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ABSTRACT

Local markets in East Africa have been destroyed by raging fires, leading to the loss of life and property in the nearby
communities. Electrical circuits, arson, and neglected charcoal stoves are the major causes of these fires. Previous
methods, i.e., satellites, are expensive to maintain and cause unnecessary delays. Also, unit-smoke detectors are
highly prone to false alerts. In this paper, an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire
intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference
rules approach. A free open–source MATLAB/Simulink fuzzy toolbox integrated into MATLAB 2018a is used to
investigate the performance of the Interval Type-2 fuzzy model. Two crisp input parameters, namely: F̃IT and F̃IG

are used. Results show that the Interval Type-2 model achieved an accuracy value of F̃IO = 98.2%, MAE = 1.3010,
MSE = 1.6938 and RMSE = 1.3015 using regression analysis. The study shall assist the firefighting personnel in
fully understanding and mitigating the current level of fire danger. As a result, the proposed solution can be fully
implemented in low-cost, low-power fire detection systems to monitor the state of fire with improved accuracy
and reduced false alerts. Through informed decision-making in low-cost fire detection devices, early warning
notifications can be provided to aid in the rapid evacuation of people, thereby improving fire safety surveillance,
management, and protection for the market community.
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Abbreviations and Mathematical Symbols

Acronym Description Mathematical symbols/Description

EFIP1

EFIP2

Estimated Fire Intensity Prediction Due
Temperature rise, Estimated Fire Intensity
Prediction Due to Gases Dissipated, respectively

�: Minimum Operator, ∨:
Maximum Operators and, �: Joint
Operation

IT2 TSK,
T1, T2

Interval Type-2 Tang Sugeno Kang,
Type-1 and Type-2 Fuzzy Logic Systems

αi: The Firing Strength of the
matching degree of similarity s and
antecedent xj

MAE,
MSE

Mean Absolute Error, and Mean Square Error ⊆: A subset of and, U: Initial
Universe of Objects or a finite and
non-empty set U

CO, CO2 Carbon monoxide, Carbon dioxide μ: Primary Degree of Membership
RMSE Root Mean Square Error Jx: Secondary Domain
TR Type Reduction F(ε): A Set of Approximate

Elements of the Soft Set (F, A)
R2 The Coefficient of Determination μ: Type-2 Membership Function
MF, UMF,
LMF

Member Function, Upper Membership Function,
Lower Membership Function

X: The primary domain with input x

1 Introduction

Fire disasters are the most common occurrences in East Africa’s densely populated local urban
markets. For instance, Gisozi, Rwanda; Gikomba, Kenya; and Owino, Uganda, are constantly
threatened by rampant fire accidents, which have caused severe loss of life and property (ref. Fig. 1).
These markets, provide income for small-scale vendor communities by selling their daily wares.
According to Uganda police investigative reports, the major causes of fires include; electrical short
circuits, negligence, and neglected charcoal stoves [1–4]. The current vendor communities heavily rely
on human patrol and observation methods. However, they are quite inefficient and may cause extensive
damage to vendors’ property due to unnecessary delays [2,3]. Also, unit–smoke detectors have a high
rate of false alerts due to their high sensitivity calibration to their surrounding environment [5–7].
Ruchkin et al. [8–10] proposed satellite–based systems that are prohibitively expensive to acquire and
maintain for developing countries. Camera systems are also incapable of monitoring the initial ignition
of surface fires as well as the level of fire danger [11]. Related works are discussed in Table 1. This study
therefore, presents an Interval Type-2 Tang Sugeno Kang fuzzy model for an intelligent fire intensity
detection algorithm with decision making in low-power devices. The performance of the proposed
model was investigated using a free open-source fuzzy toolbox integrated into MATLAB2018a. Two
secondary input parameters, namely; fire intensity due temperature change (F̃IT) and fire intensity due
to gases dissipated (̃FIG) are considered.
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Figure 1: Percentage (%) of victims (injured, fatal) affected by fire accidents in the period (2012–2020),
a case of Uganda [2]

Results show that the proposed Interval Type-2 TSK fuzzy model outperformed Mamdani’s
Type-1 by an accuracy of 98.2%, compared to 95.8% in Lule et al. [1]. The footprint of uncertainty
(FOU) in the Interval Type-2 fuzzy sets provides additional degrees of freedom, allowing for the
modelling of uncertainties to improve efficiency. Secondly, Type-2 systems outperformed Type-1 fuzzy
systems in overcoming the dimensionality problem, which leads to the high computational overload
associated with rule-based systems [12,13]. Thus, the model’s efficiency significantly improved because
the Interval Type-2 (IT2) TSK fuzzy model minimized the uncertainty errors inherent in Type-1 fuzzy
systems [14].

Hence, a lightweight fire intensity detection algorithm based on the Interval Type-2 TSK fuzzy
model for decision-making in low-power fire devices is presented. When compared to Mamdani’s
Type-1 systems, the Interval Type-2 TSK fuzzy method improved the model’s accuracy to 98.2%,
MAE = 1.3010, MSE = 1.6938, and RMSE = 1.3015 for effective fire detection. Thus, the proposed
solution can be implemented in low-cost, low-power fire detection systems to improve the accuracy
of monitoring the current state of fire. This shall assist the firefighting personnel in fully monitoring,
understanding, and mitigating any level of the state of fire danger in order to make an appropriate
decision. Early warning notifications can also be provided to aid in the rapid evaluation of persons,
thereby improving fire safety surveillance, management, and protection for the market community
through informed decision-making in low-cost fire devices. The remainder of the paper includes;
Related Works, Materials and Methods, Second Order FAM, Algorithm Design Procedure, Relational
Mathematical Operations Theory and Notations in Type-2 Fuzzy Systems, Simulation Experimental
Setup, Results and Discussion, Conclusion, and Future Works.

2 Related Works

In the Table 1, we show a detailed discussion of the proposed solutions and their limitations for
the related works.
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Table 1: Summarized discussion of related works

Ref. Proposed solution Limitations

Sandra et al. [15] Presents a low-cost LoRa network to
assess the fire risks in rural areas. The
system measures the temperature,
humidity, wind speed, and CO2 levels in
the environment.

However, spectrum interference and
LoRa payload data are limited for
large datasets in the event of fire
outbreaks.

Li et al. [16] Proposed an image–based fire detection
using convolution neural networks for
providing alerts and early warnings. A
precision value of 83.7% was achieved.

However, unlike fuzzy control
systems large datasets are needed for
effective fire detection to function.

Surya Devi
et al. [17]

Presented a fuzzy–based smart fire
detection system. Uses DHT11, and MQ2
sensors to detect fire and sends a
notification via WhatsApp and the web
interface.

However, Type-1 systems are
affected by inherent error
uncertainties, whch decrease the
performance of the desired outcome.

Sarwar
et al. [18,19]

Presents an ANFIS to detect fire and
provide a warning. The fire monitoring
and warning application system is used for
fire detection in smart buildings.
Notification is sent via the GSM, and an
accuracy of 95% was achieved.

The ANFIS yields better results
than Type-1. However, the Interval
Type-2 outperforms the ANFIS
system technique significantly,
yielding a better outcome.

Pacori et al. [20] Presents fuzzy failure detection in
transformers using dissolved gas analysis,
giving an accuracy of 91%.

However, the authors used a Type-1
fuzzy system with a higher error
bound, giving it less accuracy.

Khule et al. [21],
Park et al. [22]

A fire control system in vehicles is
presented. Park presented a fire system to
detect fire signatures using fuzzy logic,
false alerts were reduced using parameters
for flame, temperature, smoke, and CO2.

However, Type-1 fuzzy systems are
more prone to false alarm errors in
vehicles compared to the proposed
Type-2 fuzzy systems.

Listyorini
et al. [23]

Presents a solution of IoT and fuzzy logic
to detect fires in Indonesia using flame,
temperature, servo motors, buzzers, and
cameras controlled by the ESP8266 and
fuzzy logic to analyze flame intensity.

However, the Type-1 solution
presented did not consider fire
intensity detection on the dissipated
combustion gases and also gave less
accurate results.

Rafiq et al. [24] Presented a fire extinguisher robot based
on fuzzy logic to put out a fire in a room.
The robot identifies a room with fire and
extinguishes it by mapping out the room,
the solution is simulated using MATLAB.

However, using a Type-1 fuzzy
system to obtain the position of a
room with fire, some errors were
established in identifying the actual
position of the room using
MATLAB.

(Continued)
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Table 1 (continued)

Ref. Proposed solution Limitations

Ikbar et al. [25] Proposed a robot that uses a control
method to detect fire. The flame,
ultrasonic sensors, and Arduino Mega
2560 were used. Robotic movement
controlled by fuzzy logic successfully
detected fire on a candle placed 20 cm.

However, using Type-1 fuzzy control
obtained less accurate results
compared to the proposed Interval
Type-2 TSK approach.

3 Materials and Methods

The study employs a free open-source MATLAB/Simulink fuzzy toolbox integrated with Interval
Type-2 fuzzy logic system. Because it is widely available to the users of Type-2 fuzzy systems
community. The simulink library connects the fuzzy logic system and the fuzzy toolbox. To study
the performance of the IT2 TSK fuzzy model, the tool is configured in MATLAB2018a [26].
MATLAB [1,27], is a multi–paradigm computing tool, that enables the modelling of real-time complex
engineering solutions. Two secondary Interval Type-2 input parameters are used; i.e., Fire intensity due
to temperature change F̃IT, and Fire intensity due to dissipated gases (CO2, CO), F̃IG. The fire intensity
interval output value F̃IO of the IT2 TSK model is proposed to minimize the inherent errors of Type-1
(T1) fuzzy systems using a type reduction method, called the enhanced Karnik-Mendel (eKM) in range
of [−1, 1]. Because eKM reduces the computational overload associated with fuzzy system design.
The model was designed using the trim member function (trimf) using six sparse inference rules. NB:
Flame presence = “True” for all fuzzy inference rules, else = “False”. To determine the best-fit dataset
of the IT2 TSK fuzzy model, a linear regression method is used to evaluate the datasets for improved
accuracy. To compute the accuracy, error metric parameters, namely; the mean absolute error (MAE),
mean square error (MSE), root mean square error (RMSE), and the coefficient of determination (R2),
are used to determine the quality of the best choice of fit data to the model. For N = 17; N denotes the
number of Interval Type-2 rule outcomes being sampled. The obtained dataset with the lowest RMSE
value, is identified as the best fit dataset for the model in order to determine the operating efficiency
and accuracy of the proposed Interval Type-2 fuzzy model.

3.1 Second Order Fuzzy Associative Matrix (2FAM)

The fuzzy associative matrix (FAM) is a content addressable memory for storing the fuzzy
inference rules of a particular associated fuzzy model [28,29]. The study used the 2FAM method, with
the Interval Type-2 fuzzy input sets as crisp input values for the proposed TSK model. With the second-
order derivatives, the output fuzzy values of Type-1 (T1) fuzzy sets are converted into Type-2 (T2) input
values. Note that, Type-2 fuzzy systems have gained popularity due to the fact that inherent errors
created by Type-1 (T1) systems can be minimized by Type-2 fuzzy systems [27,30]. This improves the
models’ accuracy, by allowing them to create flawlessly functioning fuzzy systems in real time. Type-1
systems are denoted by A, and the Type-2 fuzzy associative members or elements are denoted by Â
[28,31] of comparable second order as per Dr. Loft Zadeh. For n = 1, 2, 3, . . . , N, then the associated
order n can be explicitly defined. Thus, the Interval Type-2 TSK fuzzy control model’s corresponding
2FAM sparse inference rules are then defined in Table 2. NB: The model utilizes six sparse rules to
reduce the high computational overloads associated with Type-2 fuzzy system design.
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Table 2: The proposed derived IT2 TSK sparse fuzzy inference rules (FIR) with output value (F̃IO)

Type-1 input variables Interval Type-2 TSK output variables

Rule No. (F̃IT) (F̃IG)
(
F̃IO

)
“Fire Status” Decision

1. Low VLow VL Very low
2. Low Low L Low
3. Moderate Moderate M Moderate
4. High High H High
5. Moderate VHigh H High
6. High VHigh VH Very high
Note: Proposed Optimized IT2 TSK Fire Intensity Output denoted by F̃IO = {VL, L, M, H, VH}.

3.2 Proposed Interval Type-2 TSK Sparse Fuzzy Inference Rules (FIR) Design

Using the FAM method, as discussed in Section 3.1 above, we can further derive six (6) corre-
sponding Interval Type-2 TSK sparse fuzzy inference rules for the proposed model.

3.3 Interval Type-2 TSK Decision Parameters for Inputs and Outputs of the Proposed Fuzzy Model

The proposed IT2 TSK model utilizes two inputs F̃IT, F̃IG and output F̃IO parameters to investigate
the performance behaviour of the proposed Interval Type-2 TSK model. The universe of discourse for
the various crisp interval inputs and output parameters is defined in Tables 3 and 4, respectively.

Table 3: Crisp interval input F̃IT, F̃IG parameters considered for the proposed IT2 TSK fuzzy model

Crisp input values Fuzzy input parameters Fuzzy domain range (%) Universe of discourse MF

Fire intensity due to
temp. change (̃FIT)

{Low, moderate, high} [1–100] or [0–1] {0–40, 40–80, 80–100} or
{0–0.4, 0.4–0.8, 0.8–1}

Fire intensity due to
gas dissipated (̃FIG)

{Very low, low, moderate,
high, very high}

[1–100] or [0–1] {0–20, 20–40, 40–60, 60–80,
80–100} or {0–0.2, 0.2–0.4,
0.4–0.6, 0.6–0.8, 0.8–1}

Table 4: Crisp output (̃FIO) parameter considered for the proposed IT2 TSK fuzzy model

Crisp output
variable

IT2 TSK fuzzy output
parameter

Fuzzy domain
range (%)

Universe of discourse MF

Proposed optimized
fire intensity output
value (̃FIO)

{Very low, low, medium,
high, very high}

[1–100] or [0–1] {0–20, 20–40, 40–60, 60–80,
80–100} or {0–0.2, 0.2–0.4,
0.4–0.6, 0.6–0.8, 0.8–1}

4 Algorithm Design Procedure

In Fig. 2, a schematic design of Mamdani’s Type-1 fuzzy-based algorithms is defined by
Lule et al. [1]. The fire intensity due to temperature change (EFIP1) and fire intensity due to
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the dissipated gases, i.e., (CO2, CO), (EFIP2), are Mamdani’s Type-1 fuzzy outputs. For effective
fire detection, the fire detection algorithms consider temperature, humidity, CO2, CO, and flame
parameters. Through the process of oxidation, oxygen reacts with carbon present in any burning
material to give two dissipated gases, namely; CO2 and CO. The fuzzy algorithms’ schematics assume
the threshold values Th and Thg to determine the minimal values of temperature rise and, gases
dissipated, respectively, due to combustion. FI is the optimal fire intensity detection value of

(
F̃IO

)
obtained by the proposed Interval Type-2 TSK algorithm.

Figure 2: Mamdani’s Type-1 fuzzy algorithms for fire intensity due temperature change (EFIP1) and
dissipated gas (EFIP2), respectively [1]
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4.1 Algorithm Assumptions Considered

Several assumptions are made by the proposed algorithm to ensure an optimal fire intensity
detection value (F̃IO), realized:

i. Three key parameters for fire combustion are considered, namely; temperature (�T), and two
by-products of dissipated gases; carbon dioxide (�CO2), and carbon monoxide (�CO).

ii. To reduce the computational overload associated with Type-2 fuzzy systems, six sparse
inference fuzzy rules are used to optimize the performance of the overall fire intensity detection
value of

(
F̃IO

)
.

iii. Note that humidity (�H) is not a key parameter for combustion due to its high dependency
on temperature change and pressure within the surrounding environment. Note that for each
inference rule, flame presence is a boolean probability equal to “True” or “False”. Because
of the high computational cost overheads associated with Type-2 fuzzy systems, output
processing with centroid type reduction and defuzzification methods may cause unnecessary
bottlenecks on Interval Type-2 fuzzy systems. Hence, alternative approaches, such as the Nie-
Tan method [32,33], can be suggested.

4.2 Proposed Fire Intensity Detection Algorithm Procedure Based on IT2 TSK Fuzzy Approach

Algorithm 3: The Proposed Lightweight Fire Intensity Detection Algorithm Based on the IT2 TSK
Fuzzy Model.

1. Begin:
2. Initialize: �T, �H, �CO2, �CO;
3. Define: ˜FIO = FI;
4. Set Boolean: setFlame0←0, setFlame1←1;
5. if fire is detected?
6. True: set Flame1 ←1; go to: Step 11
7. else
8. False: setFlame0 ← 0; go to: Step 3
9. do {
10. Define: �T ← {L, M, H},
11. Define: �CO2 ← {L, M, H};
12. { //Applying Fuzzy: For dissipated gases i.e., �CO2 �CO
13. if (�T==” L” AND �CO2==”VL” or CO==”VL”)
14. then FI ← “VL”
15. Else if (�T==” L” AND �CO2==” L” or CO==” L”)
16. then FI ← “ L” next
17. Else if (�T==”M” AND �CO2==”M” or CO==”M”)
18. then FI ← “M” next
19. Else if (�H==”M” AND �CO2==”H” or CO==”H”)
20. then FI ← “H”
21. Else if (�T==”H” AND �CO2==” VH” or CO==” VH”)
22. then FI ← “VH”
23. End if
24. }

(Continued)
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Algorithm 3 (continued)
25. Output Value: FI;
26. }
27. while (�T < Th && (�CO2 > Thg); go to: Step 3

End Loop:

4.3 Fire Intensity Detection Model Using Interval Type 2 TSK Fuzzy Approach

In Fig. 3, the framework of the fire intensity detection model is made up of temperature, humidity,
CO2, and CO as data acquisition units, an optimized IT2 TSK model training unit, and a fire status
decision-making unit. The obtained dataset is then trained using the IT2 TSK fuzzy model which is
integrated with an intelligent fire intensity detection algorithm to determine an informed “fire status”
decision due to the surrounding environment.

Figure 3: Proposed breakdown of the IT2 TSK fuzzy detection model with “fire status” decision
making

5 Relational Mathematical Operations Theory and Notations in Type-2 Fuzzy Systems

A non-deterministic truth degree with imprecision and uncertainty for each set of elements is
defined in Type-2 fuzzy set. Fuzzy inference systems utilize fuzzy reasoning and a set of principles
to map fuzzy inputs to outputs. This method applies in a variety of application domains, like
computer vision, pattern recognition, and intrusion detection. T1 systems represent the membership,
as the membership of each element in a fuzzy set, whereas Interval Type-2 fuzzy sets represent the
membership as crisp intervals bound by the range of [−1, 1] [34–36]. Type-1 fuzzy systems have been
used in a variety of fields, but they are most commonly associated with noisy data and extremely
large uncertainty error limits as represented in their inference rule consequents [37,38]. Thus, from the
principle of fuzzy set theory, the application of Interval Type-2 TSK fuzzy inference systems can be
correlated using relational mathematical theoretical representations.
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Let U, be the initial universe of objects, EU, the set of parameters about the objects, P(U), the
power set of U such that: A ⊆ E. Molodtsv [39] defined a set of the pair (F, A) called, the soft set over
U, where F is a mapping given by: F: A → P(U). For ε C A, F(ε) is defined as a set of ε-approximate
elements of the soft set (F, A). Type-2 fuzzy sets denoted by Ã, are also characterized by a general
Type-2 membership function for which, μÃ (x, U), such that: U defines a finite and non-empty set,
which is referred to as a universe of discourse [40]. The membership function associates each element
x C U , with a value in the interval [0, 1].

Hence; UxI → I where; x C, I = [0, 1] and μ Cx ⊆ I

Ã =
{
(x, u) , μÃ (x, u) |x Cu, u CJx ⊆I

}
for : 0≤μÃ (x, u) ≤1

Ã =
∫

x ∈μ

∫
μ∈Jx

μÃ (x, u)

(x, u)
=

∫
x ∈μ

∫
μ∈Jx

fx (u)/u

x
Jx ⊆ 1 (1)

where fx (u) = μÃ (x, u)

Hence, for the class of Type-2 fuzzy sets of the Universe U is denoted by FT2(U) [41].

5.1 Operations of General Type-2 Fuzzy Sets

If U is to be a nonempty universe such that Ã, B̃ CFT2 (U): then,

Ã =
∫

x∈u

μÃ (x)

x

∫
x∈u

[∫
x∈Ju

x
fx (u)/u

]
x

, Ju
x⊆I B̃ =

∫
x∈u

μB̃ (x)

x

∫
x∈u

[∫
γ∈Jγx

gx (γ )/γ
]

x
, Jγ

x ⊆I (2)

Hence, applying the general type-2 fuzzy operations to the aforementioned fuzzy sets, defined
by Eq. (2), i.e., union, intersection, and complement, yields Eqs. (3)–(5), respectively, which can be
explicitly reduced as follows:

μÃ u B̃ (x) =
∫

u∈jux

∫
γ∈jγx

[fx(u) ∧ gx(u)]
u ∨ γ

= UÃ (x) � UB̃ (x) , x∈U (3)

μÃ n B̃ (x) =
∫

u∈jux

∫
γ∈jγx

[fx(u) ∧ gx(u)]
u ∧ x

= UÃ (x) UB̃ (x) , x∈U (4)

μ∼Ã (x) = μÃ (x) =
∫

u∈jux

fx (u)

1 − μ
(5)

where ∧ is the t-norm minimum operator, ∨ is the maximum operator, and � the joint operation,
μÃ u B̃(x), μÃ(x), μB̃(x) are the secondary membership functions, and for all belonging to Mamdani’s
Type-1 fuzzy sets [39,41].

5.2 IT2 TSK Fuzzy Inference Systems vis-à-vis Decision Making

An Interval Type-2 fuzzy set (FS) can be characterized by the Eq. (6) below:

Ã =
∫

x∈X

{∫
μεJx

1/μ

}
/x, Jx⊆ [0 1] (6)

The secondary grades of Ã is equal to 1: X is the primary domain with input x and primary degree
membership μ. Jx, is the secondary domain with values varying from [0–1]. The Interval Type-2 fuzzy
set can therefore be best described by having the lower (LMF) or uÃ (x) and the upper membership
functions (UMF) or uÃ (x). Therefore, the given shaded region (ref. Fig. 4), between the LMF and
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UMF is called the “Footprint of Uncertainty (FOU)”. Thus, FOU represents a third-dimensional value
of the membership function (MF) at each point on its two-dimensional domain such that [42]:

FOU
(

Ã
)

= U
x CX

[
uÃ (x) , uÃ (x)

]
(7)

Figure 4: Shows the interval Type-2 fuzzy set with a shaded region known as the FOU [42]

From Eq. (6), using the Interval Type-2 TSK fuzzy systems rules approach, the firing strength,
determines the minimal probability for a given fire status. Thus, the fire status can be determined
using the IF . . . THEN structure for the fuzzy inference consequent decision evaluation. Upon
this background, consider a typical Type-1 TSK sparse rules-based approach comprised of n fuzzy
inference rules [43]:

R1: IF x1 is A1
1 and . . . xk is A1

k and . . . xq is A1
q THEN y = f 1x

1
1(. . . x1

q, ),

· · ·
Rn : IF x1 is An

1 and . . . xk is An
k and . . . xq is An

q THEN y = fn(xn
1. . . , xn

q),

where Ai
j (i ∈ {1, 2 . . . n} and j∈ {1, 2 . . . q}).

Alternatively, assuming the IT2 TSK sparse rules are comprised of n rules, then a zero or first-
order polynomial function can be derived such that:

R1: IF x1 is Ã
1

1 and . . . xk is Ã
1

k and . . . THEN y = p̃1
0 + p̃1

1x
1
1 + . . . p̃1

kx1
k

Ri: IF x1 is Ã
i

1 and . . . xk is Ã
i

k and . . . THEN y = p̃i
0̃p

i
1x

1
1 + . . . p̃i

kx
i
k

· · ·
Rn: IF x1 is Ã

n

1 and . . . xk is Ã
n

k and . . . THEN y = p̃n
0 + p̃i

1x
n
1 + . . . p̃n

kxn
k

where Ã
i

j (j∈ {1, . . . , k} and i∈ {1, . . . , n}) is defined as an Interval Type-2 fuzzy set having an input
variable xj in the ith rule, giving a consequent in the crisp polynomial function as:

y = fi

(
xj, . . . , xk

) = p̃n
0 + p̃i

ix
n
1 . . . p̃n

kx
n
k where p̃i

j are crisp intervals or consequent parameters for a

given universe of discourse such that; O
(

Ã
∗
1 . . . Ã

∗
k

)
, Ã

i

j, the antecedent value of the rule Ri. Using

the related IT2 TSK fuzzy model approach of Jie Li et al. [44] the approximate firing strength (αi), of
matching degree s and antecedent variable xj, using a t-norm operator ∗ can be deduced to the Eq. (8):

f = u Ã1
(x1) ∗ u Ã2

(x2) ∗ . . . ∗ Ãn (xn) ;
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f = u Ã1
(x1) ∗ u Ã2

(x2) ∗ . . . ∗ u Ãn (xn), then the firing strength (αi) can be deduced as follows:

(αi) = s
(

Ã
i

1, Ã1

)
∧ . . . ∧ s

(
Ã

i

k, Ãk

)
(8)

Applying, the type reduction (TR) and defuzzification methods, using the center of sets to
compute the centroid of every consequent set. Then the weighted average of each consequent is
determined as follows:

Y = [y1, yr]
∫

y1
. . .

∫
ym

·
∫

f1
. . .

∫
fm

1∑m

i=1 fiyi∑m

i=1 fi

(9)

Y is the interval set, determined by the constants yi and yr · fi is
[
f i, f

i
]
.

yi = [
yi

i, yi
r

]
is the centroid of the Type-2 interval fuzzy set in the consequent part. Karnik et al. [45]

showed that two endpoints are dependent on the mixture of fi and f
i
values can be determined as:

yr = yr

(
f1, . . . , fR, f

R+1
. . . f

m
, y1

r , ym
r

)
yi = yi

(
f

1
, . . . , f

m
, fI+1

. . . fm, y1
i , ym

i

)
(10)

NB: (yr, yi) are determined by using Eq. (10). A special iterative formula was then developed by
Mendel et al. [46] to produce the computational values of yr(max) and yi(min) as:

yr =
∑R

i=1 fiy
r
i + ∑m

i=R+1 fiyr
i∑R

i=1 f−i + ∑m

i=R+1 fi

yi =
∑L

i=1 fiy1
i + ∑m

i=L+1 fiy1
i∑L

i=1 fi + ∑m

i=L+1 fi

(11)

Thus, the switch points can be determined by using Karnik-Mendel’s (KM) algorithm [45,46].
Therefore, the crisp outputs in the defuzzification layer can then be computed as follows:

y = yr + yi

2
(12)

5.3 Type Reduction

Type Reduction (TR) is a phase used to defuzzify the Type-2 fuzzy sets that transform Type-2
into Type-1 fuzzy systems. T1 and IT2 fuzzy systems differ in that IT2 fuzzy systems employ an extra
TR procedure to process Interval Type-2 systems. The KM TR method is widely used to calculate
the type-reduced sets iteratively [47]. Other methods include; Iterative Algorithm with Stop Condition
(IASC), Enhanced IASC, Enhanced Opposite Direction Searching Algorithm (EODS), Wu-Mendel
Uncertainty Bound Method (WM), Nie-Tan (NT) and Begian-Melek-Mendel(BMM) [26]. The
enhanced KM algorithm is used in the study to reduce computational overload and significantly
captures most features of the IT2 fuzzy model, such as adaptability and stability. The major bottleneck
of Type-2 fuzzy systems is output processing using the centroid TR and defuzzification method.
Since KM algorithms are associated with high computational costs, this may hinder their real-time
application [48]. Thus, to compromise between the speed, computational overload, and complexity,
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other methods were proposed, i.e., the Nie-Tan method, to compute the output of the IT2 TSK fuzzy
system [33,49]. N refers to the number of system inputs, such that: N = 1, 2, 3, . . . , n.

Algorithm 4: Computing the Output with TR, Using Centroid, Type Reduced Sets.

Compute yl Compute yr

1. Initialize 1. Initialize
a = ∑N

n=1 ynfn a = ∑N

n=1 ynfn

b = ∑N

n=1 fn b = ∑N

n=1 fn

L = 0 R = N
2. Compute yl 2. Compute yr

L=L+1 a = a + yR
(

f
R − fR

)
a = a + yL (f

L − fL) b = b + f
R − fR

b = b+f
L − fL yr = a/b

yl = a/b R = R−1
3. if (yl ≤ yL+1), stop 3. if yr ≥ yR, stop;

otherwise, go to: Step 2 otherwise, go to: Step 2

Then, the Nie-Tan method can therefore be mathematically defined using the Eq. (13) below:

y =
∑N

n=1 yn
(

f n + f
n
)

∑N

n

(
f n + f

n
) (13)

6 Simulation Experiment Setup

Fig. 5 shows an Interval Type-2 Takagi Sugeno Kang (TSK) fuzzy design view of the model
editor using MATLAB. A free open–source MATLAB fuzzy logic toolbox is carefully configured with
varying parameter settings as defined in Table 5 and successfully integrated into the MATLAB2018a
environment for proper functioning. The tool is widely used in the modeling and simulation of Type-2
fuzzy systems [47]. The model uses a TSK inference system to ensure higher performance is realized
for the proposed fire detection algorithm [50]. Through “fuzzification”, crisp inputs are defined in
Table 3. The Enhanced Karnik–Mendel algorithm is used to minimize the computational overload in
Type-2 systems [45]. Through the “defuzzification” process, the performance outcome of the proposed
IT2 fuzzy model can be obtained.
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Figure 5: Main model editor of IT2 TSK with crisp interval inputs: (F̃IT), (F̃IG) and crisp output
parameter: (F̃IO), the optimized fire intensity value

Table 5: Experimental setup configuration settings

Software: Hardware:

Simulation software: MATLAB 2018a Specifications:
Interval Type-2 MATLAB fuzzy toolbox Ver. 1.2 Type: Hp Laptop ak0xx
Configurations settings: Processor type: AMD A9 radeon

graphics R5 processor
Crisp interval input parameters: F̃IT= {Low, moderate,
high}, F̃IG = {Very low, low, moderate, high, very
high}; Output crisp parameter F̃IO = {Very low, low,
moderate, high, very high}, Type-1 fuzzy inference
range: [0–100]

Memory: 12 GB RAM

Member function (MF) = trimf, range: [0.6–0.2] Hard drive capacity: 1 TB HDD
Crisp output type = “Interval”. Operating system: Windows 10 Prof.
Crisp interval Type-2 fuzzy output range: {-1, 1} Wireless network adapter: 802.11 g/n
Implication connector operator: “and”
Offset configurations: UMF = [20.73 0.65 −10.73 1.55
1], LMF = [0.7582 0.9 1 0.6]
Number of sparse fuzzy inference rules: (N = 6).
Type reduction algorithm: Enhanced karnik-mendel
(eKM)
Weighted priority function: (W = 1)
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7 Results and Discussion

In Figs. 6a–6d, results were obtained by integrating a free open-source fuzzy toolbox of Interval
Type-2 within the MATLAB 2018a environment [27]. The tool was used to investigate the IT2 TSK
model’s performance behaviour. Two input parameters are used; fire intensity due to gases dissipated
F̃IG and fire intensity due to temperature change F̃IT. The optimized fire intensity output F̃IO is
determined by the correlation between F̃IG vis a vis F̃IT. Based on six significant IT2 TSK sparse
rules defined in Table 1, the eKM type reduction algorithm was used to reduce the computational
complexity associated with Type-2 fuzzy systems.

Figure 6: (a–d) show a 2D, 3D surfaces control view outputs for the IT2 TSK fuzzy model with
continuous discrete color pattern separations using MATLAB 2018a

Several insights can be drawn:

i. The fire intensity surface control results of the Interval Type-2 TSK fuzzy model range from
[−1, 1]. The obtained linear discrete model pattern (ref. Fig. 6a) shows changes in F̃IG or F̃IT

gradually influence the output value of F̃IO. E.g., an increase in both F̃IG and F̃IT significantly
increases F̃IO. Thus, higher changes in F̃IG or F̃IT increase the risk of fire intensity due to
combustion. Also, Figs. 6b–6d show a higher F̃IT with increasing temperature change, results
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in a higher risk of dissipated gases of F̃IG. Hence, the increased output performance of F̃IO

vis-à-vis increased F̃IT and F̃IG.
ii. In Fig. 6c, an increase in fire intensity due to dissipated gasses F̃IG, raises the output value of

F̃IO due to increased gas combustion. Similarly, in Fig. 6d, an increase in temperature change
F̃IT increases the value of F̃IO. Hence, general Type-2 fuzzy systems significantly improve the
output design of the Interval Type-2 TSK model. In Figs. 6b–6d, increased temperature yields
higher F̃IO due to an increased fire intensity risk associated with temperature change. Likewise,
Fig. 6c shows increased gases dissipated, yields higher F̃IO (Greater fire intensity from blue to
dark red region).

Table 6 and Fig. 7 depict a graphical representation of a set of absolute values taken to study
the correlation between F̃IT, F̃IG against values of

(
F̃IO

)
, for the Interval Type-2 TSK fuzzy model.

The firing strength is computed using the sparse inference rules approach. The Enhanced Karnik-
Mendel (eKM) algorithm gives a smooth, stable curve (dashed line) of the output fire intensity F̃IO,
with an accuracy rate of 98.2%. Thus, the heat transferred during combustion increases

(
F̃IO

)
with

the proposed IT2 TSK model. With regression analysis, an accuracy rate of 98.2% is determined as
the best-fit data for the model. Hence, a significant improvement of

(
F̃IO

)
is realized using the IT2

TSK inference system compared to Mamdani’s Type-1 fuzzy model in Lule et al. [1]. Also, a sudden
drop or (unstable state) in temperature change is observed through F̃IT = 0.7959 to 0.02041, F̃IG =
1 to 0.1429. Because of the inherent error uncertainties associated with the rule-based consequents in
the fuzzy model. Secondly, the reduced levels of oxygen depleted due to combustion, reflect a decrease
in the overall output performance of the fuzzy model. Thus, results show a subsequent drop in both
temperatures and CO2 concentration levels in the surrounding environment.

Table 6: Relationship between (F̃IT, F̃IG) and the optimized fire intensity output (F̃IO) using the
absolute values in the normalized range [0–1]

Fire intensity due to temperature
(F̃IT)

Fire intensity due to gas dissipated
(F̃IG)

Fire intensity output (F̃IO)

0.4286 0.102 0.9958
0.2653 0.1429 1
0.7143 1 1
0.7143 0.1429 0.9943
0.8367 0.2653 0.9895
0.7551 0.3469 0.9864
0.7959 0.4694 0.9818
0.1837 0.5102 0.9804
0.02041 0.5918 0.9774
0.3061 0.4286 0.9834
0.2653 0.551 0.9788
0.4286 0.6327 0.9758
0.3878 0.7959 0.97
0.3061 1 0.9629
0.8367 0.9184 0.9656

(Continued)
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Table 6 (continued)

Fire intensity due to temperature
(F̃IT)

Fire intensity due to gas dissipated
(F̃IG)

Fire intensity output (F̃IO)

0.8776 0.7551 0.9713
0.6327 0.5102 0.9803

Figure 7: Evaluation of IT2 TSK fuzzy model with absolute values of F̃IT, F̃IG vs. F̃IO in the normalized
range of [0–1]

In Table 7 and Fig. 8, useful insights are derived by plotting EFIP1, EFIP2 against values of F̃IO;
Compared to the Interval Type-2 TSK output F̃IO, the EFIP1 and EFIP2 in Mamdani’s Type-

1 fuzzy systems yielded a lower (unstable) performance outcome. Mamdani’s TI fuzzy systems have
high uncertainty error bounds despite using a dense network of fuzzy inference rules. Therefore, the
Interval Type-2 fuzzy model reduced the error bounds caused by the Type-1 fuzzy systems. Thus, the
performance outcome of the model was significantly improved.

Therefore, the IT2 TSK fuzzy model value of F̃IO, greatly outperformed Mamdani’s Type-1
inference models of (EFIP1) and (EFIP2) [1]. Mandani’s Type-1 systems contain associated error
uncertainties leading to low operating outcomes. The datasets presented in Expt. X–Z, generally show
an improved accuracy output value of the IT2 TSK model equivalent to 98.2% for N = 17 sampled
fuzzy rule outcomes.

Table 7: Extracted dataset results for Mamdani’s Type-1 fuzzy outputs (EFIP1, EFIP2) vs. interval
Type-2 TSK output value

(
F̃IO

)
S. No. EFIP1(%) EFIP2(%)

(
F̃IO

)
(%)

1 17.6 47.8 99.5
2 18.3 63.2 100

(Continued)
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Table 7 (continued)

S. No. EFIP1(%) EFIP2(%)
(
F̃IO

)
(%)

3 43.6 69.1 100
4 52.1 71.3 99.4
5 22.9 75 98.9
6 46.2 56.5 98.6
7 51.9 25 98.1
8 52.1 86.5 98
9 54.5 62.8 97.7
10 37.9 70.3 98.3
11 71.2 25 97.8
12 69.7 60.9 97.6

Figure 8: Mamdani’s Type-1 fuzzy models (EFIP1, EFIP2) vs. the proposed interval Type-2 TSK
Output (F̃IO)

7.1 Performance Evaluation of the Proposed IT2 TSK Fuzzy Model Using Regression Analysis

Table 8 provides a detailed summary of the statistical metric parameters, i.e., MAE, MSE, RMSE,
and R2, used in the study to compare the performance outcome of each dataset for the model. Three
experimental (Expt.) datasets, X, Y, and Z, are extracted from the IT2 TSK fuzzy model bound in the
range of [1, −1]. With regression analysis, the best-fit dataset of the model is determined. Regression
analysis is used in identifying the data with the greatest influence. A correlation is established between
independent input variables of F̃IT and, F̃IG, the dependent output

(
F̃IO

)
, the expected outcome

(E). The linear regression equations are then determined for various Expt. datasets (X, Y, and Z),
as; y = −0.2281x + 0.5215; y = 0.0802x + 0.3763; and y = −0.3025 + 0.8382, respectively.
Error metric parameters are used to compute the error deviations of the datasets to assess the

accuracy of the predictions, defined; i.e., Mean Absolute Error (MAE) =∑ |FI0 − E|
N

; Mean Square
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Error (MSE) =∑ |FI0 − E|
N

2

; and Root Mean Square Error (RMSE) =
√∑ |FI0 − E|

N

2

or
√

MSE, For

N = 17, sampled fuzzy-based inference rule outcomes for the proposed Interval Type-2 TSK fuzzy
model.

Table 8: Summary of the statistical measured parameters of MAE, MSE, R2, and RMSE of the model

Expt. Datasets (X, Y, Z) MAE MSE RMSE R2 Average accuracy
outcome

For N = 17
interference rule
outcomes

Expt. X 1.3010 1.6938 1.3015 0.0180 98.2% √
Expt. Y 1.3546 1.8364 1.3551 0.0065 98.4% X
Expt. Z 1.6383 2.6912 1.6405 0.1570 97.5% X

Expt. X: Experimental Dataset X

Expt. No. FIT FIG FIO Expected, E FIO−E |FIO−E| |FIO−E|2

1 0.4286 0.1020 −0.9958 0.4237 −1.4195 1.4195 2.0151
2 0.2653 −0.1429 −1.0000 0.3020 −1.3020 1.3020 1.6952
3 0.7143 −1.0000 −1.0000 0.3206 −1.3206 1.3206 1.7441
4 0.7143 0.1429 −0.9943 0.3206 −1.3149 1.3149 1.7291
5 0.8367 0.2653 −0.9895 0.3257 −1.3152 1.3152 1.7298
6 0.7551 0.3469 −0.9864 0.3223 −1.3087 1.3087 1.7128
7 0.7959 0.4694 −0.9818 0.3240 −1.3058 1.3058 1.7052
8 0.1837 0.5102 −0.9804 0.2986 −1.2790 1.2790 1.6359
9 −0.0204 0.5918 −0.9774 0.2902 −1.2676 1.2676 1.6067
10 0.3061 0.4286 −0.9834 0.3037 −1.2871 1.2871 1.6566
11 0.2653 0.5510 −0.9788 0.3020 −1.2808 1.2808 1.6405
12 0.4286 0.6327 −0.9758 0.3088 −1.2846 1.2846 1.6502
13 0.3878 0.7959 −0.9700 0.3071 −1.2771 1.2771 1.6310
14 0.3061 1.0000 −0.9629 0.3037 −1.2666 1.2666 1.6043
15 0.8367 0.9184 −0.9656 0.3257 −1.2913 1.2913 1.6675
16 0.8776 0.7551 −0.9713 0.3274 −1.2987 1.2987 1.6867
17 0.6327 0.5102 −0.9803 0.3173 −1.2976 1.2976 1.6837

Expt. Y: Experimental Dataset Y

Expt. No. FIT FIG FIO Expected, E FIO−E |FIO−E| |FIO−E|2

1 −0.7143 0.9184 −0.9656 0.3190 −1.2846 1.2846 1.6502
2 −0.3469 0.7959 −0.9700 0.3485 −1.3185 1.3185 1.7384

(Continued)
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Expt. Y (continued)

Expt. No. FIT FIG FIO Expected, E FIO−E |FIO−E| |FIO−E|2

3 −0.6327 0.7143 −0.9728 0.3256 −1.2984 1.2984 1.6857
4 −0.0204 0.8779 −0.9672 0.3747 −1.3419 1.3419 1.8006
5 0.0612 0.7959 −0.9701 0.3812 −1.3513 1.3513 1.8260
6 0.5510 0.8776 −0.9671 0.4205 −1.3876 1.3876 1.9254
7 0.3878 0.6327 −0.9758 0.4074 −1.3832 1.3832 1.9132
8 0.1837 0.5102 −0.9804 0.3910 −1.3714 1.3714 1.8808
9 −0.4286 0.3878 −0.9849 0.3419 −1.3268 1.3268 1.7605
10 −0.1020 0.2653 −0.9896 0.3681 −1.3577 1.3577 1.8434
11 −0.5102 0.1837 −0.9927 0.3354 −1.3281 1.3281 1.7638
12 −0.1837 0.1020 −0.9959 0.3616 −1.3575 1.3575 1.8427
13 0.1429 −0.0612 −1.0000 0.3878 −1.3878 1.3878 1.9259
14 −0.4286 −0.2245 −1.0000 0.3419 −1.3419 1.3419 1.8008
15 −0.5102 −0.7551 −1.0000 0.3354 −1.3354 1.3354 1.7832
16 0.5918 0.0612 −0.9976 0.4238 −1.4214 1.4214 2.0203
17 0.8367 0.2245 −0.9911 0.4434 −1.4345 1.4345 2.0578

Expt. Z: Experimental Dataset Z

Expt. No. FIT FIG FIO Expected, E FIO−E |FIO−E| |FIO−E|2

1 0.9184 0.3061 −0.9880 0.5604 −1.5484 1.5484 2.3975
2 0.9184 0.3469 −0.9864 0.5604 −1.5468 1.5468 2.3925
3 0.7551 0.4286 −0.9833 0.6098 −1.5931 1.5931 2.5379
4 0.8367 0.5510 −0.9788 0.5851 −1.5639 1.5639 2.4458
5 0.8367 0.6327 −0.9758 0.5851 −1.5609 1.5609 2.4364
6 0.7959 0.7143 −0.9728 0.5974 −1.5702 1.5702 2.4657
7 0.6327 0.7551 −0.9714 0.6468 −1.6182 1.6182 2.6186
8 0.6735 0.8367 −0.9685 0.6345 −1.6030 1.6030 2.5695
9 0.2653 0.8776 −0.9671 0.7579 −1.7250 1.7250 2.9758
10 0.5918 0.8776 −0.9671 0.6592 −1.6263 1.6263 2.6448
11 0.7551 0.9184 −0.9656 0.6098 −1.5754 1.5754 2.4818
12 0.3878 0.9592 −0.9643 0.7209 −1.6852 1.6852 2.8399
13 −0.1429 0.9529 −0.9643 0.8814 −1.8457 1.8457 3.4067
14 0.4694 0.7551 −0.9714 0.6962 −1.6676 1.6676 2.7809
15 0.4286 0.5510 −0.9788 0.7085 −1.6873 1.6873 2.8471
16 0.5918 0.4286 −0.9833 0.6592 −1.6425 1.6425 2.6977
17 0.1020 0.3878 −0.9849 0.8073 −1.7922 1.7922 3.2121
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7.2 Comparison between the Previous Works Done and the Proposed Solution

Table 9 provides a detailed comparison between the related works and the proposed IT2 TSK
fuzzy model.

Table 9: Performance comparison between the proposed IT2 TSK fuzzy model and related works

Zulkamain
et al. [51]

Lule et al. [1] Renzo
et al. [52]

Li et al. [53] Proposed
IT2 TSK
fuzzy model

Accuracy 90% 95.8% 91% 83% 98.2%
Method or
techniques used

Uses fuzzy
application
methods

T1 Mamdani’s
fuzzy control
systems

TI fuzzy
control systems

Convolution
neural network
(CNN) models

Interval
Type-2 (IT2)
TSK fuzzy
control
systems

Application
domain

Early detection
of fire in the
wetlands using
fuzzy methods,
in Indonesia.

Fire detection
model using
fuzzy based
approximation
applied in local
Urban markets.

Dissolved gas
analysis (DGA)
for identifying
fault failures in
power
transformers.

Image fire
detection
algorithms
based on CNN
models.

Intelligent
lightweight
fire intensity
detection
algorithm
for low-cost
devices.

8 Limitations

Because of the inherent uncertainty errors present in fuzzy-based systems, Interval Type-2 fuzzy
systems reduce the degree of membership and change the meaning of fuzzy words, which may have a
significant impact on the model’s overall decision-making and performance efficiency of the output
value.

9 Conclusion and Future Works

In this paper, an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity
detection algorithm with decision-making in low-power fire detection devices is presented. Using a
multisensory design approach, the proposed method increased the model’s accuracy rate to 98.2%
while minimizing false alarms in fire detection systems or devices. Besides, Interval Type-2 fuzzy
systems have a footprint of uncertainty (FOU) in their fuzzy sets, allowing them to further minimize the
inherent errors associated with fuzzy system designs [27]. Hence, this solution can also be implemented
in low-cost, low-power fire detection systems to notify the state or level of fire danger. Thus, the study
shall assist the firefighting personnel in fully monitoring, comprehending, and mitigating any level
of fire danger, allowing them to make informed and appropriate decisions about the fire suppression
mechanisms to be used. Future work plans to implement a hardware-based solution for a low-cost fire
detection system using an Adaptive Neural Fuzzy Inference System (ANFIS), which develops more
accurate models combined with computational intelligence and fuzzy logic to provide more precise
learning capabilities for effective fire detection, improving fire safety monitoring and protection of the
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market community by leveraging early warning alerts for safe evacuations. Thus, a foundation has been
laid for the development of inbuilt low-power fire detection systems that are cost-effective and easily
deployable by firefighters in developing countries to protect against fire accidents in marketplaces or
public gathering areas.
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