness of MARL algorithms
in cooperative assignments and highlights their potential applications in real-world scenarios. The
SMAC environment provides a valuable tool for testing and evaluating these algorithms, and our
results show that they can be used to achieve victory with minimal damage. The implications of our
findings are significant, and we believe that our research has the potential to make a meaningful impact
in a variety of fields.

4.4 Limitations

The first limitation of this work is that we cannot link these Epymarl algorithms with a separate
environment designed by any graphics application to train or design a personal multi-agent system.
The second limitation is in the defending scenario of SMAC MAP_Corridor. We trained multiple



350 IASC, 2024, vol.39, no.2

agents to protect their spot and maintain it as much as possible, but we could not get to a satisfying
value with any algorithm. This is normal since there were six agents up against twenty-four competi-
tors, making victory almost impossible; thus, we consider the defending scenario a complex mission.

5 Conclusion

This paper has applied four algorithms: VDN, QMIX, MAA2C, and MAPPO in two SMAC
environments to evaluate their performance in attacking and defending tasks to determine the most
successful. Through training in the SMAC environment, the multiple agents gain the knowledge of how
to collaborate with other agents to attack their enemies or guard their position to come out victorious
with minimal damage. To evaluate the algorithm’s success in the attacking and defending scenarios,
three metrics have been considered: Battle won mean, dead allies mean, and dead enemies mean. To
test the performing algorithm, it must have the maximum value of battles won mean, enemies dead
mean, and the minimal value of allies’ dead mean. Results showed that QMIX had the highest value
in battle won mean, dead enemies mean, and the lowest value in dead allies mean for the attacking
scenario. Consequently, the QMIX algorithm is considered the best algorithm in the attacking scenario
in this work. The VDN algorithm achieved the second-best results in this work. The MAA2C was third
and MAPPO had the lowest performance for the attacking scenario. In the defending scenario, the
VDN algorithm was the most successful due to achieving the highest battle-won mean and the lowest
dead enemies mean. The QMIX algorithm had the highest dead enemies mean and was the second-
best performing. For both the MAPPO and MAA2C algorithms, MAPPO showed the third-highest
performance, but the MAA2C had the poorest outcome in this scenario. To sum up, the QMIX is the
most successful algorithm in the attacking scenario, and the VDN is best in the defending scenario.
Reinforcement learning agents are trained to perform specific actions in a particular environment, and
those actions can be repeated in different scenarios in another environment. As we mentioned earlier,
the idea of attack and defense could potentially apply to the study of mobile attacks in cooperative
learning, and we are planning for future work to implement this work on multi-cooperative drone
tasks in a similar environment.

Acknowledgement: The authors acknowledge the contribution and the support of the Department of
Electrical & Computer Engineering and Computer Science at Jackson State University (JSU).

Funding Statement: This work was supported in part by United States Air Force Research Institute
for Tactical Autonomy (RITA) University Affiliated Research Center (UARC), and in part by the
United States Air Force Office of Scientific Research (AFOSR) Contract FA9550-22-1-0268 awarded
to KHA, https://www.afrl.af.mil/AFOSR/. The contract is entitled: “Investigating Improving Safety
of Autonomous Exploring Intelligent Agents with Human-in-the-Loop Reinforcement Learning,” and in
part by Jackson State University.

Author Contributions: The authors confirm contribution to the paper as follows: Study conception
and design: A. Abdulghani, M. Abdulghani, W. Walters, K. Abed; data collection: A. Abdulghani;
analysis and interpretation of results: A. Abdulghani, M. Abdulghani, W. Walters, K. Abed; draft
manuscript preparation: A. Abdulghani, M. Abdulghani, K. Abed. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: Data openly available in a public repository. The data that support
the findings of this study are openly available in SMAC2 at https://github.com/oxwhirl/smacv2.

https://www.afrl.af.mil/AFOSR/
https://github.com/oxwhirl/smacv2


IASC, 2024, vol.39, no.2 351

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study of distributed multi-agent

coordination,” IEEE Trans. Ind. Inform., vol. 9, no. 1, pp. 427–438, 2012.
[2] C. Zhang and V. Lesser, “Coordinated multi-agent reinforcement learning in networked distributed

pomdps,” in AAAI Conf. Artif. Intell. (AAAI), 2011, vol. 25, no. 1.
[3] M. Hüttenrauch, A. Šošić1, and G. Neumann, “Guided deep reinforcement learning for swarm systems,”

University of Lincoln, Sep. 18, 2017. arXiv:1709.06011.
[4] L. Busoniu, R. Babuska, and B. D. Schutter, “A comprehensive survey of multiagent reinforcement

learning,” IEEE Trans. Syst., Man, Cybern., Part C (Appl. and Rev.), vol. 38, no. 2, pp. 156–172, 2008.
[5] S. Chen, M. Zhu, D. Ye, W. Zhang, Q. Fu, and W. Yang, “Which heroes to pick? Learning to draft in moba

games with neural networks and tree search,” IEEE Trans. Games, vol. 13, no. 4, pp. 410–421, 2021.
[6] C. Hong, I. Jeong, L. F. Vecchietti, D. Har, and J. H. Kim, “AI world cup: Robot-soccer-based competi-

tions,” IEEE Trans. Games, vol. 13, no. 4, pp. 330–341, 2021.
[7] R. Bellman, “A markovian decision process,” Indiana Univ. Math. J., vol. 6, no. 4, pp. 679–684, Jan. 1957.

doi: 10.1512/iumj.1957.6.56038.
[8] C. B. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 6, no. 4, pp. 679–684, May 1992. doi:

10.1007/bf00992698.
[9] M. Roderick, J. MacGlashan, and S. Tellex, “Implementing the deep Q-network,” in 30th Conf. Neural Inf.

Process. Syst. (NIPS 2016), Barcelona, Spain, Nov. 20, 2017.
[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algo-

rithms,” Aug. 28, 2017. doi: 10.48550/arXiv.1707.06347.
[11] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. M. Bayen, and Y. Wu, “The surprising effectiveness of MAPPO

in cooperative, multi-agent games,” Cornell University, Mar. 2021. doi: 10.48550/arxiv.2103.01955.
[12] G. Weiss, “Multiagent systems and societies of agents,” in Multiagent Systems: A Modern Approach to

Distributed Artificial Intelligence, MIT Press, Liverpool, UK, 2000, pp. 79–120.
[13] P. Sunehag et al., “Value-decomposition networks for cooperative multi-agent learning based on team

reward. adaptive agents and multi-agent systems,” DeepMind & Unive. Liverpool, pp. 2085–2087, 2017.
[14] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster and S. Whiteson, “QMIX: Monotonic

value function factorisation for deep multi-agent reinforcement learning,” Cornell University, Mar. 2018.
doi: 10.48550/arxiv.1803.11485.

[15] M. S. Stanković, M. Beko, N. Ilic, and S. S. Stanković, “Multi-agent off-policy actor-critic algo-
rithm for distributed multi-task reinforcement learning,” Eur. J. Control, vol. 100853, Jun. 2023. doi:
10.1016/j.ejcon.2023.100853.

[16] N. Bard et al., “The hanabi challenge: A new frontier for AI research,” Artif. Intell., vol. 280, pp. 103216,
Mar. 2020. doi: 10.1016/j.artint.2019.103216.

[17] G. Brockman et al., “OpenAI gym,” Brockman2016OpenAIG arXiv:1606.01540.
[18] M. Samvelyan et al., “The starcraft multi-agent challenge,” in Deep Reinf. Learn. 33rd Conf. Neural Inf.

Process. Syst. (NeurIPS 2019), Vancouver, Canada, pp. 2186–2188.
[19] O. Vinyals et al., “Grandmaster level in starCraft II using multi-agent reinforcement learning,” Nature, vol.

575, no. 7782, pp. 350–354, Oct. 2019. doi: 10.1038/s41586-019-1724-z.
[20] A. Wong, T. Bäck, A. V. Kononova, and A. Plaat, “Deep multiagent reinforcement learning: Challenges and

directions,” Artif. Intell. Rev., vol. 56, no. 6, pp. 5023–5056, Oct. 2022. doi: 10.1007/s10462-022-10299-x.
[21] J. B. Hamrick et al., “On the role of planning in model-based deep reinforcement learning,”

arXiv:2011.04021, 2021.
[22] A. M. Abdulghani, M. M. Abdulghani, W. L. Walters, and K. H. Abed, “AI safety approach for minimizing

collisions in autonomous navigation,” J. Artif. Intell., vol. 5, pp. 1–14, 2023. doi: 10.32604/jai.2023.039786.

https://doi.org/10.1512/iumj.1957.6.56038
https://doi.org/10.1007/bf00992698
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arxiv.2103.01955
https://doi.org/10.48550/arxiv.1803.11485.pp.4292-4301
https://doi.org/10.1016/j.ejcon.2023.100853
https://doi.org/10.1016/j.artint.2019.103216
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1007/s10462-022-10299-x
https://doi.org/10.32604/jai.2023.039786


352 IASC, 2024, vol.39, no.2

[23] C. C. Rosser, W. L. Walters, A. M. Abdulghani, M. M. Abdulghani, and K. H. Abed, “Implementation of
strangely behaving intelligent agents to determine human intervention during reinforcement learning,” J.
Artif. Intell., vol. 4, no. 4, pp. 261–277, 2022.

[24] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as a rehearsal for decentralized plan-
ning,” Neurocomput., vol. 190, pp. 82–94, May 2016. doi: 10.1016/j.neucom.2016.01.031.

[25] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy
gradients,” in Proc. AAAI Conf. Artif. Intell., vol. 32, no. 1, Apr. 2018. doi: 10.1609/aaai.v32i1.11794.

[26] J. Zhao, X. Hu, M. Yang, W. Zhou, J. Zhu, and H. Li, “CTDS: Centralized teacher with decentralized
student for multi-agent reinforcement learning,” IEEE Trans. Games, 2022. doi: 10.1109/TG.2022.3232390.

[27] X. Fang, P. Cui, and Q. Wang, “Multiple agents cooperative control based on QMIX algorithm in SC2LE
environment,” in 2020 7th Int. Conf. Inf., Cybern., Comput. Soc. Syst. (ICCSS), Guangzhou, China, 2020,
pp. 435–439. doi: 10.1109/ICCSS52145.2020.9336865.

[28] Z. Dou, J. G. kuba, and Y. Yang, “Understanding value decomposition algorithms in deep cooperative
multi-agent reinforcement learning,” arXiv:2202.04868, 2022..

[29] Y. Wang, C. Zhang, T. Yu, and M. Ma, “Recursive least squares advantage actor-critic algorithms,” IEEE
Trans. Syst., Man, Cyber.: Syst., 2022. doi: 10.48550/arxiv.2201.05918.

[30] A. Michalski, F. Christianos, and V. S.Albrecht, “SMAClite: A lightweight environment for multi-agent
reinforcement learning,” Cornell University, May 2023. doi: 10.48550/arxiv.2305.05566.

[31] X. Li, G. Chen, G. Wu, Z. Sun, and G. Chen, “Research on multi-agent D2D communication resource allo-
cation algorithm based on A2C,” Electron., vol. 12, no. 2, pp. 360, 2023. doi: 10.3390/electronics12020360.

[32] M. M. Abdulghani, A. A. Harden, and K. H. Abed, “A drone flight control using brain-computer interface
and artificial intelligence,” in 2022 Int. Conf. Comput. Sci. Comput. Intell.–Artif. Intell. (CSCI’22-AI),
IEEE Comput. Soc. Conf. Publ. Serv. (CPS), Las Vegas, Nevada, Dec. 14–16, 2022.

[33] G. Papoudakis, F. Christianos, L. Schafer, and S. V. Albrecht, “Benchmarking multi-agent deep reinforce-
ment learning algorithms in cooperative tasks,” in 35th Conf. Neural Inf. Process. Syst. (NeurIPS 2021)
Track Datasets Benchmarks, University of Edinburgh, 2020.

[34] A. Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library. Cornell Un.,
2019, vol. 32, pp. 8026–8037. doi: 10.48550/arXiv.1912.01703.

[35] R. S. Dehal, C. Munjal, A. A. Ansari, and A. S. Kushwaha, “GPU computing revolution: CUDA,” in 2018
Int. Conf. Adv. Comput., Commun. Control Netw. (ICACCCN), Greater Noida, India, 2018, pp. 197–201.
doi: 10.1109/ICACCCN.2018.8748495.

[36] Y. Shang, “Resilient vector consensus over random dynamic networks under momalicious bile attacks,”
Comput. J., 2023. doi: 10.1093/comjnl/bxad043.

https://doi.org/10.1016/j.neucom.2016.01.031
https://doi.org/10.1609/aaai.v32i1.11794
https://doi.org/10.1109/TG.2022.3232390
https://doi.org/10.1109/ICCSS52145.2020.9336865
https://doi.org/10.48550/arxiv.2201.05918
https://doi.org/10.48550/arxiv.2305.05566
https://doi.org/10.3390/electronics12020360
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.1109/ICACCCN.2018.8748495
https://doi.org/10.1093/comjnl/bxad043

	Performance Evaluation of Multi-Agent Reinforcement Learning Algorithms
	1 Introduction
	2 Related Works
	3 Methodology
	4 Results
	5 Conclusion
	References


