
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2024.042693

ARTICLE

A Deep Reinforcement Learning-Based Technique for Optimal Power
Allocation in Multiple Access Communications

Sepehr Soltani1, Ehsan Ghafourian2, Reza Salehi3, Diego Martín3,* and Milad Vahidi4

1Department of Industrial Engineering, College of Engineering, University of Houston, Houston, TX, 77204, USA
2Department of Computer Science, Iowa State University, Ames, Iowa, USA
3ETSI de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
4Faculty of School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia, 24060, USA

*Corresponding Author: Diego Martín. Email: diego.martin.de.andres@upm.es

Received: 08 June 2023 Accepted: 24 January 2024 Published: 29 March 2024

ABSTRACT

For many years, researchers have explored power allocation (PA) algorithms driven by models in wireless networks
where multiple-user communications with interference are present. Nowadays, data-driven machine learning
methods have become quite popular in analyzing wireless communication systems, which among them deep
reinforcement learning (DRL) has a significant role in solving optimization issues under certain constraints. To
this purpose, in this paper, we investigate the PA problem in a k-user multiple access channels (MAC), where k
transmitters (e.g., mobile users) aim to send an independent message to a common receiver (e.g., base station)
through wireless channels. To this end, we first train the deep Q network (DQN) with a deep Q learning (DQL)
algorithm over the simulation environment, utilizing offline learning. Then, the DQN will be used with the real
data in the online training method for the PA issue by maximizing the sumrate subjected to the source power.
Finally, the simulation results indicate that our proposed DQN method provides better performance in terms of the
sumrate compared with the available DQL training approaches such as fractional programming (FP) and weighted
minimum mean squared error (WMMSE). Additionally, by considering different user densities, we show that our
proposed DQN outperforms benchmark algorithms, thereby, a good generalization ability is verified over wireless
multi-user communication systems.
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1 Introduction

Nowadays, due to the explosive demand for using wireless applications with higher data rates by
users, the next generation of wireless communication networks (6G) should be designed to guarantee
successful data transmission [1–4]. On the other hand, in multi-user wireless communication systems
such as multiple access channels (MAC), where users send their independent data to the common
receiver, more capacity and spectral efficiency are required than the single-user point-to-point (P2P)
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communications. One promising approach to meet these challenges is to more effectively allocate
network resources with interference management. Generally speaking, power allocation (PA) is an
effective technique that can improve the performance of wireless networks by delivering the source
information to the destination efficiently. In addition, by allocating the appropriate source power to
each user, the quality of service (QoS) and fairness for all mobile users, especially the edge users,
in multiple access communications can be guaranteed. However, the lack of flexible guidelines for
providing fair resource allocation to users and significant interference caused by the unplanned
deployment of other nodes are momentous issues that should be modified to make wireless multi-
user networks work perfectly. To this end, in this paper, we investigate the PA problem by exploiting
machine learning (ML) methods to maximize the sumrate of wireless multiple access communications
[5,6]. However, this optimization problem is non-convex and NP-hard [7–10] PA so it cannot be solved
efficiently [11–14]. NP-hard problems are difficult to solve efficiently, and finding an optimal solution
typically requires exploring a large number of possibilities. While no known efficient algorithm exists
for solving NP-hard problems in the general case, various approximation algorithms and heuristics
can be employed to find good solutions or approximate solutions within a reasonable amount of time
[15–17].

In recent years, several algorithms have been proposed for the PA problem such as fractional
programming (FP) and weighted minimum mean squared error (WMMSE) [18–21]. Although these
methods have excellent performances in both theoretical analysis and numerical simulation, they are
not appropriate enough for implementation in real wireless communication systems [22]. In other
words, these algorithms highly depend on tractable mathematical models, and the computational
complexities are too high, so they are not suitable for practical usage where the user distribution,
propagation environment, geographical location of nodes, etc., are considered as main factors. There-
fore, the need for novel approaches to the PA problem in practical wireless communications feels more
than ever. In this regard, ML-based methods have been rapidly developed in wireless communications
over the last few years. The ML-based algorithms are often model-free and can be efficiently used
for optimization problems over feasible wireless communication scenarios. In addition, regarding the
advancements of the graphic processing unit (GPU), the implementation and performance of them
can be affordable and fast, which provides a better condition for network operators.

There are several branches of the ML method, where supervised learning and reinforcement
learning (RL) are the most popular ones [23]. Within supervised learning, a deep neural network
(DNN) undergoes training to approximate certain optimal or suboptimal objective algorithms.
Nevertheless, the target algorithm is often inaccessible, and the effectiveness of the DNN is constrained
by the supervisor [24–27]. Conversely, Reinforcement Learning (RL) has found extensive application
in optimizing systems of unknown nature through interaction. The adaptable nature of RL makes it a
versatile solution for models where the statistical features of the system undergo continuous changes.
The most well-known RL algorithm is the Q learning approach which has been recently studied for the
PA problem in [28–30]. The trained DNN with Q learning is known deep Q learning network (DQN),
which is proposed to resolve the PA problem in the single-user P2P communication system [31,32].
However, to the best of the authors’ knowledge, the PA problem over wireless multi-user communica-
tion systems such as fading MAC has not been investigated by exploiting the DQN model. Generally
speaking, MAC is a fundamental channel model for uplink communications from an information-
theoretic perspective in multi-user wireless networks, which has recently attracted significant attention
in performance analysis of emerging technologies for 6G wireless communications [33–37]. Thus,
analyzing the PA problem under wireless k-user MAC can be of great interest [38–42].
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1.1 Related Works

Given the efficiency of deep learning (DL)-based methods in optimization problems, many
contributions have been carried out for analyzing wireless communication networks from various
aspects by exploiting DL algorithms. In [4], the authors discussed several novel applications of DL
in physical layer security, where they showed how their ideas can be extended to multi-user secure
communication systems. They also introduced radio transformer networks (RTNs) as a flexible
approach to integrating expert knowledge into the DL model. The PA problem for a downlink
massive multiple-input multiple-output (MIMO) system by exploiting DL methods was studied in
[43]. In this work, the authors trained a deep neural network to teach the relationship between
user positions and optimal PA policies. Subsequently, they endeavored to anticipate PA profiles for
a novel set of user positions. The findings indicated that the utilization of DL in MIMO systems
can markedly enhance the trade-off between complexity and performance in PA, as opposed to
conventional optimization-centric approaches. Due to the lack of celebrated algorithms like water-
filling and max-min fairness for analyzing the PA problem in wireless type-machine communication
(MTC), the authors in [44] introduced the learning centric power allocation (LCPA) method, offering
a fresh perspective on radio resource allocation in a learning-driven scenario. This approach involves
the use of an empirical classification error model supported by learning theory and an uncertainty
sampling method that considers diverse distributions among users, the authors formulated the LCPA
as a non-convex non-smooth optimization problem and they indicated that their proposed LCPA
algorithms outperform traditional PA algorithms. In [45], the authors executed a dynamic PA scheme
by applying model-free deep reinforcement learning (DRL), where each user can collect the channel
state information (CSI) and quality of service (QoS) information from several nodes and adopt
its own transmit power accordingly. With the goal of optimizing a utility function based on the
weighted sum rate, the study utilized DQN to analyze both random variations and delays in CSI.
The findings demonstrated that the suggested framework is particularly suitable for practical scenarios
characterized by inaccuracies in the system model and non-negligible delays in CSI. The authors in [46]
introduced a distributed reinforcement learning approach known as distributed power control using
Q-learning (DPC-Q). This method was designed to manage interference generated by femtocells on
users in downlink cellular networks. The authors explored two distinct approaches for DPC-Q, namely,
independent and cognitive scenarios. By considering the heterogeneous cellular networks (HetNets),
the authors in [47] employed a machine learning approach based on Q-learning to address the resource
allocation challenge in intricate networks. They defined each base station as an agent, and in the
context of multi-agent cellular networks, cooperative Q-learning was utilized as an effective method
for resource management in such multi-agent network scenarios. The results in [47] illustrated that
using the Q-learning approach can offer more than a four-fold increase in the number of supported
femtocells compared with previous works. In [48], a strategy for optimizing energy consumption was
introduced, employing techniques from DRL and transfer learning (TL). The authors incorporated
an adaptive reward system to autonomously modify parameters within a reward function, aiming to
strike a balance between users’ energy consumption and QoS requirements throughout the learning
process. Furthermore, the authors in [49] focused on optimizing the ON/OFF strategy of small
base stations by leveraging DQN to improve energy efficiency. Subsequently, they suggested a user-
specific cell activation approach to address the challenge of allocating users with diverse requirements.
Furthermore, in [50,51], a framework employing the DRL method was introduced to achieve the
optimal solution for power-efficient resource allocation in beamforming problems.
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1.2 Paper Contributions

Motivated by the above-mentioned observations, we investigate the PA problem in the multi-
user communication system, exploiting the DQN model, where the simulation results show our
proposed DQN model provides better performance as compared with benchmark algorithms. The
main contributions of our work are summarized as follows:

• First, we propose a model-free two-step training structure, wherein the DQN is firstly trained
offline with the DRL algorithm within simulated environments, and then the learned DQN is
used for optimization problems in real multi-user communications through transfer learning.

• We also discuss the PA problem of exploiting deep Q learning (DQL). In this regard, we propose
a DQN-enabled method and train it with the current sumrate as the reward function, lacking
prospective rewards to aid the DQN in approaching the optimal solution.

• Finally, the suggested DQN is evaluated by distributed performance, and the results show that
the average sumrate of DQN surpasses model-driven algorithms.

1.3 Paper Organization

The remaining sections of this paper are structured as follows. Section 2 describes the system
model and the PA problem in the considered wireless fading MAC. The details of our proposed DQN
model are presented in Section 3. In Section 4, the efficiency of proposed DQN in comparison with
benchmarks algorithms is illustrated by simulation results. Finally, Section 5 presents the conclusions
and discussions.

2 System Model

Consider the wireless multiple-access communication system model depicted in Fig. 1, where
transmitters ti wish to send an independent message reliably Xi, i ∈ {1, 2, . . . , k} to the common receiver
r, respectively. The inputs Xi sent by i-th user over the considered fading channels are restricted to the
average power asE[|Xi|2] ≤ Pmax, whereE[.] is the expectation operator. At time slot T , by assuming that
the transmitters and the receiver are equipped with single antenna, the received signal at the receiver r
is defined as follows:

Y =
∑k

i=1
gT

i Xi + Z, i ∈ {1, 2, . . . , k} (1)

where gT
i = |hT

i |2βi, i ∈ {1, 2, . . . , k} are the independent channel coefficients between the i-th
transmitter and the common receiver r. The terms hi and βi denote the small-scale fading and large-
scale shadowing, respectively. Z defines the additive white Gaussian noise (AWGN) with zero mean
and variance N (i.e., Z ∼ N(0, N)) at the receiver r. Thus, the instantaneous signal-to-noise ratios
(SNRs) γi for the considered k-user MAC can be defined as:

γ T
i = PT

i gT
i∑

i �=j PT
j gT

j + N
(2)

where PT
i denotes the transmitting power of the i-th user.
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Figure 1: System model depicting the k-user MAC

The sumrate of the considered k-user MAC with coherent receiver (i.e., the channel coefficients gi

are known at the receiver r) was determined in [52] as:

CT = 1
2

log2

(
1 +

k∑
i=1

γ T
i

)
. (3)

We now formulate the optimization problem to maximize the generic sumrate objective function
of the considered MAC under maximum power constraint as follows:

maximaize
PT

CT (4)

subject to 0 ≤ PT
i ≤ Pmax, i = 1, 2, . . . , k (5)

CT
i ≤ RT

i , i = 1, 2, . . . , k (6)

where PT = {PT
1 , PT

2 , . . . , PT
k } is the transmitting power vector. The objective of (4) is to maximize the

sumrate of users, ensuring that each user attains the specified information rate RT
i as state in (5). The

term CT
i = 1

2
log2

(
1 + γ T

i

)
refers to the capacity of i-th link. The problem that represented in (4) is

non-convex and NP-hard. For this purpose, we utilize a data-driven learning algorithm, employing
the DQN method to address it.

3 Problem Formulation and Proposed Solution
3.1 Deep Q Network

Q learning is a flexible model-free RL approach which widely used in dealing with the Markov
decision process (MDP) problems [53]. Q learning is regarded as a function approximator with the
value of Q, which depends on the state sT ∈ S and the action aT ∈ A at time instant T . The terms
S and A denote the action and state sets, respectively. To obtain the next state sT+1, the agent first
performs the action aT , engages with the environment, and subsequently receives the reward rT at time
step T . In order to settle infinite state space, the DQN is introduced to merge Q learning with a pliable
DNN by considering the fact that the state s can be continuous. Thus, the cumulative discounted
reward function is defined as:

RT =
∑∞

τ
γ τ rt+τ+1 (7)

where the discount factor γ ε [0, 1) represents the balancing factor determining the significance of
immediate vs. future rewards. So, the Q function of the agent with an action a and DQN parameter θ
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over state s for a specific policy π is determined as:

Qπ (s, a; θ) = Eπ

[
RT |sT = s, aT = a

]
(8)

The primary objective of Q-learning is to identify the optimal behavior for agents operating in
an unknown environment, with the goal of maximizing the Q function. To this end, the dynamic
programming equation used to calculate a function approximator Q, commonly known as the Bellman
equation, is employed to maximize Eq. (4). Thus, Bellman equation is defined as [54,55]:

wT = rT + γ max
a′ Q

(
sT+1, a′; θT

)
(9)

where wT is the optimal value of Q. The unique strictly concave solution provided by Eq. (9) will be
reached by applying limit as T → ∞.

The main novelty of Q learning is to utilize temporal-difference (TD) in order to approximate the
Q function. To this end, the DQN is trained with the standard Q learning update of the parameters θ

as follows:

θT+1 = θT + η
(
wT − Q

(
sT , aT ; θT

))∇Q
(
sT , aT ; θT

)
(10)

where η defines the learning rate. The expression in (10) is similar to the stochastic gradient descent
which gently updates the current value of Q

(
sT , aT ; θT

)
to the object wT . The agent experience data is

also loaded as
(
sT , aT , rT , ST+1

)
. As a result, the DQN undergoes training using batch data retrieved

randomly from the experience replay memory.

3.2 Deep Reinforcement Learning

In most applications in which the current strategy has enduring impacts on the cumulative reward
like playing video games, the DQN gains significant outputs and defeats players. However, for the PA
problem in this scenario, the discount factor γ should be assumed zero. Given the aim of DQL which
is to maximize the Q function, we assume γ = 0. Thus, Eq. (8) can be written as:

max Q = maxEπ

[
rT |sT = s, aT = a

]
(11)

Now, for our considered PA problem, we set s = gT and a = PT , where gT = {gT
1 , gT

2 , . . . , gT
k } is the

channel state information (CSI) set. Then, by assuming rT = CT , we have:

max Q = maxEπ

[
CT |gT , PT

]
(12)

0 � PT � Pmax

Since during the execution period the policy is deterministic, (12) can be expressed as:

max Q = max CT(gT , PT
) (13)

0 � PT � Pmax

which is an equivalent form of the maximization problem mentioned in (4). This result shows that the
optimal solution for maximization problem in (4) is identical to that of (8), under the assumptions of
γ = 0 and rT = CT .

The optimal out for the maximization problem in (4) is just depends on the instantaneous wireless
channel conditions, meaning that the ideal solution PT∗ of (4) is just specified by the current CSI gT

(see Fig. 2). Thus, the channel CT
i is computed by (gT , PT

). Although the optimal power solution PT∗

can be determined by exploiting a DQN with only input gT , the performance of this specific DQN is
suboptimal due to the non-convex nature of the problem, making it challenging to reach the optimal
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point. Hence, we exploit two auxiliary aspects as CT−1 and PT−1 for this problem. As the channel can
be described as a first-order Markov process, leveraging the solution from the previous time period
assists the DQN in achieving the optimal power level. So, (13) can be expressed as:

max Q = max CT(gT , PT , CT−1, PT−1
) (14)

0 � PT � Pmax

By assuming γ = 0 and rT = CT , (9) is reduced to be wT = CT and the replay memory is
streamlined to

(
sT , aT , rT

)
. So, the current sumrate of the corresponding power levels with a specific

CSI can be predicted by considering DQN as an estimator.

Figure 2: The DQN solution is achieved through CSI gT , conjunction with rate CT−1 and transmitting
power PT−1

3.3 DQN Design in MAC

To alleviate the burden of online training caused by the inherent need for a substantial amount
of data in the data-driven algorithm, in our proposed model, we first offline pre-train the DQN with
the DRL algorithm over simulated wireless fading channels. Then, we dynamically set the learned
DQN in real scenarios by exploiting the transfer learning. Due to the fact that the practical wireless
fading channels are dynamic and also affected by the random factors in the propagation environment,
the data-driven algorithm can be a promising approach to analyze such communication networks.
Regarding the above-mentioned, we present our two-step framework in the following scenarios.

In the proposed wireless fading MAC, each transmitter-receiver link is considered as an agent; so,
a multi-agent system model is analyzed. However, training the multi-agent model proves challenging as
it demands an increased amount of learning data, training duration, and DNN parameters. Hence, we
opt for centralized training and exclusively train a single agent, utilizing the experience replay memory
from all agents. Consequently, we share the learned strategy of the considered agent over the distributed
execution period. Therefore, we define the components of the replay memory for our designed DQN
as follows:

3.3.1 State

Given that the full environment information is redundant, and the irrelevant elements should be
eliminated, creating the accurate state of the agent is momentous. We assume that the agent includes
the corresponding perfect instantaneous CSI in (2). Thus, the logarithmic normalized interferer set IT

i
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can be defined as follows:

I
T
i =

⎧⎨
⎩1, . . . , 1︸ ︷︷ ︸

i−1

,

{
log2

(
1 + gT

i

gT
j

)
|i �= j

}⎫⎬
⎭ . (15)

We also normalize the channel amplitudes of interferes with that of the required link, and since
the channel amplitudes are often modified by magnitude orders, we prefer the logarithmic format for
them. To mitigate computational complexities and reduce input dimensionality, the elements in I

T
i are

arranged in descending order, ensuring that only the initial C elements are retained. As we mentioned
in 3.2, the remaining elements, specifically the downlink rate CT−1, and transmitting power PT−1 at last
time slot T , constitute parts of the input to our proposed DQN. Thus, we define the state as:

sT
i = {

I
T
i , CT−1

i , PT−1
i

}
(16)

3.3.2 Reward

The power considered in the maximization problem of (4) is a continuous variable which is only
subjected to the maximum power limitation. Considering that the action space of the DQN needs to
be finite, the available transmitting power is discretized into |A| levels. Thus, we define the allowed
power set as:

|A| =
{

0, Pmin,
(

Pmax

Pmin

) 1
A−2

, . . . , Pmax

}
. (17)

where Pmin > 0 is the transmitting power.

3.3.3 Action

In some previous works, the authors designed the reward function to improve the transmitting rate
of the agent and also mitigate the interference influence, while this modeling is a suboptimal method to
the target function of (4). In order to gain an optimal target for our considered problem, in this paper,
we directly treat CT as the reward function so that its universality among all agents. We prove that
this assumption is feasible in the training simulations under the small or medium scale of multi-user
communications.

In order to gain more insights into the DQL process for the considered PA problem over MAC,
we provide Algorithm 1 which indicates the step-by-step description of this process.

Algorithm 1: DQL algorithm for MAC
DQL Algorithm for MAC
Step 1. Initialize Q(gT , PT

) arbitrarily
Step 2. for all episodes do
Step 3. Initialize gT

Step 4. for all steps of episodes do
Step 5. Choose PT from the set of actions
Step 6. Take action PT , observe RT , gT+1

Step 7. Q
(
gT , PT

) ← (1 − η) Q
(
gT , PT

) + η max
PT

γ CT
(
gT , PT

)
Step 8. gT ← gT+1

(Continued)
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Algorithm 1 (continued)
Step 9. end for
Step 10. end for

4 Simulation Results

In this section, we showcase the simulation outcomes for the given PA problem under the k-user
fading MAC. We first provide the simulation configuration, then the performance of the discount
factor is analyzed, and finally, the proposed algorithm efficiency is evaluated.

4.1 Simulation Configuration

Specifically, we simulate the proposed model for k = 2, 4, 6, 8 users assuming the Rayleigh fading
for each channel from the transmitter to receiver and the Jack’s model with Doppler frequency fd =
10 Hz and period τd = 20 ms. The large-scale fading is modeled as β = 120.9 + 37.6 log10 (d) +
10 log10(ζ ) according to the LTE standard, where ζ is a log-normal random variable with the standard
deviation of 8 dB, and d denotes the distance between each transmitter to the common receiver. We
set the AWGN power as N = −114 dBm, and the transmitting power constraints as Pmin = 5 dBm,
Pmin38 dBm. We consider a four-layer feed-forward neural network (FNN) as DQN, where the neuron
numbers of two hidden layers are assumed to be 128 and 64, respectively. We assume a linear activation
function of the output layer and also consider the ReLU is adopted in the hidden layers. The dimension
of the input and output are assumed to be 50 and 10, respectively.

Utilizing pre-existing interaction data can be efficiently accomplished through offline RL, which
operates in a fully off-policy RL setting. In this setup, the agent is trained using a static dataset of
recorded experiences, without engaging in further interactions with the environment. Offline RL
serves various purposes, including (i) pretraining an RL agent with existing data, (ii) empirically
assessing RL algorithms based on their capacity to leverage a fixed dataset of interactions, and (iii)
generating real-world impact. In online RL, actions with high rewards are chosen by an agent and
then the corresponding agent receives corrective feedback. In contrast, since additional data cannot
be collected in offline RL, it becomes essential to contemplate generalization using a fixed dataset.
Therefore, utilizing techniques from supervised learning that employ an ensemble of models to enhance
generalization, we employ random initialization as a straightforward method to extend the capabilities
of DQN. The agents take actions randomly over the first 100 episodes, and then they track the adaptive
ε-greedy learning method, provided in [43], in order to enter the next tracking epoch. We assume the
large-scale fading is constant during each episode, so, we need to consider the number of training
episodes enough large in order to dominate the generalization issue. Each episode consists of 50 time
slots, and the DQN is trained with 256 random samples from the experience replay memory every
10 time slots. We utilize the Adam algorithm [44] as the optimizer in our proposed model, with
the learning rate η decreasing exponentially from 10−3 to 10−4. To gain more insights, we provide
all training parameters used for simulation in Table 1. We consider the FP algorithm, WMMSE
algorithm, maximum PA, and random PA schemes as benchmarks in order to appraise our proposed
DQN-based algorithm. Moreover, we assume that the CSI is known for all schemes.

4.2 Discount Factor

Here, we analyze the performance of the discount factor γ for the considered model. For this
purpose, Fig. 3 shows the behavior of the average rate C for the selected values of γ . It can be seen
that the average rate C reaches lower values under higher discount factor values (i.e., γ = 0.7, 0.9)
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compared with the rest of γ values at the same time slot. As shown in Fig. 4, we can clearly see that
the highest (lowest) value of C is achieved under the lowest (highest) values of γ . The simulation
result indicates that the non-zero values of γ have a destructive effect on the performance of DQN,
which is consistent with the analytical results discussed in 3.2. Therefore, it is found that setting the
discount factor with zero value or with the lowest non-zero values, provides the best performance for
the proposed multi-user system model.

Table 1: Hyper-parameters setup of DQN training

Parameters Value

Number of T per episode 50
Observe episode number 100
Explore episode number 9900
Train interval 10
Memory size 5000
Initial η 10−3

Final η 10−4

Initial ε 0.2
Final ε 10−4

Batch size 256

Figure 3: The average rate C vs. distance factor γ under 4-user wireless fading MAC

4.3 Algorithm Comparison

In this subsection, we compare the trained DQN under γ = 0 with the four benchmark schemes
which are previously introduced. Given that the user density is variable over time in real wireless
communication networks, the DQN has to be designed in a way that provides good generalization
capability against this matter. To this end, the performance of the average capacity C vs. the number
of users k under selected algorithms is illustrated in Fig. 5. We can see that the proposed DQN method
provides the best performance in terms of C in all experiment scenarios. It should be noted the
difference between the random/maximum PA algorithms and the rest optimization schemes is raised as
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the user number k become larger. The main reason for this issue is that as the number of users increases
the interference becomes stronger. Thus, the optimization of PA is a momentous issue in designing
wireless communication networks with ultra-dense users. Moreover, Fig. 6 shows an example result
of one testing episode for k = 4 users. It can be seen that the performance of considered algorithms
(i.e., DQN, FP, and WMMSE) is unstable and especially depending on the specific large-scale fading
effects. In addition, we can observe that the WMMSE cannot always provide a better average rate
compared with the FP method over time. However, as expected, we can see that the proposed DQN
algorithm offers the best performance in terms of average rate during the time for a fixed number
of users. In Fig. 7, we represent the behavior of the average rate in terms of the average SNR of a
random user when k = 2 under Rayleigh fading multiple access channels. We can observe as the
average SNR increases, the average rate grows under all algorithms since increasing the average SNR
provides a better channel condition between users and the common receiver. Additionally, it can be
seen that our proposed DQN algorithm offers a higher average rate compared with other scenarios
over average SNR changes, however, the average SNR values become similar for all algorithms at high
SNR regimes.

Figure 4: The average rate C vs. distance factor γ under 4-user wireless fading MAC

Figure 5: The average rate C vs. user number k for five power allocation schemes: (1) DQN; (2) FP;
(3) WMMSE; (4) Random power; (5) Maximal power
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Table 2 compares the performance of the average rate in terms of frequency fd for k = 4 under
five different algorithms. It can be observed as frequency grows; the average rate slightly increases for
all algorithms. Furthermore, by comparing the DQN method with other algorithms, we can witness
the resilience of our proposed algorithm in the face of alterations in interference conditions and the
fading characteristics of the environment. The impact of the distance between each transmitter to
the common receiver on the average rate performance is illustrated in Table 3. It is clearly seen as
the users are located at a farther distance from the common receiver, the less average rate is achieved
for all algorithms. We can also see that our proposed technique is less sensitive to distance changes
compared with other algorithms, where it still provides the highest average rate. From the computation
complexity viewpoint, the DQN has a linear relationship with the number of layers in terms of time
cost, while the time cost is not steady for the iterative algorithms such as FP and WMMSE. For these
iterative methods, the time cost is highly dependent on the criterion condition, initialization, and CSI.

Figure 6: The average rate C vs. distance factor γ under 4-user wireless fading MAC

Figure 7: The average rate C vs. average SNR under 2-user wireless fading MAC
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Table 2: Average rate vs. frequency f d for given algorithms

Average rate performance in bps/Hz for k = 4

fd (Hz) DQN FP WMMSE Random power Maximal power

2 1.72 1.51 1.56 0.63 0.66
5 1.73 1.53 1.56 0.68 0.67
10 1.75 1.54 1.6 0.71 0.68
15 1.81 1.58 1.66 0.73 0.7

Table 3: Average rate vs. distance d for given algorithms

Average rate performance in bps/Hz per user

d (m) DQN FP WMMSE Random power Maximal power

2 3.94 3.21 3.46 2.63 2.58
10 3.61 3.07 3.11 2.24 2.21
100 2.87 2.18 2.27 1.12 1.13
200 2.34 1.23 1.25 0.35 0.33

5 Conclusions

In this paper, we studied the PA problem for wireless multiple-access communication, exploiting
the data-driven model-free DQL. In this scenario, we employed the current sumrate as the reward
function to align with the power allocation optimization objective. In our proposed DQL algorithm,
we elegantly used is as an estimator for the prediction of the current sumrate under all power levels
with a specific CSI. The simulation results showed that the trained DQN with zero discount factor
provides the highest value of the average sumrate. In addition, it was shown that the proposed
DQN has a better performance compared with benchmarks algorithms in terms of the average
sumrate, which indicates the designed DQN has proper generalization capabilities. We also introduced
offline centralized learning using simulated wireless multi-user communication networks, wherein
the acquired knowledge from the trained DQN is assessed through distributed executions. In future
research, we plan to explore online learning to align with real-world scenarios involving particular user
distributions and propagation environments.
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