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ABSTRACT

In this paper, we consider the NP-hard problem of finding the minimum dominant resolving set of graphs. A vertex
set B of a connected graph G resolves G if every vertex of G is uniquely identified by its vector of distances to the
vertices in B. A resolving set is dominating if every vertex of G that does not belong to B is a neighbor to some
vertices in B. The dominant metric dimension of G is the cardinality number of the minimum dominant resolving
set. The dominant metric dimension is computed by a binary version of the Archimedes optimization algorithm
(BAOA). The objects of BAOA are binary encoded and used to represent which one of the vertices of the graph
belongs to the dominant resolving set. The feasibility is enforced by repairing objects such that an additional vertex
generated from vertices of G is added to B and this repairing process is iterated until B becomes the dominant
resolving set. This is the first attempt to determine the dominant metric dimension problem heuristically. The
proposed BAOA is compared to binary whale optimization (BWOA) and binary particle optimization (BPSO)
algorithms. Computational results confirm the superiority of the BAOA for computing the dominant metric
dimension.

KEYWORDS
Dominant metric dimension; archimedes optimization algorithm; binary optimization alternate snake graphs

1 Introduction

The primary metric dimension of graphs was just recently introduced in [1]. Based on domination
theory and graph resolvability theory, the dominating metric dimension. Let G = (V, E) be a connected
graph and d(u,v) be the shortest path between two vertices u,v ∈ V (G). A resolving set of G is an ordered
vertex set B = {x1,x2,. . .,xk} ⊆ V (G) if the representation

r(v|B) = (d(v, x1), d(v, x2), . . . , d(v, xk))

is different for each v ∈ V (G). A resolving set B is a dominating set of G if every vertex ofV\B has at
least one neighbor that belongs to B. The metric dimension of G, abbreviated dim (G), is the cardinality
number of the smallest resolving set. The dominating metric dimension of G, abbreviated Ddim(G), is
the cardinality number of the smallest dominating resolving set.

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.031947
https://www.techscience.com/doi/10.32604/iasc.2023.031947
mailto:bosbos25jan@yahoo.com


20 IASC, 2023, vol.38, no.1

Example 1. The star graph S7 is given in Fig. 1. The set B = {v2,v3,v4,v5,v6} is a minimal resolving
set but not a dominating set of S7 since v7 is not adjacent to vertices in B. The set B = {v1,v2,v3,v4,v5,v6}
is a minimal dominant resolving set of S7. Thus, dim(S7) = 5 and Ddim(S7) = 6.

Figure 1: Star graph S7

Both the metric dimension problem and the problem with the dominant set are NP-complete
problems [2,3]. As a result, finding whether Ddim(G) ≤ K for a given graph G and input K is a typical
NP-complete problem for the dominating metric dimension of G. Wireless communication networks,
electrical networks, commercial networks, and chemical structures are all examples of networks that
apply the dominance theory [4,5]. In order to overcome the problem of uniquely locating an intruder in
a network, a minimal resolving set of a graph has been introduced in [6,7]. The concept of the smallest
resolving set of a graph serving as the metric basis and its cardinality number serving as the metric
dimension were independently introduced by the authors in [3].

The metric dimension is determined theoretically for several graphs in the literature [8–20]. On
the other hand, a few algorithms have been proposed in the literature to compute heuristically the
metric dimension. These are genetic algorithm [21], particle swarm optimization [22], and variable
neighborhood search [23].

The dominant metric dimension is studied in [1,24]. In [1], the dominant metric dimension of
path graph Pn, cycle graph Cn, star graph Sn, complete graph Kn, and complete bipartite graph Km,n

are theoretically determined. It has been shown that Ddim(Pn), n = 1, 2 is 1, Ddim(Pn), n > 4 is
⌈n

3

⌉
,

Ddim(Cn), n ≥ 7 is
⌈n

3

⌉
, Ddim(Sn), n ≥ 2 is n−1, Ddim(Kn), n ≥ 2 is n−1, and Ddim (Km,n), m, n ≥

2 is m + n − 2. In [24], the dominant metric dimension of the corona product graph of G and H is
investigated whenever H is a path graph Pn, cycle graph Cn, complete bipartite graph Km,n, complete
graph Kn and star graph Sn. Also see more details in the literature [25–30].

The smallest dominating resolving set of graphs is being calculated heuristically for the first
time in this study. To resolve the problem, we modify the operations of a binary version of the
Archimedes optimization algorithm (BAOA). The theoretically generated graph results are used to test
the proposed BAOA. On various graphs and theoretically generated graphs, the proposed algorithm
is compared with competing algorithms.
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The paper is organized as follows: Section 2 gives an overview of Archimedes optimization
algorithm (AOA). Section 3 gives the BAOA for computing the dominant metric dimension. Section 4
reports computational results. Finally, the conclusion is stated in Section 5.

2 Archimedes Optimization Algorithm (AOA)

AOA is a physics-inspired algorithm, specifically Archimedes’ law. This algorithm, which is a
member of the meta-heuristics class, was developed by Hashim et al. [31]. The uniqueness of this
algorithm is found in the way the solution is encoded, which includes three auditory signals for the
basic agents: volume (V ), density (D) and acceleration (Γ ). As a result, a random number generator
creates the initial group of agents in Dim dimensions. As additive data, random values of V , D, and
are shown. After that, each item is evaluated to determine which is the best (Obest).

During the AOA process, updates to density and volume change the acceleration based on the
collision notion between objects. The general AOA steps are as follows:

The first step—Initialization: Initialize the positions of all objects using (1):

Oi = lbi + rand × (ubi − lbi); i = 1, 2, . . . , N (1)

where Oi represents the ith object among N total objects. The terms lbi and ubi, respectively, stand for
the lower and upper bounds of the search space.

Use (2) to specify the volume (vol) and density (den) for each ith object:

deni = rand

voli = rand (2)

The acceleration (acc) of the ith object is then initialized using the Eq. (3), where rand is a D-
dimensional vector that creates a random number between 0 and 1.

acci = lbi + rand × (ubi − lbi) (3)

In this stage, evaluate the starting population and select the object with the best fitness value. xbest,
denbest, volbest, and accbest should be assigned.

The second step—Update densities and volumes: The density and volume of object i for the iteration
t + 1 are modified by (4):

dent+1
i = dent

i + rand × (
denbest − dent

i

)
volt+1

i = volt
i + rand × (

volbest − volt
i

)
(4)

where rand stands for a random number with a uniform distribution, and volbest and denbest represent
the volume and density associated with the best item discovered so far.

The third stage is the density scalar and transfer coefficient: In this phase, objects collide with one
another until equilibrium is achieved. Switching from exploration to exploitation mode is the primary
goal of the transfer function (T c), according to Eq. (5):

Tc = exp
(

t − T
T

)
(5)
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The maximum number of iterations is T , and T c grows exponentially over time until it reaches 1.
t stands for the current iteration. Additionally, the reduction in density scalar ds in AOA enables the
use of Eq. (6) to find the best solution:

dt+1
s = exp

(
t − T

T

)
−

(
t
T

)
(6)

The fourth step-Exploration phase: uses a random selection of material (Mr) to bring agents into
contact with one another. In cases when the transfer function value is less than or equal to 0.5,
acceleration objects are updated using Eq. (7).

�t+1
i = DMr + VMr × �Mr

Dt+1
i × V t+1

i

(7)

The fifth step-Phase of exploitation: This phase does not result in an agent collision. Eq. (8) is used
to update acceleration objects when the transfer coefficient value is greater than 0.5.

�t+1
i = DBest + VBest × �Best

Dt+1
i × V t+1

i

(8)

where Γ Best denotes the acceleration of the optimal object OBest.

The sixth phase-Normalization of acceleration: In this stage, normalize the acceleration in order to
determine the rate of change using Eq. (9):

�t+1
i−norm = α × �t+1

i − �Min

�Max − �Min
+ β (9)

where α and β are constants of 0.9 and 0.1, respectively. The �t+1
i−norm defines the percentage of steps that

each agent will change. The higher value of acceleration means that the object realizes the operation
of exploration; or else, the exploitation mode is active.

The seventh step—Update process: In the exploration phase (Tc ≤ 0.5), Eq. (10) updates the
position of the ith object in iteration t + 1, whereas in the exploitation phase (Tc > 0.5), Eq. (11) updates
the position of the object.

Ot+1
i = Ot

i + c1 × r5 × �t+1
i−norm × ds × (Orand − Ot

i) (10)

where c1 equals 2.

Ot+1
i = Ot

Best + F × c2 × r6 × �t+1
i−norm × ds × (δ × OBest − Ot

i) (11)

where c2 is equal to 6.

The parameter δ is positively correlated with time and this parameter is proportionally linked to
the transfer coefficient Tc, i.e., δ = 2 × Tc. The main role of this parameter is to maintain a proper
balance between exploration and exploitation operations. The margin between the best object and the
other object is higher during the first iterations, resulting in a high random walk. However, in the final
iterations, the margin will be decreased and provide a low random walk.

F is used for flagging, while Eq. (12) is utilized to determine the direction of the search:

F =
{

+1 if P ≤ 0.5
−1 if P ≥ 0.5

(12)

where P = 2 × rand − C4.
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The eighth step is evaluation, where we utilize the score index Sc to assess the new population and
other data such as DBest, V Best, and Γ Best to identify the best objects.

3 Binary Archimedes Optimization Algorithm for Dominant Metric Dimension

Because it maintains a population of solutions and examines a vast area to find the best global
solution, the Archimedes optimization algorithm can solve difficult optimization problems with
numerous locally optimal solutions. This benefit enables the binary version of the algorithm to be
applied to the dominant metric dimension problem. Using position vectors in the continuous real
domain, objects can navigate the search space in the continuous version of AOA. By using an S-shaped
transfer function to change the continuous variable AOA into a binary one, we may convert it into
binary values. Position changes in discrete binary search space necessitate flipping between 0 and 1.

The following equation is used in the initialization step:

Obinaryij =
{

1 rand() > 0.5
0, else

(13)

where a rand is a random number between 0 and 1.

A transfer function is used to be able to map continuous values to binary ones. In this study, the
sigmoid function (S) is used as follows:

S = 1

1 + e−10xd (14)

where xd indicates the continuous-valued position at dimension d and S is the function output. The
following equation is used to generate a binary value.

Obinaryij =
{

1 rand() < S
0, otherwise

(15)

The proposed algorithm deals with the dominant resolving set problem as an optimization
problem where it searches for the best solution, so each object can be represented as a one-dimensional
vector Obinaryij = (Oi1, Oi2, . . . , Oij), Obinaryij is a binary-valued position vector if the j-th element of
the vector has a value of 1, it means that vertex j belongs to B. If every v ∈ V (G) has a distinct
representation r(v|B), then B is a dominant resolving set. The value of a binary-valued position vector
is produced by computing the value of the S-shaped transfer function. In the BAOA algorithm, when
an object is not feasible as a dominant resolving set, that object is repaired by adding a vertex from
V\B. This repair is applied until that object becomes a dominant resolving set.

Each solution in the population is represented by the algorithm as a string of binary values, where
1 indicates that the dominant resolving set will be chosen, in which case the corresponding value will be
“1,” and 0 indicates that the dominant resolving set will not be chosen, in which case the corresponding
value will be “0”.

Thus, the flowchart of the proposed BAOA algorithm is displayed in Fig. 2 and the pseudocode
in Algorithm 1, respectively.
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Figure 2: The flowchart of BAOA

Algorithm 1: Pseudocode of BAOA
Procedure AOA (population size N, maximum number of iterations T , C1, C2, C3 and C4)

Initialize the positions of all objects Oi randomly, volumes (vol) and densities (den) as shown in
(1)–(3), respectively.

Evaluate the initial population and select the one with the best fitness value.
Set iteration counter t = 1

While t ≤ T
for each object i do

Update the density and volume of each object using (4).
Update transfer and density decreasing factors TF and d as shown in (5) and (6), respectively.

// Exploration phase //
If TF ≤ 0.5 then

(Continued)
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Algorithm 1 (continued)
Update acceleration by using (7) and normalize acceleration by using (9)
Update position using (10)
Convert each

−→
Oi into binary using the S-shaped transfer function in Obinaryij

Calculate the fitness of each Obinaryij

Update the new position of the object using (15)
// Exploitation phase //

else
Update acceleration using (8) and normalize acceleration using (9)
Update direction flag F using (12)
Update position using (11)
Convert each

−→
Oi into binary using the S-shaped transfer function in Obinaryij

Calculate the fitness of each Obinaryij

Update the new position of the object using (15)
end if

end for
Evaluate each object and select the one with the best fitness value.
Set t = t + 1

end while
return object with best fitness value
end procedure

4 Experimental Results

In this section, the proposed BAOA is tested using graph results that are computed theoretically.
The proposed BAOA is compared to the BWOA and BPSO on a complete graph, a star graph, a path
graph, an alternate triangular snake with pendant edge graph, and an alternate quadrilateral snake
graph.

The algorithm tests and comparisons were performed on a Windows 10 Ultimate 64-bit oper-
ating system; the processor was an Intel Core i7 running at 16 GB of RAM, the hard drive was
1TBHDD+1TBSSD, and the code was implemented in MATLAB 2021b. The parameter setting
values are presented in Table 1.

Table 1: Parameter setting

Algorithms Parameter name Value

Objects number 30
BAOA Max iteration 500

C1 C2 C3 C4 [2, 6, 2, 0.5]
Number of runs 20
Whales number 30
a Decrease from 2 to 0

BWOA a2 Decrease from −1 to −2

(Continued)
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Table 1 (continued)

Algorithms Parameter name Value

Max iteration 500
Number of runs 20
Swarm size 30
C1 Increases linearly from 0.5 to 2.5

BPSO C2 Decreases linearly from 2.5 to 0.5
Inertia weight (w) 0.8
Max iteration 500
Number of runs 20

The BAOA, BWOA and BPSO have been run 20 times for each instance, and the results are
summarized in Tables 2–5. The tables are organized as follows:

– The first three columns contain the test instance name, the number of nodes and edges,
respectively.

– The fourth column contains the BAOA best solution (named BAOA best) obtained in 20 runs;
– The average execution time (t) used to reach the final BAOA solution for the first time is given

in the fifth column.
– The sixth column contains the average number of generations for finishing BAOA best.
– The seven and the eighth column variance and standard deviation contain information on the

average solution quality.

Table 2: Results on complete graph Kk

Instance n m BAOA best t (s) Iteration
(generation)

BWOA t Iteration BPSO t Iteration

K1 3 3 2 2.85 1 2 9.28 1 2 13.71 1
K2 4 6 3 9.11 1 3 32.65 4 3 29.28 3
K3 5 10 4 24.02 1 4 78.92 8 4 42.13 17
K4 6 15 5 73.68 3 5 95.24 9 5 58.16 5
K5 7 21 6 104.21 5 6 147.83 13 6 93.04 22
K6 8 28 7 168.76 8 7 192.39 5 7 184.21 14
K7 9 36 8 201.57 2 8 209.45 21 8 256.09 39
K8 10 45 9 316.39 9 9 284.81 15 9 338.05 7
K9 11 55 10 413.10 3 10 525.32 18 10 480.19 125
K10 12 66 11 481.35 7 11 742.99 141 11 623.53 10
K11 13 78 12 530.49 13 12 881.13 27 12 735.28 21
K12 14 91 13 599.11 6 13 1022.19 9 13 913.11 14
K13 15 105 14 681.03 8 14 1273.44 31 14 1319.72 29
K14 16 120 15 746.34 12 15 1379.15 116 15 1468.03 134
K15 17 136 16 563.12 9 16 1428.23 54 16 1704.09 22
K16 18 153 17 725.71 11 17 1592.71 12 17 1811.14 17
K17 19 171 18 914.93 7 18 1714.83 37 18 1525.54 26
K18 20 190 19 1051.65 21 19 1995.03 45 19 1761.28 32

(Continued)
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Table 2 (continued)
Instance n m BAOA best t (s) Iteration

(generation)
BWOA t Iteration BPSO t Iteration

K19 21 210 20 1195.27 19 20 2168.25 132 20 2056.87 71
K20 22 231 21 1034.09 14 21 2409.12 96 21 2238.05 57

Table 3: Results on star graph Sk

Instance n m BAOA best t (s) Iteration BWOA t Iteration BPSO t Iteration

S1 3 2 2 6.23 1 2 7.54 1 2 8.19 1
S2 4 3 3 25.18 1 3 34.02 7 3 31.4 2
S3 5 4 4 69.01 3 4 81.95 3 4 72.79 5
S4. 6 5 5 127.39 2 5 113.64 9 5 146.71 11
S5 7 6 6 215.86 9 6 239.36 17 6 267.25 8
S6 8 7 7 282.74 1 7 418.14 22 7 429.41 15
S7 9 8 8 378.99 4 8 547.58 36 8 514.99 27
S8 10 9 9 491.10 2 9 623.72 14 9 602.15 31
S9 11 10 10 605.84 3 10 735.91 8 10 699.73 23
S10 12 11 11 762.46 3 11 870.73 27 11 741.68 109
S11 13 12 12 836.84 8 12 954.23 10 12 802.31 4
S12 14 13 13 1009.17 6 13 1063.15 79 13 1196.16 21
S13 15 14 14 1161.22 11 14 1198.82 126 14 1278.52 117
S14 16 15 15 942.91 9 15 1286.19 18 15 1193.04 28
S15 17 16 16 1157.23 15 16 1335.08 22 16 1402.15 142
S16 18 17 17 1208.12 13 17 1493.12 135 17 1519.82 32
S17 19 18 18 1379.44 10 18 1586.31 28 18 1664.98 108
S18 20 19 19 1418.53 17 19 1768.53 151 19 1575.34 83
S19 21 20 20 1246.37 14 20 1913.22 87 20 1789.61 45
S20 22 21 21 1105.14 15 21 2108.38 52 21 1902.27 36

Table 4: Results on path graph

Instance n m BAOA best t (s) Iteration BWOA t Iteration BPSO t Iteration

P3 3 2 2 1.17 1 2 2.54 1 2 4.31 1
P4 4 3 2 3.99 1 2 7.89 4 2 5.76 8
P5 5 4 2 14.45 1 2 23.92 5 2 12.04 3
P6 6 5 2 48.86 3 2 72.94 13 2 80.65 7
P7 7 6 3 83.91 1 3 95.78 9 3 109.12 11
P8 8 7 3 107.29 4 3 186.15 25 3 128.47 6
P9 9 8 3 154.35 12 3 268.29 18 3 192.71 27
P10 10 9 3 232.13 7 3 311.05 30 3 275.64 19
P11 11 10 4 309.11 15 4 356.48 21 4 334.92 123
P12 12 11 4 413.47 9 4 474.21 116 4 401.13 75
P13 13 12 4 509.16 3 4 591.09 27 4 618.41 38
P14 14 13 5 484.78 17 5 616.37 41 5 761.09 20
P15 15 14 5 659.36 8 5 894.12 135 5 882.56 113

(Continued)
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Table 4 (continued)
Instance n m BAOA best t (s) Iteration BWOA t Iteration BPSO t Iteration

P16 16 15 5 733.14 14 5 1025.81 22 5 907.18 29
P17 17 16 6 898.07 10 6 1136.45 117 6 1198.07 12
P18 18 17 6 951.23 4 6 1417.93 29 6 1576.51 8
P19 19 18 6 874.59 9 6 1641.18 26 6 1449.27 17
P20 20 19 7 1078.45 2 7 1918.04 18 7 1685.93 24

Table 5: Results on alternate triangular snake with pendant edge

Instance n m BAOA best t (s) Iteration BWOA t Iteration BPSO t Iteration

A(TS1) 5 5 2 31.83 1 2 55.27 4 2 76.12 2
A(TS2) 8 9 2 69.91 1 2 93.12 6 2 108.45 5
A(TS3) 11 13 3 135.78 4 3 122.36 5 3 157.81 9
A(TS4) 14 17 5 197.51 3 5 241.35 17 5 212.38 12
A(TS5) 17 21 6 312.65 7 6 349.02 9 6 375.95 27
A(TS6) 20 25 7 501.14 9 7 434.17 16 7 487.34 10
A(TS7) 23 29 8 617.01 5 8 694.62 29 8 643.29 22
A(TS8) 26 33 9 833.25 8 9 908.53 34 9 871.43 15
A(TS9) 29 37 10 1017.42 10 10 1213.44 18 10 955.82 42
A(TS10) 32 41 11 1182.61 10 11 1396.18 27 11 1093.24 19
A(TS11) 35 45 12 1256.09 15 12 1432.32 44 12 1327.91 32
A(TS12) 38 49 13 1317.24 3 13 1547.49 19 13 1466.80 11
A(TS13) 41 53 14 1388.31 11 14 1714.18 131 14 1534.11 17
A(TS14) 44 57 15 1492.19 14 15 1848.71 96 15 1675.86 35
A(TS15) 47 61 16 1307.01 12 16 1954.35 17 16 1811.99 122
A(TS16) 50 65 17 1425.29 18 17 2078.11 39 17 1927.52 18
A(TS17) 53 69 18 1682.12 11 18 2215.46 42 18 2083.28 29
A(TS18) 56 73 19 1751.73 16 19 2399.28 29 19 2204.39 24
A(TS19) 59 77 20 1857.05 2 20 2523.13 34 20 2391.15 141
A(TS20) 62 81 21 1925.14 11 21 2796.17 22 21 2503.57 27
A(TS21) 65 85 22 2037.43 19 22 2981.43 153 22 2655.29 36
A(TS22) 68 89 23 2122.36 26 23 3149.24 40 24 2810.92 48
A(TS23) 71 93 24 2287.61 19 24 3211.15 25 24 2673.42 21
A(TS24) 74 97 25 1955.82 1 25 3319.28 113 25 2716.19 19
A(TS25) 77 101 26 1873.19 17 26 3584.93 21 27 2931.43 32
A(TS26) 80 105 27 2091.24 19 27 3706.21 32 28 2815.95 120
A(TS27) 83 109 28 2242.13 19 29 3851.75 68 28 3099.22 29
A(TS28) 86 113 29 2330.05 19 30 3638.44 45 31 3186.36 23
A(TS29) 89 117 30 2473.21 19 31 3992.65 36 32 3319.74 31
A(TS30) 92 121 31 2549.75 19 34 4065.22 30 32 3479.15 22
A(TS31) 95 125 32 2618.92 18 35 4198.13 42 33 3611.89 38
A(TS32) 98 129 33 2796.28 20 36 4282.57 33 35 3843.54 25
A(TS33) 101 133 34 2874.32 2 37 4419.16 19 36 3954.93 16
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Our stopping criterion is the cardinality of the dominant resolving set that reaches the known
dominant metric dimension of the complete graph. BAOA takes 168.76 s on K6, and it takes 8 iterations
to complete BAOA to achieve the best solution.

Regarding BAOA results, Table 3 shows that for the star graph Sk,1 ≤ k ≤ 20, BAOA has reached
an optimal solution. For example, in S3, the time needed for BAOA is 69.01 s and reaches the best
solution after 3 iteration. In [1], the dominant metric dimension for a path graph, a complete graph,
and a star graph is theoretically determined.

Regarding BAOA results, Table 4 shows that for path graph Pn, 3 ≤ n ≤ 20, BAOA has reached an
optimal solution. For example, in P6, the time required for BAOA is 48.86 s, with 3 iterations required
to achieve the best solution.

BAOA found an optimal solution for the alternate triangular snake with pendant edge A(TSk), 1
≤ k ≤ 33, as shown in Table 5. For example, in A(TS4), the time required for BAOA is 197.51 s, with
3 iterations required to achieve the best solution.

Regarding BAOA results, Table 6 shows that alternate quadrilateral snake A(QSk), 1 ≤ k ≤ 33,
BAOA has reached an optimal solution. For example, A(QS3), the time needed for BAOA is 205.23 s
and reaches the best solution after 2 iterations.

Table 6: Results on alternate quadrilateral snake

Instance n m BAOA best t (s) Iteration BWOA t Iteration BPSO t Iteration

A(QS1) 5 5 3 71.49 1 3 108.63 1 3 95.12 1
A(QS2) 9 10 4 154.17 1 4 191.27 6 4 128.54 3
A(QS3) 13 15 5 205.23 2 5 287.15 4 5 292.36 9
A(QS4) 17 20 7 298.38 5 7 561.12 9 7 523.49 21
A(QS5) 21 25 7 412.64 8 7 643.38 22 7 678.22 14
A(QS6) 25 30 8 509.81 17 8 801.79 35 8 835.69 18
A(QS7) 29 35 9 647.15 44 9 982.46 19 9 923.15 30
A(QS8) 33 40 10 803.59 18 10 737.12 52 10 1174.38 23
A(QS9) 37 45 11 917.42 36 11 1276.84 43 11 1305.47 19
A(QS10) 41 50 12 1043.18 25 12 1421.75 28 12 1398.71 6
A(QS11) 45 55 13 1205.49 51 13 1538.52 152 13 1512.87 35
A(QS12) 49 60 14 1316.32 37 14 1673.21 63 14 1609.53 41
A(QS13) 53 65 15 1450.76 46 15 1825.43 49 15 1715.19 64
A(QS14) 57 70 16 1561.12 34 16 1913.92 38 16 1873.14 112
A(QS15) 61 75 17 1696.85 42 17 2056.27 106 17 2119.25 88
A(QS16) 65 80 18 1783.09 45 18 2172.49 47 18 2205.82 95
A(QS17) 69 85 19 1832.24 42 20 2328.72 134 19 2289.07 61
A(QS18) 73 90 20 1920.11 46 20 2416.41 52 20 2397.28 49
A(QS19) 77 95 21 1752.89 1 21 2673.12 29 21 2473.16 18
A(QS20) 81 100 22 1898.13 42 22 2768.95 46 22 2583.55 105
A(QS21) 85 105 23 2016.47 17 23 2995.64 37 23 2839.31 22
A(QS22) 89 110 24 2158.22 44 24 3082.18 55 24 2765.24 53
A(QS23) 93 115 25 2311.54 40 25 3176.27 61 25 2932.89 47
A(QS24) 97 120 26 2483.77 43 26 3287.34 42 26 3139.27 19
A(QS25) 101 125 27 2613.10 3 27 3375.16 74 27 3290.58 12
A(QS26) 105 130 28 2791.64 11 28 3592.28 25 28 3367.12 28

(Continued)
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Table 6 (continued)
Instance n m BAOA best t (s) Iteration BWOA t Iteration BPSO t Iteration

A(QS27) 109 135 29 2528.19 2 29 3787.12 36 29 3515.44 17
A(QS28) 113 140 30 2816.15 39 30 3971.47 58 30 3636.78 144
A(QS29) 117 145 31 2943.37 26 31 4218.38 22 31 3849.25 25
A(QS30) 121 150 32 3096.12 43 32 4416.22 29 32 3698.47 33
A(QS31) 125 155 33 3179.65 1 33 4594.19 84 33 3953.13 40
A(QS32) 129 160 34 3202.94 2 34 4683.85 23 34 4165.73 25
A(QS33) 133 165 35 3341.59 4 35 4925.03 49 35 4379.24 32

Tables 2–6 display the results for various graphs, which show that the proposed BAOA can
achieve the best optimal solution (known dominant metric dimension) in a reasonable amount of time,
especially for the path graph, complete graph and star graph. It proves the correctness and superiority
of the proposed BAOA.

Experiments in this paper are performed on a subset of complete graph instances with n ≤ 22 and
m ≤ 231 in Table 2, star graph instances with n ≤ 22 and m ≤ 21 in Table 3, path graph instances with
n ≤ 20 and m ≤ 19 in Table 4, alternate triangular snake with pendant edge graph instances with n ≤
101 and m ≤ 133 in Table 5, and alternate quadrilateral snake graph instances with n ≤ 133 and m ≤
165 in Table 6.

Figs. 3–7 show the superiority of the proposed BAOA according to the dominant metric dimen-
sion. For example, the dominant metric dimension by BAOA for K2 is 3 and reaches 9.11 s. P7 is 3 and
reaches 83.91 s. All figures show the superiority of the proposed BAOA.

Figure 3: Comparison between BAOA best and t (s) for computing the dominant metric dimension of a
complete graph
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Figure 4: Comparison between BAOA best and t (s) for computing the dominant metric dimension of a
star graph

Figure 5: Comparison between BAOA best and t (s) for computing the dominant metric dimension of a
path graph

Figure 6: Comparison between BAOA best and t (s) for computing the dominant metric dimension of
an alternate triangular snake with pendant edge graph
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Figure 7: Comparison between BAOA best and t (s) for computing the dominant metric dimension of
an alternate quadrilateral snake graph

5 Conclusion

In this paper, the operations of a binary version of the Archimedes optimization algorithm BAOA
are adapted to solve the dominant metric dimension problem. The proposed BAOA is tested using
graph results that are computed theoretically. The proposed algorithm is compared to competitive
algorithms on graphs that are computed theoretically and other graphs. The performance of the
proposed BAOA outperforms that of the BWOA and BPSO.

An Open Problem. Other efficient metaheuristic algorithms for determining any variant of metric
dimension that does not compute the previous heuristically for any regular graph or planar graph, as
well as comparing them to competitive algorithms.
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