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ABSTRACT

Many network presentation learning algorithms (NPLA) have originated from the process of the random walk
between nodes in recent years. Despite these algorithms can obtain great embedding results, there may be also some
limitations. For instance, only the structural information of nodes is considered when these kinds of algorithms
are constructed. Aiming at this issue, a label and community information-based network presentation learning
algorithm (LC-NPLA) is proposed in this paper. First of all, by using the community information and the label
information of nodes, the first-order neighbors of nodes are reconstructed. In the next, the random walk strategy is
improved by integrating the degree information and label information of nodes. Then, the node sequence obtained
from random walk sampling is transformed into the node representation vector by the Skip-Gram model. At last,
the experimental results on ten real-world networks demonstrate that the proposed algorithm has great advantages
in the label classification, network reconstruction and link prediction tasks, compared with three benchmark
algorithms.
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1 Introduction

In the real world, various complex networks are abstracted from social scenarios, such as social
networks [1], traffic networks [2], citation networks [3] and biological networks [4], and so on [5].
Complex networks describe not only the structure information of nodes, but also the attribute
information of nodes. Therefore, due to their quantities of valuable information [6], complex networks
have been given special attention in many fields. Especially in recent years, NPLA has attracted the
attention of many scholars. This information obtained from network representation learning can be
used for downstream tasks, such as node classification [7], link prediction [8], network clustering [9]
and network community detection [10], and so on [11–13].

However, with the development of society, the scale of complex networks has changed dramati-
cally, and the link relationships between nodes have become more and more complicated. The more
space is needed to store networks. As a result, these traditional complex network analysis methods
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[14–21] are unable to deal with the impact of increasing network scale and specific machine learning
tasks [22].

To solve this problem, many scholars gradually put forward NPLA based on the random walk
strategy, which simulates natural language processing model to achieve network embedding, so as
to map irregular dimensional complex networks into regular low-dimensional vector spaces. In this
process, several models have been proposed. For example, the Deep Walk [23] algorithm is one of the
most representative algorithms. And construction is similar to that of Word2vec [24]. The main idea
is to use the random walk strategy to sample nodes in the network and learn the vector representation
of nodes by utilizing the co-occurrence relationship between nodes in the network. The Line [25]
algorithm describes the first-order similarity and second-order similarity of nodes with two different
functions from the topological level of the network, and the final vector representation of nodes is
obtained by integrating the above two levels. The Sdne [26] algorithm is the first model that applies
deep learning to network representation. It considers that Deep Walk, the Line and other algorithms
can’t learn high-order nonlinear network structure at the level of the algorithm, so the idea of the Sdne
algorithm is to describe the nonlinear network structure by using the nonlinear characteristics of the
neural network. At the same time, the model still maintains the first-order similarity and second-order
similarity mentioned in the Line algorithm. The Struc2vec [27] algorithm holds that the above models
are all based on the hypothesis of nearest neighbor similarity, that is, the closer any two nodes are, the
more similar they will be. However, in some networks, two nodes may not be close to each other in
two-dimension space, but they may be more similar in three-dimensional space.

Unfortunately, these random walks-based NPLA algorithms can only capture the structural
information of networks. That is to say, the community information of nodes fails to not be considered
in the construction of NPLA. Aiming at this problem, some scholars have also therewith proposed
the community information-based random walk NPLA. For instance, based on the local structure
information and global structure information of network nodes, CARE [28] algorithm learns the
representation vector of nodes. A novel semi-supervised Deep Walk method (SSDW [29]) is proposed
for network representation learning, which successfully preserves the community structure in net-
work embedding space. Specifically, a semi-supervised random walk sampling method with effective
integration of paired constraints is proposed. Although random walk NPLA based on community
information can effectively solve the impact of network size, a lot of information is lost when network
is embedded. This is because the networks are always multi-information.

In addition, the link between the label information of nodes is also a kind of very important
information in the network. For example, the bipartite graph [30] is a special kind of network (i.e., the
vertex set in the graph is divided into two disjoint subsets, so that each edge connects the vertices of
the two sets separately). To solve the problem of information loss during network embedding, thus,
GraphRNA [31] based on the node attribute of the bipartite graph is proposed. The algorithm can
take the direct neighbor of the node as the sampling target, and take the attribute of the node as the
sampling target. In other words, attributes are also abstracted into nodes for a random walk in this
algorithm, and so alleviates the problem of sampling deviation to central nodes.

Based on the above analysis and discussion, in this paper we propose a label and community
information-based network presentation learning algorithm (LC-NPLA) to capture more informa-
tion. In LC-NPLA, the first-order neighbors of nodes are reconstructed by using the community
information and label information of nodes. Moreover, the degree information and label information
of nodes are fused to construct a random walk strategy in LC-NPLA. The experimental results on
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many network data demonstrated that the proposed algorithm achieves a great advantage in the label
classification, network reconstruction and link prediction tasks.

The contribution of this paper is as follows:

• The first-order neighbors of nodes are reconstructed by utilizing the community information
and label information of nodes.

• A random walk strategy is constructed by integrating the degree information and label
information of nodes.

• The LC-NPLA algorithm proposed in this paper can achieve better performance, compared to
other benchmark algorithms.

The rest of this article is organized as follows. Section 2 proposes the concepts of network embed-
ding, random walk sequence and pairwise constraint matrix. Section 3 gives the detailed construction
procedure of the proposed LC-NPLA. Section 4 gives the experimental materials. Section 5 gives the
results and analysis. Section 6 gives the conclusion of this paper.

2 Preliminaries

In this section, some necessary knowledge is introduced, which are network embedding, random
walk sequence and pairwise constraint matrix. For more detailed knowledge, one can refer to the
references [23,29].

2.1 Network Embedding

In general, an undirected and unweighted network can be represented as a tuple G = (V , E),
where V = {vi |i = 1, 2, · · · , N } is the set of nodes and E = {

eij |i, j = 1, 2, · · · , N
}

is the set of edges.
The purpose of network embedding is to find a mapping function f : V → Ui ∈ Rd, where Ui is the
representation vector of the corresponding vi in low dimensional space.

2.2 Random Walk Sequence

The random walk traverses a network starting at a node. At any node, it goes to the neighbor of
this node with probability a. A random walk sequence with vi as the root node is denoted as RW (i).
It consists of the random variable W1 (vi) , W2 (vi) , · · · , Wk (vi), where Wk+1 (vi) is the next walk node
that randomly selected from the neighborhood of vk. As a result, a random walk sequence represents
a path in each network.

2.3 Pairwise Constraint Matrix

Matrix Cml is defined as the must-link constraint, if Cml (i, j) = 1, then vi and vj belong to the same
community; similarly, matrix Cul is defined as the unlinked constraint, if Cul (i, j) = 1, then vi and vj

belong to different communities.

In order to facilitate understanding of this article, some of the relevant concepts are summarized
in Table 1.

3 The Proposed LC-NPLA Algorithm

In this section, we propose LC-NPLA and discuss the main components of our algorithm. The
specific algorithm flow is divided into the following two parts: Preprocessing process of nodes, Label
and Degree strategy (LD strategy). And we also introduce the framework of LC-NPLA.



206 IASC, 2023, vol.38, no.3

Table 1: Notations and descriptions

Notations Descriptions

LI (i) The label information vector of vi

wl Weight of label
pp Predetermined proportion
μ Number of random walks per node
d (i) The degree of vi

L The set of labels
d The dimension of the node embedding vector
ΦN×d Node embedding vector matrix
α The learning rate of stochastic gradient descent algorithm

3.1 Preprocessing Process of Nodes

In Fig. 1, v0 − v6 and v7 − v10 represent the node and label value, respectively. There is no direct
connection between v0 and v1, but the label value can make the direct connection between v0 and v1.
Fig. 2 is a network with four communities. v13 and v22 have no direct connection in green community.
Therefore, to enhance the node’s ability that collects information, we consider integrating the label
information and the community information of nodes to reconstruct its first-order neighbors.

Figure 1: Bipartite graph

From the above discussion, we intend to use the Louvain [32] algorithm to calculate the com-
munity distribution of networks for ease of calculation. In this process, due to the limitation of
experimental equipment, 10% and 20% of the community information is used to reconstruct the node’s
first-order neighbors, respectively. When the community information is 10% and 20%, the specific
form of LC-NPLA is LC-NPLA_P10 and LC-NPLA_P20. Therefore, the details of the preprocessing
process are given as follows: in the newly first-order neighbors of defined nodes, nodes that belong to
different communities but have the same label will be classified into the first-order neighbors of the
known nodes. Nodes that belong to different communities but have different labels are not included



IASC, 2023, vol.38, no.3 207

in the first-order neighbors of the nodes. Therefore, the new first-order neighbors of the nodes will
contain more information.

Figure 2: Network with community distribution

3.2 LD Strategy

During the preprocessing process of nodes, the new first-order neighbors of nodes are generated.
In order to sample these, we design a LD strategy. Specifically, the LD strategy constructs node
sequence from the structural level and attribute level of the network.

At the structural level, due to the complexity of node information, the similarity between node and
node is asymmetrical even for undirected network. Therefore, KL divergence is selected to measure
the structural information of networks based on computational complexity and other factors. So, the
KL divergence is used to calculate the difference of the degree distribution of any two nodes as the
structural information of the network. The calculation formula of KL divergence is defined as

KLij = 1
2

(
d (i)
N

log
(

d (i)
d (j)

)
+ d (j)

N
log

(
d (j)
d (i)

))
. (1)

At the attribute level, because we can’t directly represent the label information of nodes, we first
utilize one-hot coding to express the label information of nodes. Then, to represent the attribute
information of the network, the Hadamard product is used to calculate the correlation of label
information of any two nodes.

In this paper, the weight of label information refers to the proportion of the total number of labels
corresponding to each type of label information on all nodes. The specific calculation method is as
follows:

wli = li

L
(2)

where li represents the number of labels i, and L represents the number of labels corresponding to all
nodes. Parts of the modifications are listed below for your convenience.

The calculation formula is

ASij =
∣∣∣∣∣
∑

i

wli

(
LIi + LIj

)
i

∣∣∣∣∣ . (3)
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where the calculation formula of the LD strategy is defined as

LDGS = pp ∗ AS + (1 − pp) ∗ KL, (4)

where LDGS indicates the global similarity matrix of nodes.

The pseudo-code of the LD strategy can be shown as following algorithm 1:

Algorithm 1: Label and degree strategy (LD strategy)
Input: V , pp, LI ,wl, d (i).
Output: LDGSLD

n×n.
1: begin:
2: LDGSLD

n×n ← 0 % Initialization phase
3: for vi, vj in V do
4: KL ← KLij % The KLij is calculated by Eq. (1)
5: AS ← ASij % The ASij is calculated by Eq. (3)
6: LDGSLD

ij ← LDGS % The LDGS is calculated by Eq. (4)
7: end for
8: end
9: return LDGSLD

n×n % Return the global similarity matrix of nodes

Algorithm 1 description: The Step 4 of algorithm is used to calculate the KL divergence of degree
distribution of nodes. The Step 5 of algorithm is used to calculate the one-hot coded Hadamard
product of the label information. The Step 6 of algorithm is used to calculate the global similarity
matrix.

3.3 LC-NPLA Framework

The Skip-Gram model is a language model. Given a predefined windoww, its main idea is to
maximize the co-occurrence probability of words in a statement. The basic formula of Skip-Gram
model is

max
f

∑
v∈V

log Pr (Ns (v) |f (v)) , (5)

where for v ∈ V , NS (v) ⊂ V is defined as the neighborhood of v in the network. It is generated by v
through the neighborhood sampling strategy S.

Under the Conditional independence hypothesis and Symmetry in feature space hypothesis,
Eq. (5) is optimized into the form of probabilistic conjunction. However, in order to reduce the time
complexity and facilitate the calculation, we use the log function to transform the form of probabilistic
conjunction into the form of continued addition.

To simplify the optimization problem, we made two standard assumptions:

• Conditional independence: by assuming that the likelihood of observing a neighborhood node
is independent of observing any other neighborhood node, we factorize the likelihood. The
mathematical expression of the vector representation of the source is

Pr (Ns (v) |f (v)) =
∏

u∈NS(v)

Pr (u |f (v)) . (6)
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• Symmetry in feature space: a source node and its neighborhood node have a symmetric effect in
feature space. Accordingly, we model the conditional likelihood of every source-neighborhood
node pair as a SoftMax unit parametrized by a dot product of their features. The mathematical
expression is

Pr (u |f (v)) = exp (f (u) f (v))∑
m∈V exp (f (m) f (v))

. (7)

With above assumptions, the objective in Eq. (5) simplifies to

max
f

∑
v∈V

⎡
⎣− log Zv +

∑
u∈NS(v)

f (u) f (v)

⎤
⎦ , (8)

where Zv = ∑
m∈V

exp (f (v) f (m)) is expensive to compute for large networks.

As we can see from the second term of Eq. (8), the complexity is very high because we need
to traverse the entire thesaurus, so we need to simplify the calculation of this step and reduce the
complexity of the operation. Therefore, in order to reduce the complexity of Eq. (8), we convert
Eq. (5) into

max
∏

(vi ,vj)∈D

p
(
D = 1

∣∣vi, vj

) ∏
(vi ,vj)∈D̃

p
(
D = 0

∣∣vi, vj

)
, (9)

where
∏

(vi ,vj)∈D

p
(
D = 1

∣∣vi, vj

)
represents the probability that both node vi and node vj serve as context

nodes at the same time,
∏

(vi ,vj)∈D̃

p
(
D = 0

∣∣vi, vj

)
represents the probability that both node vi and node vj

do not serve as context nodes at the same time, represents the set of context nodes and represents the set
of non-context nodes. For a central node, we randomly select several groups from the negative samples
corresponding to the central node to do gradient descent, which greatly reduces the computational
complexity. The real example of the negative sample is shown as Fig. 3:

Figure 3: Network G

With v1 as the central node, the positive sample is {(v1, v3)}, the negative sample is {(v1, v2), (v1, v4),
(v1, v5)}. So, we approximate it using negative sampling [33].
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The set of node sequences is entered into the Skip-Gram model. After training, we obtained the
node embedding vector. The pseudo-code of the LC-NPLA can be shown as following Algorithm 2:

Algorithm 2: Label information and Community information-based network presentation learning
algorithm (LC-NPLA)

Input: G (V , E), wl, d, μ, pp.
Output: ΦN×d.
1: begin:
2: ΦN×d ← 0 % Initialization phase
3: for j = 1, 2, · · · , μ do
4: Γ ← Shuffle (V) % Shuffling the order of the list elements
5: for vi in Γdo
6: RW (i) ← LD strategyi % Random walk sequence is generated
7: ΦN×d ← Skip−Gram (ΦN×d, RW (i) , w) % Node vector representation is generated
8: end for
9: end for
10: end
11: return ΦN×d % Return node embedding vector matrix

Algorithm 2 description: Given a real network, the Step 6 of algorithm updates the first-order
neighbors of nodes through the preprocessing process of nodes, then generates a random walk RW (i)
for each vertex. Finally, the Step 7 of algorithm uses Skip-Gram model to update the embedding vector
of nodes with Eq. (5).

Algorithm 3: Skip-Gram
Input: vj, RW (i), α.
Output:ΦN×d.
1: begin:
2: ΦN×d % Initialization phase
3: for vj in RW (i) do
4: for uk in RW (i) [j − w, j + w]do
5: J (f ) ← −logPr

(
uk

∣∣f (
vj

))
6: ΦN×d ← ΦN×d − α

∂J
∂f

% Stochastic gradient descent

7: end for
8: end for
9: end
10: return ΦN×d % Return the global similarity matrix of nodes

Algorithm 3 description: This paper uses Skip-Gram model to update the embedded vector matrix
of nodes according to Eq. (5). Line 2: Initializes a node-embedding vector matrix. The details of the
algorithm are described in the following formula. Lines 3–8: The outer for loop represents traversing
every node in the random walk sequence of a given node v. The inner for loop represents that each
node in the random walk sequence is taken as the target, and w nodes before and after the target node
are combined with the target node. The specific operation mode is to update the initial vector matrix
of the node by using the stochastic gradient descent algorithm.
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4 Experimental Materials

In this section, we introduce some experimental materials, which are the experiment datasets,
evaluation criteria and benchmark algorithms. In this paper, the experimental environment is listed
in Table 2.

Table 2: Experimental environment

Parameter Parameter value

RAM 62 GB
Programming Python
CPU 13th Gen Intel(R) Core (TM) i9-13900K
System Ubuntu 20.04

4.1 Description

To verify the effectiveness of LC-NPLA, experiments are conducted on the following 10 real
network data sets, including Polbooks, Adjoun, Football, Europe, USA, Polblogs, Wiki, Cora, Citeseer
and PPI. The information of these data sets is listed in Table 3.

4.2 Evaluation Criteria

Here, the evaluation criteria of Micro-F1, Macro-F1 and Weighted-F1 are used for the label
classification task; the MAP evaluation criterion is used for the network reconstruction task; the AUC
evaluation criterion is used for the link prediction task.

4.2.1 Label Classification Task

• Micro-F1: this criterion is determined globally by counting total true positives (TP), false
negatives (FN), and false positives (FP). The mathematical expression of it is

F 1
I = 2PR

P + R
(10)

where

P =
∑

A∈L TP (A)∑
A∈L (TP (A) + FP (A))

is the accuracy rate and

R =
∑

A∈L TP (A)∑
A∈L (TP (A) + FN (A))

is the recall rate for all labels.

• Macro-F1: This criterion is the average of F1 scores for all labels with following formula:

F 1
A =

∑
A∈L F1 (A)

|L| , (11)
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where

F1 (A) = 2P (A) R (A)

P (A) + R (A)

is F1 scores for the label A, P(A) and R(A) is the accuracy rate and recall rate of label A, and L is the
set of labels.

Table 3: Experimental datasets1

Dataset N |E| <d> <c> <l> <task>

Polbooks 105 441 8 0.4875 4 Label classification

USA 1190 13599 23 0.6090 4
Adjoun 112 425 8 0.2000 2 Network reconstruction

Europe 399 5995 30 0.5670 4
Football 115 613 6 0.3708 12 Link prediction task

Polblogs 1224 16718 27 0.3610 2
Wiki 2405 16523 11 0.4800 17
Cora 2708 5429 4 0.2461 7 Label classification and

network reconstructionCiteseer 3312 4732 3 0.2590 6
PPI 3890 76584 19 0.1660 50
Notes:

• Polbooks2https://www.cc.gatech.edu/dimacs10/archive/clustering.shtml: The network is made up of books
about US politics published in 2004.

• Adjoun3https://networkrepository.com/adjnoun.php: The network is made up of common adjective and nouns
in “David Copperfield”.

• Football4http://vlado.fmf.uni-lj.si/pub/networks/data/sport/football.htm: It is the network of US football
games between division IA colleges.

• Europe5http://ec.europa.eu/: It is European air-traffic network that collected from the Statistical Office of the
European Union from January to November, 2016.

• USA6https://transtats.bts.gov/: It is the American air-traffic network that collected from the Bureau of
Transportation Statistics from January to October, 2016.

• Polblogs7http://moreno.ss.uci.edu/data.html#blogs: The network is the maximum connected set of blog pages
network about US politics.

• Wiki8https://gitee.com/yang-doctor/GraphEmbedding/tree/master/data: This is a web of web links and con-
tains the category of each web page.

• Cora9https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz: It is the scientific publications citation network.
• Citeseer10https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz: It is the scientific publications citation net-

work.
• PPI11http://snap.stanford.edu/graphsage/ppi.zip: It is a subgraph of the PPI network for Homo Sapiens.

• Weighted-F1: This criterion is the weighted average of Macro-F1 with the following for:

F 1
W =

∑
A∈L,wi∈W wiF 1

A

|L| , (12)

where W = {
w1, w2, · · · , w|L|

}
is the weighting set with the condition

∑|L|
i=1 wi = 1.

1<d> is the average degree of network, <c> is the average clustering coefficient of network, <l> is the number of nodes labels, <task> indicates that different tasks are
performed in different data sets.

https://www.cc.gatech.edu/dimacs10/archive/clustering.shtml
https://networkrepository.com/adjnoun.php
http://vlado.fmf.uni-lj.si/pub/networks/data/sport/football.htm
http://ec.europa.eu/
https://transtats.bts.gov/
http://moreno.ss.uci.edu/data.html#blogs
https://gitee.com/yang-doctor/GraphEmbedding/tree/master/data
https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
https://linqs-data.soe.ucsc.edu/public/lbc/citeseer.tgz
http://snap.stanford.edu/graphsage/ppi.zip
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4.2.2 Network Reconstruction Task

• MAP: This criterion can be applied to estimate the average precision of nodes, and the following
mathematical expression is:

MAP =
∑

vi∈V AP (vi)

N
, (13)

where

AP (vi) =
∑k

j=1 predictvi

(
vj

) · Δvi

(
vj

)
∣∣Δvi

(
vj

) = 1
∣∣

is the accuracy of vi, Δvi

(
vj

) = 1 indicates that there is an edge between vi and vj on the original
network, and predictvi

(
vj

)
represents the predicted value of this edge.

4.2.3 Link Prediction Task

• AUC: This criterion can be interpreted as the probability that an edge randomly selected in
the test set would be assigned a higher similarity than that of an edge randomly selected in the
unknown edge set. It has the following mathematical expression:

AUC = 2n1 + n2

2n
, (14)

where n is the times of independent comparisons, n1 is the times that the similarity of the test edge is
greater than that of the unknown edge and n2 is the times that they have the same similarity.

4.3 Benchmark Algorithms

Here, we introduce three network presentation learning algorithms that can be applied to make
a comparison with our proposed algorithm. Detailed descriptions of them can be found in references
[25–27].

4.3.1 Line Algorithm

The main mechanism of line algorithm can be divided into to two stages to learn the d-dimensional
feature representation of nodes. In the first step, it learns the d/2-dimensional representation of nodes
by simulating the BFS mode on adjacent nodes. In the second step, it learns the remaining d/2 -
dimensional representation of the node by sampling nodes that are 2-hops away from the source node.

4.3.2 Sdne Algorithm

The main mechanism of the Sdne algorithm can be divided into to two stages to learn the feature
representation of nodes. In the first step, it learns the local structure of network by depth automatic
encoder. In the second step, it learns the global structure of network by Laplace mapping.

4.3.3 Struc2vec Algorithm

The basic idea of the Struc2vec algorithm is that if two nodes own more similar structures in a
network, they should have a higher similarity. The mechanism of it can be divided into four steps. In
the first step, structural similarity between each pair of nodes is learned. In the second step, a weighted
multilayer network is constructed. In the third step, the multi-layer network is used to generate a
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sequence of nodes for each node. In the fourth step, feature representation of nodes is learned by
Skip-Gram model.

5 Results and Analysis

In this section, we focus on testing the effectiveness of the proposed LC-NPLA for label
classification, network reconstruction, and link prediction task. Detailed descriptions of benchmark
algorithms can be found in references [25–27].

5.1 Results and Analysis of Label Classification Task

We use the one-vs-rest logistic regression that applied in Log-linear [34] algorithm to do the
label for nodes. Then we select an arbitrary percentage of labeled nodes as the training data, and the
remaining percentage of nodes are regarded as the testing data. In this experiment, the training ratio on
Polbooks, USA, Cora, Citeseer and PPI in was set to 10%, 30%, 50%, 70% and 90%, respectively. For
LC-NPLA, the parameters are separately made to μ = 190, w = 5, d = 128 and l = 15. What is more,
the dimension of node representation vector of the benchmark algorithms is set to 128 dimensions.
And the experiment is executed 10 times for the purpose of avoiding the chance of experimental bias.
The obtained results for the label classification task summarized in Tables 4–8.

Table 4: Label classification results in Polbooks

Labeled nodes% 10% 30% 50% 70% 90%

LC-NPLA_P20 77.89 71.62 81.13 78.13 100.00
LC-NPLA_P10 76.84 75.68 75.47 78.13 81.82

F 1
I % Line 49.47 39.19 49.06 53.13 18.18

Sdne 69.47 66.22 66.04 68.75 81.82
Struc2vec 46.81 51.35 61.54 75.00 50.00
LC-NPLA_P20 60.54 57.98 65.05 56.53 66.67
LC-NPLA_P10 59.32 54.98 61.25 66.40 54.44

F 1
A% Line 28.48 27.81 42.52 52.13 11.11

Sdne 48.94 47.60 48.20 49.47 54.44
Struc2vec 46.81 51.35 61.54 75.00 50.00
LC-NPLA_P20 74.71 72.28 81.12 76.81 100.00
LC-NPLA_P10 73.30 72.28 76.13 78.23 81.52

F 1
W % Line 38.48 36.51 48.28 52.94 15.15

Sdne 64.27 62.53 65.43 67.29 81.52
Struc2vec 37.97 48.41 58.04 70.71 51.11

Table 5: Label classification results in USA

Labeled nodes% 10% 30% 50% 70% 90%

LC-NPLA_P20 24.37 26.77 26.89 27.17 32.77
LC-NPLA_P10 25.77 25.57 25.21 26.33 30.25

(Continued)
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Table 5 (continued)

Labeled nodes% 10% 30% 50% 70% 90%

F 1
I % Line 25.21 27.85 27.23 25.77 26.05

Sdne 26.70 24.97 24.20 26.05 29.41
Struc2vec 24.63 29.74 30.54 25.14 31.67
LC-NPLA_P20 24.27 26.29 26.57 26.65 32.56
LC-NPLA_P10 25.38 25.03 24.83 26.18 29.99

F 1
A% Line 24.93 27.84 27.19 25.78 26.36

Sdne 20.73 21.25 20.22 22.00 28.08
Struc2vec 24.48 29.16 30.42 25.05 31.75
LC-NPLA_P20 24.26 26.32 26.50 26.52 32.10
LC-NPLA_P10 25.40 25.01 24.64 26.07 28.18

F 1
W % Line 24.90 27.84 27.13 25.66 26.05

Sdne 20.60 21.14 20.05 21.68 27.71
Struc2vec 24.50 29.22 30.60 24.93 31.64

Table 6: Label classification results in Cora

Labeled nodes% 10% 30% 50% 70% 90%

LC-NPLA_P20 49.30 54.32 54.43 56.21 53.87
LC-NPLA_P10 50.12 54.06 55.17 55.10 53.14

F 1
I % Line 22.19 22.84 24.67 23.49 26.20

Sdne 17.14 17.46 16.63 17.59 14.94
Struc2vec 30.11 33.12 35.30 37.10 44.12

LC-NPLA_P20 45.82 51.10 50.94 52.51 49.30
LC-NPLA_P10 45.27 50.85 50.92 51.14 48.09

F 1
A% Line 22.19 22.84 24.67 23.49 26.20

Sdne 3.37 3.58 3.88 4.34 3.84
Struc2vec 18.24 23.97 26.03 26.99 30.92

LC-NPLA_P20 48.30 53.21 53.57 55.04 52.51
LC-NPLA_P10 48.59 53.13 54.36 53.90 52.09

F 1
W % Line 19.19 20.11 21.87 19.65 21.88

Sdne 8.86 9.27 9.35 9.98 8.44
Struc2vec 25.60 30.05 32.22 33.94 40.68
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Table 7: Label classification results in Citeseer

Labeled nodes% 10% 30% 50% 70% 90%

LC-NPLA_P20 34.79 38.68 39.92 42.86 41.27
LC-NPLA_P10 34.32 37.73 40.04 41.85 44.28

F 1
I % Line 20.16 19.84 18.78 20.22 24.40

Sdne 26.94 28.29 30.37 31.29 30.12
Struc2vec 26.63 26.64 29.47 31.99 35.54

LC-NPLA_P20 31.52 34.75 36.46 39.65 35.28
LC-NPLA_P10 31.47 34.40 36.17 38.01 39.93

F 1
A% Line 17.77 15.96 15.25 15.97 18.81

Sdne 17.76 18.81 21.50 22.22 20.41
Struc2vec 22.85 23.59 25.47 27.08 29.29

LC-NPLA_P20 33.94 37.72 39.19 42.18 39.25
LC-NPLA_P10 33.89 36.93 39.18 40.81 43.12

F 1
W % Line 19.50 18.35 17.50 18.59 21.98

Sdne 20.93 21.87 24.79 25.81 23.65
Struc2vec 25.26 26.34 29.13 31.21 35.44

Table 8: Label classification results in PPI

Labeled nodes% 10% 30% 50% 70% 90%

LC-NPLA_P20 7.48 8.54 8.47 8.71 11.83
LC-NPLA_P10 7.31 8.48 9.48 9.94 10.25

F 1
I % Line 7.54 7.80 7.99 7.98 8.80

Sdne 11.31 13.73 14.14 13.66 14.86
Struc2vec 7.41 8.01 8.44 8.61 9.24

LC-NPLA_P20 5.70 6.09 6.20 6.35 7.76
LC-NPLA_P10 5.51 6.08 6.92 7.02 6.82

F 1
A% Line 6.09 5.98 6.10 6.14 6.76

Sdne 8.35 10.97 11.63 11.62 13.90
Struc2vec 5.34 5.96 6.23 6.16 6.89

LC-NPLA_P20 6.64 7.60 7.60 8.11 10.21
LC-NPLA_P10 6.57 7.57 8.51 8.65 8.36

F 1
W % Line 7.16 7.25 7.53 7.74 7.81

Sdne 10.16 13.15 14.05 13.56 15.47
Struc2vec 6.77 7.52 8.02 8.11 8.86



IASC, 2023, vol.38, no.3 217

5.1.1 Results on Polbooks Data Set

The experimental results on Polbooks are shown in Table 4. From Table 4, we find that LC-
NPLA_P10 and LC-NPLA_P20 are superior to the other benchmark algorithms. This reason may
be that the embedding dimension is close to the number of nodes. In reality, LC-NPLA_P20 only
needs to mark 20% of the nodes to achieve the great performance of Sdne algorithm with 90% data.
This strong performance when only small fractions of the network are labeled is a core strength of our
approach.

However, as the ratio of community information increases, noise may affect the accuracy of the
algorithm. As a consequence, the Micro-F1, Macro-F1, and Weighted-F1 scores of the LC-NPLA_P20
may be lower than the LC-NPLA_P10. Based on the above analysis, compared with the experimental
results on USA, Cora and Citeseer, we find that LC-NPLA can also obtain better results on small
data sets.

5.1.2 Results on USA Data Sets

The experimental results on USA are shown in Table 5. From Table 5, when the training ratio is
10%, 30% and 50%, the Micro-F1, Macro-F1 and Weighted-F1 scores of the best LC-NPLA are all
lower than those of benchmark algorithms. However, when the training ratio reaches 70%, the three
scores of the best LC-NPLA are higher than those of three benchmark algorithms. This reason may
be that the ability of the best LC-NPLA to get information is affected by the training ratio.

Specially, although the USA has the largest number of edges for Polbooks, USA, Cora and
Citeseer, LC-NPLA can still enhance the ability of label classification when the training ratio is 70%.
And the Micro-F1, Macro-F1 and Weighted F1 scores of the best LC-NPLA are 1.12%, 0.87% and
0.86% higher than that of the best benchmark algorithm. When the training ratio is 90%, the Micro-
F1, Macro-F1 and Weighted F1 scores of the best LC-NPLA are 1.10%, 0.81% and 0.46% higher than
that of the best benchmark algorithm, respectively.

Based on the above analysis, although the effect of LC-NPLA is affected by the training ratio, the
advantages of LC-NPLA are gradually obvious with the increase of training ratio. When the training
ratio increases, it is found that LC-NPLA has obvious advantages in a dataset with a large number of
edges.

5.1.3 Results on Cora and Citeseer Data Sets

The experimental results on Cora and Citeseer are shown in Tables 6 and 7. For Cora and Citeseer,
three scores of the best LC-NPLA are higher than that of the Line algorithm and Struc2vec algorithm.
This reason may be that label information and the average clustering coefficient of Cora and Citeseer
affect the label classification task. In a nutshell, combining experimental results from Polbooks, USA,
Cora and Citeseer, we found that LC-NPLA had better generalization ability in citation network
datasets.

5.1.4 Results on PPI Data Set

The experimental result on PPI is shown in Table 8. For PPI, it is evident that the Micro-F1,
Macro-F1 and Weighted-F1 scores for LC-NPLA_P20 and LC-NPLA_P10 are lower than those of
the SDNE model, indicating the SDNE model’s superior local and global learning abilities compared
to the LC-NPLA model. Apart from special cases, the LC-NPLA model outperforms the Line and
Struc2vec models in terms of Micro-F1, Macro-F1, and Weighted-F1 scores. Although the LC-NPLA
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model shows some improvement over the Line and Struc2vec models in these metrics on the PPI
network dataset, as presented in Table 8, the enhancement effect remains minimal.

5.2 Results and Analysis of Network Reconstruction Task

We rebuild the proximity of the nodes and sort the nodes by proximity and calculate the proportion
of true links in the top k predictions as the reconstruction accuracy. And for a network with a large
number of nodes, the number of possible node pairs (|V | (|V | − 1)) may be very large, so 50% of the
number of nodes is randomly selected for evaluation. The experimental results are shown in Fig. 4.

Figure 4: The MAP value of different data sets

5.2.1 Results on Adjoun and Europe Data Sets

Here we can see that the performance of LC-NPLA is highly data set dependent. It achieves
good performance on Polblogs but performs poorly on other data sets. As a result, the reconstruction
performance of the Sdne algorithm is better than the best LC-NPLA algorithm. The reason may be



IASC, 2023, vol.38, no.3 219

that the Sdne algorithm collects both local structure information and global structure information.
In the Fig. 4a, as the dimension of network embedding increases, we find that the MAP value of LC-
NPLA increases weakly. The reason may be that superposition of information leads to overfitting
of the model. In the Fig. 4b, we find that the LC-NPLA, Line algorithm, the Sdne algorithm and
Struc2vec algorithm are not sensitive to the Europe data set. But in the network reconstruction task,
the LC-NPLA is still superior to the Struc2vec algorithm and Line algorithm. Based on the above
analysis, we find that LC-NPLA is still effective for the network reconstruction task.

5.2.2 Results on Cora, Citeseer and PPI Data Sets

In the Figs. 4c–4e, here we observe better rebuilding performance for citation network data sets
like Cora and Citeseer. The reason may be that label information affects reconstruction performance.
These experimental results show the influence of size on reconstruction error. With a few exceptions,
MAP values increase as the number of dimensions increases. This makes sense, because more
dimensions can store more information.

5.3 Results and Analysis of Link Prediction Task

To ensure the accuracy of the LC-NPLA, we select the hidden ratio of 15%, 30% and 45% to divide
the train set, verification set and test set. Specially, the degree of AUC greater than 0.50 measures how
well the algorithm is better than the algorithm selected randomly. And comparison with embedding
based methods bootstrapped using binary operators: Hadamard, Weighted-L1 and Weighted-L2 (See
Table 9 for definitions). We summarize our results for link prediction in Table 10.

Table 9: Choice of binary operators for learning edge features

Operator Symbol Definition

Hadamard �
[

f (vi) � f
(
vj

)]
i
= fi (vi) fi

(
vj

)
Weighted-L1 ‖x‖1

∥∥ f (vi) · f
(
vj

)∥∥
1i

= ∣∣ fi (vi) − fi

(
vj

)∣∣
Weighted-L2 ‖x‖2

∥∥ f (vi) · f
(
vj

)∥∥
2i

= ∣∣ fi (vi) − fi

(
vj

)∣∣2

Table 10: Area Under Curve (AUC) scores for link prediction

Operator Algorithm Football Polblogs Wiki

LC-NPLA_P20 0.5837 0.7248 0.5736
LC-NPLA_P10 0.5746 0.7202 0.5805

Hadamard Line 0.4725 0.5843 0.5539
Sdne 0.7014 0.6336 0.6311
Struc2vec 0.4389 0.6304 0.5528
LC-NPLA_P20 0.5938 0.7116 0.6066
LC-NPLA_P10 0.6061 0.7133 0.5980

Weighted-L1 Line 0.5751 0.6513 0.5813
Sdne 0.6067 0.6488 0.6504

(Continued)
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Table 10 (continued)

Operator Algorithm Football Polblogs Wiki

Struc2vec 0.5860 0.6283 0.4308
LC-NPLA_P20 0.5893 0.7050 0.6286
LC-NPLA_P10 0.6026 0.7088 0.6383

Weighted-L2 Line 0.5719 0.6436 0.5609
Sdne 0.6230 0.6773 0.6840
Struc2vec 0.5736 0.6179 0.4426

5.3.1 Results on Polblogs Data Set

From Table 10, we find that LC-NPLA has an AUC value greater than 0.50 in each data set. This
indicates that LC-NPLA has the predictive ability for Polblogs, Football and Wiki. For Polblogs, LC-
NPLA performs better on Polblogs than on Football and Wiki. Therefore, the combination of the
three operators with LC-NPLA is stable and gives the best performance on average. This reason may
be that the higher average degree increases the predictive ability of LC-NPLA.

5.3.2 Results on Football Data Set

For Football, the link prediction ability of the Sdne algorithm is better than that of LC-NPLA,
this reason may be that it can capture the higher-order structure in the network. For the Hadamard
operator, neither the Line nor the Struc2vec has predictive ability. Therefore, in the Hadamard
operator, the best LC-NPLA is not comparable with the Line algorithm and the Struc2vec algorithm.
For the Weighted-L1 operator, compared with the Line algorithm and the Struc2vec algorithm, the
best LC-NPLA gains 3.10% and 2.01%, respectively. For the Weighted-L2 operator, gains of 3.07%
and 2.90% are obtained, respectively.

5.3.3 Results on Wiki Data Set

For Wiki, the best LC-NPLA gains 2.66% and 2.77% for the Hadamard operator, respectively.
For the Weighted-L1 operator, compared to the Line and the Struc2vec, the best LC-NPLA gains
2.53%. For the Weighted-L2 operator, 7.74% is obtained. Experimental results show that LC-NPLA
has better link prediction ability on Polblogs than Wiki. This reason may be that LC-NPLA has a better
prediction advantage for network data sets with fewer nodes, when the number of edges is similar.

All in all, combining experimental results from Polblogs, Football and Wiki, it is found that the
link prediction ability of LC-NPLA is not obvious in Table 10, but the LC-NPLA still has predictive
ability on Football, Polblogs and Wiki.

5.4 Time Complexity of LC_NPLA

The Fig. 5 illustrates the runtime of the LC_NPLA algorithm in comparison to other algorithms.
As shown in the figure, Struc2vec algorithm requires the most time among all the remaining nine
datasets except for Europe dataset, while SDNE algorithm is the fastest. It can be observed that
LC_NPLA algorithm not only exhibits an improved embedding effect, but also demonstrates a
favorable time complexity compared to Struc2vec algorithm.
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Figure 5: The running time of the algorithm on different network

6 Conclusions

To further improve the application of node representation vector in downstream tasks, this paper
has designed a label and community information-based network presentation learning algorithm. By
integrating the label information of nodes and the community information in the network, the LD
strategy is defined to expand the first-order neighbor nodes of nodes. In this process, the sequence of
nodes is generated by the LD strategy, then the node representation vector is generated by the Skip-
Gram model. In 9 real networks, the performance comparison between the proposed algorithm and
the other benchmark algorithms was displayed with the help of 5 evaluation metrics. A large number of
theoretical derivation and experimental analyses demonstrated that the proposed LC-NPLA was more
advantageous in the label classification task, network reconstruction task and link prediction task.
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