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Abstract: To meet the high-performance requirements of fifth-generation (5G)
and sixth-generation (6G) wireless networks, in particular, ultra-reliable and
low-latency communication (URLLC) is considered to be one of the most
important communication scenarios in a wireless network. In this paper,
we consider the effects of the Rician fading channel on the performance
of cooperative device-to-device (D2D) communication with URLLC. For
better performance, we maximize and examine the system’s minimal rate of
D2D communication. Due to the interference in D2D communication, the
problem of maximizing the minimum rate becomes non-convex and difficult
to solve. To solve this problem, a learning-to-optimize-based algorithm is
proposed to find the optimal power allocation. The conventional branch and
bound (BB) algorithm are used to learn the optimal pruning policy with
supervised learning. Ensemble learning is used to train the multiple classifiers.
To address the imbalanced problem, we used the supervised undersampling
technique. Comparisons are made with the conventional BB algorithm and
the heuristic algorithm. The outcome of the simulation demonstrates a notable
performance improvement in power consumption. The proposed algorithm
has significantly low computational complexity and runs faster as compared
to the conventional BB algorithm and a heuristic algorithm.
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1 Introduction

URLLC is one of the most important scenarios in 5G, whose goal is to make it possible for
new services and applications to have high reliability, availability, and minimal latency [1]. D2D
communication is a promising solution with URLLC, adopted as a vital communication scenario
in 5G mobile communication networks, and it is becoming increasingly important to offer end-to-
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end services with low latency and high reliability [2]. URLLC has very stricter requirements, such as
99.999% reliability (i.e., 10−5 packet error probability) under the end-to-end latency of 1 ms. URLLC
has become a primary goal for several applications, including unmanned aerial vehicles, intelligent
transportation systems, industrial automation, vehicle-to-vehicle communication, and tactile internet
[3,4].

To enhance power allocation, traditional wireless networks have been developed with long-packet
transmission scenarios, where ensuring high reliability and low latency at the same time is generally
difficult [3]. D2D communication is utilized in various scenarios to enhance the Quality of Service
(QoS) of the network by reducing power consumption, lowering latency, and improving reliability,
resulting in a significant improvement in performance [5,6]. Moreover, resource allocation and power
allocation are major issues for D2D communication underlying cellular networks. D2D communi-
cation can decrease latency and enhance network capacity, thereby optimizing resource allocation.
D2D communications reduce overall power usage due to users’ proximity, which is impossible in
conventional cellular communications [7]. D2D communications are emerging as a potential technique
for meeting the URLLC’s strict standards [8,9].

In wireless communication, resource allocation management affects the performance of the
optimization. Machine learning has demonstrated a high degree of efficacy in resolving non-convex
optimization issues related to D2D communication, such as power allocation [10] and interference
management [11], that affect communication performance. Global optimization algorithms, such as
the BB algorithm, have exponential complexity, and the majority of recent studies have concentrated
on heuristic or suboptimal algorithms. Machine learning is a relatively new technique for balancing
performance gaps and computational complexity that has proven effective in addressing difficult
optimization problems, particularly those that are non-convex and NP-hard [12,13]. This field of
research is referred to as learning-to-optimize for resource allocation in wireless communication
in order to address wireless network optimization problems [14]. Learning-to-optimization aims to
minimize the computational complexity and resources needed to obtain solutions that are nearly
optimal [12].

2 Related Work

Some studies examine the D2D architecture with URLLC, where they attempt to preserve
URLLC’s strict QoS requirements. Chang et al. [15] propose an autonomous probability-based D2D
transmission method under the Rayleigh fading channel in URLLC to minimize the transmission
power. A frequency-division duplex system is used in the uplink and downlink spectrums of D2D
communication under cellular networks with URLLC requirements for optimized resource allocation.
An unbalanced distribution of data traffic between both frequency bands could lead to less effective
use of network resources [8]. For improving the transmission power for a finite block-length rate with
the discrete-time block-fading channel, a resource allocation algorithm is proposed to maximize the
achievable rate and optimize the power allocation for D2D communication with URLLC requirements
[3]. Similarly, in [16], the proposed real-time wireless control systems for D2D communication were
primarily focused on transmission power optimization within the confines of URLLC, and a Rayleigh
fading channel is used, which decreases power consumption but is not as effective as Rician fading.
The authors in [17] formulated an optimal power allocation problem in an uplink D2D communication
scenario under a cellular network with Rayleigh fading, maximized the overall system throughput of
the communication system, and ensured the URLLC requirements.
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Numerous studies have been done on optimization-based algorithms for wireless resource allo-
cation problems [18]. The majority of wireless resource allocation problems are non-convex or NP-
hard problems, and optimization algorithms are known for being either excessively time-consuming
or exhibiting significant performance gaps [19]. In order to achieve efficient and nearly optimal
resource allocation, learning-to-optimize is a disruptive technique for solving resource allocation
problems. Learning-to-optimize combines knowledge and techniques from wireless communications,
mathematical optimization, and machine learning. It aims to develop algorithms that can dynamically
and efficiently solve optimization problems while effectively balancing the computational complexity
and the optimality gap in optimization problems. Policy learning is one of the major subcategory of
learning-to-optimization; training an agent to discover the best solution to a problem within a specified
algorithm is known as policy learning [20]. In order to solve the mixed integer nonlinear programming
(MINLP) problem for resource allocation in D2D communication, the authors in [21] propose a policy
learning method for node pruning in the BB algorithm.

This paper investigates uplink D2D communication underlying the cellular system in a single-
cell environment with a Rician fading channel. URLLC is utilized in D2D communication to deal
with the extremely high QoS requirements for D2D communication. In order to maintain satisfactory
performance for all users, we focus on maximizing and analyzing the minimum rate of D2D users.
However, the theoretical analysis that corresponds to this idea is complex because of the complicated
interference patterns of the system under consideration. Finding a solution to the problem of
maximizing the minimal rate and analyzing the interference effects on the maximized minimal rate
is challenging. In this paper, we use a policy learning approach to solve the power allocation problem
with low computational complexity in D2D communication. The following are the contributions of
this research:

• A framework has been developed to analyze D2D communication in a cellular network.
This framework utilizes the Rician fading channel to enable D2D communication that meets
URLLC QoS requirements. We maximize the minimal rate of D2D users. The formulated
problem is a non-convex problem with a complex expression of the achievable rate, which is
solved by using the proposed scheme.

• We propose a fast iterative learning-to-optimize-based algorithm to maximize the minimal
achievable rate R∗

m, by searching for optimal power allocation with significantly low computa-
tional complexity.

• The conventional BB algorithm is used to generate the training sample sets and learn the
optimal pruning policy for power allocation in D2D communication. To address the imbalanced
problem, we used an undersampling technique, and ensemble learning is used with supervised
learning, which involves training multiple classifiers and combining their outputs to enhance
overall performance. The computational complexity of the proposed algorithm is significantly
less than that of the BB algorithm and heuristic algorithm.

The rest of the paper is structured in the following manner: Section 3 provides a brief introduction
to the system model. Section 4 formulates the problem, and Section 5 presents the learning-to-
optimize-based algorithm to solve the problem. Section 6 of the paper contains the simulation and
numerical results, while the conclusion can be found in Section 7.

Notation: The following notations will be used throughout the paper: Pr {·} denotes the probability
and E [·] denotes the expectation of a random variable. I0 (·) is the zeroth-order modified Bessel
function of the first kind.
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3 System Model

In this section, we consider uplink D2D communication within a cellular system in a single-cell
network, as depicted in Fig. 1. We consider N cellular users (CUs) and M D2D pairs where M ≤ N.
The cellular user set is U = {1, 2, . . . , N} and the D2D pairs set is L = {1, 2, . . . , M}. We assume
that D2D pairs reuse the uplink channels of cellular users to transmit data. The resource reuse indicator
is pn,m, if D2D pair m reuses cellular user n channel, then pn,m = 1 otherwise pn,m = 0 [22,23].

Figure 1: System model

We can suppose that the slow fading is comprised of known constants and the fast fading is
comprised of random variables where hD

m and hCD
n,m are fast-fading coefficients, hCD

n,m is interference from
other D2D links are distributed exponentially with a zero mean and a unit variance. The coefficients
of slow fading from the D2D transmitter (D2D-Tx) m to the receiver is gD

m and interference channel
power gain between the CUE n to D2D receiver (D2D-Rx) m is gCD

n,m [24–26]. D2D users get interference
from the cellular users and the D2D pairs because they use the same spectrum resources. The signal-
to-interference-plus-noise ratios (SINR) of the mth D2D link can be formulated as

sD
m = PD

m gD
m hD

m∑
n∈U pn,mPC

n gCD
n,m hCD

n,m + σ 2
(1)

where PC
n and PD

m is the transmit power of cellular link n and transmit power of D2D link m. σ 2 is
the additive noise power.

Outage Probability

The outage probability of D2D links is analytically expressed as

PD2D
out = Pr

[
sD

m ≤ s0 = sD

sI

≤ s0 or sD ≤ sth

]
(2)

where s0 is the threshold of minimum SINR and sth is the threshold of minimum instantaneous
signal power. sD is the signal power, i.e., sD = PD

mgD
mhD

m and the total interference power is sI , i.e.,
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sI = ∑
n∈U pn,mPC

n gCD
n,mhCD

n,m. sI represent the cross-tire and co-tire interference because of interference
from cellular users and interference from the D2D transmitter to other D2D pairs used. The sum
of the instantaneous powers of all active sources of interference, represented by WI , equals the total
instantaneous interference power, denoted as sI , i.e., sI = ∑WI

i=1si [27,28]. According to Eq. (2), the D2D
outage probability can be expressed as

PD2D
out = {

sD
m ≤ s0

} = Pr
(

PD
m gD

m hD
m∑

n∈U pn,mPC
n gCD

n,mhCD
n,m

≤ s0

)
(3)

From the CUE to the D2D receiver, the interference power is usually substantially greater than
the noise power [25]. We make the assumption that D2D links are limited by interference and that the
impact of noise power on the outage probability can be ignored [7]. Eq. (3) can be expressed in the
probability density function (PDF) as

PD2D
out = 1 −

∫ ∞

sth

(∫ sD
s0

0

fsI (sI) dsI

)
fsD (sD) dsD (4)

The instantaneous signal power PDF is fsD (sD) and fsI (sI) is the total interference power [27]. The
signal received from the desired user is Rician distributed, and there are WI independent identically
distributed (i.i.d.) Rayleigh’s interference in the system. The PDF of total instantaneous interference
power sI express as

fsI (sI) = sI
WI −1

sWI
I (WI − 1) !

exp
(

−sI

sI

)
(5)

sI is the statistical average of the sI and the PDF of instantaneous signal power sD express as

fsD (sD) = (K + 1)

sD

e
[
−K− (K+1)sD

sD

]
I0

⎛
⎝2

√
K (K + 1) sD

sD

⎞
⎠ (6)

where K is the Rician fading parameter, I0 (·) is the first kind of modified Bessel function with zeroth-
order and sD is statistically average of the instantaneous signal power [25]. The outage probability of
D2D can be rewritten by using Eqs. (5) and (6) in Eq. (4).

PD2D
out = 1−

∫ ∞

sth

(∫ sD
s0

0

sI
WI −1

sWI
I (WI − 1) !

exp
(

−sI

sI

)
dsI

) ⎛
⎝(K + 1)

sD

e
[
−K− (K+1)sD

sD

]
I0

⎛
⎝2

√
K (K + 1) sD

sD

⎞
⎠

⎞
⎠ dsD

(7)

Solving the inner integral of Eq. (7) and getting the outage probability as

PD2D
out =

exp

⎡
⎣−K + K(

1 + sD
(K+1)sD

)
⎤
⎦

(
1 + sD

(K + 1) s0sI

) (8)
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Proof: See Appendix A.

In URLLC scenarios, we anticipate users to send short packets to achieve low latency, and the
successful packet error probability is used as a measure of high reliability. The uplink channel capacity
expression for D2D communication is as follows:

Rm = Bm

ln2

[
Cm −

√
Vm

TmBm

fQ−1 (εm)

]
(9)

where Cm denotes the Shannon capacity and Vm is the channel dispersion. Tm is the transmission
time delay, Bm is the bandwidth, εm transmission error probability (i.e., packet error probability),
and fQ−1 (·) is the inverse of the Q-function [14,29]. The Shannon capacity can be expressed as the
following based on the received SINR:

Cm = log
(
1 + sD

m

)
(10)

The capacity loss resulting from transmission errors is represented by channel dispersion Vm [30],
which can be represented as

Vm =
(

1 − 1(
1 + sD

m

)2

)
≈ 1 (11)

When SINR is higher than 5 dB then Vm ≈ 1 [31]. We analyze the ergodic capacity of Cm, ergodic
capacity is obtained by experiencing all the channel fading states, which are expressed as

E
[
log

(
1 + sD

m

)] =
∫ ∞

0

log (1 + z) fsD
m

(z) dz (12)

where the expectation E [·] is taken over the fast-fading distribution. The following theorem presents
the expression to compute the ergodic capacity.

Theorem 1: In D2D communication, the ergodic capacity is given by

C∗
m =

∫ ∞

0

1 − FsD
m

(z)

1 + z
dz (13)

where FsD
m

(z) = Pr
(
sD

m ≤ s0

)
is given in Eq. (8)

Proof: See Appendix B.

Then Eq. (9) can be rewritten as

R∗
m = Bm

ln2

[
C∗

m −
√

Vm

TmBm

fQ−1 (εm)

]
(14)

The probability of a packet error during the transmission of bm bits from the sender to receiver m
within the transmission duration Tm can be formally expressed as

ε∗
m = fQ

{√
TmBm

Vm

[
C∗

m − bmln2
TmBm

]}
(15)
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where bm = R∗
mTm, is the number of bits to be transmitted in each transmission. In order to ensure

the reliability requirement of URLLC, the following constraint must be satisfied.

ε∗
m ≤ εmax (16)

εmax is the maximum packet error probability bounded by the URLLC QoS requirements. The
successful transmission can be expressed as 1 − ε∗

m ≥ 1 − εmax, i.e., each packet should be successfully
delivered with a probability greater than 1 − εmax. The primary communication constraint

∑L

m=1 PD
m ≤

PD
max is restricted wireless resources, and the URLLC QoS requirement includes a limitation on the

time delay for communication as Tm ≤ Tmax.

4 Problem Formulation

In this section, we formulate the optimization problem to maximize the minimal achievable rate
among the D2D users where the power allocation is optimized, which is described as:

P1 : max
PD

m

min
m

{R∗
m}

s.t. ε∗
m ≤ εmax, m = 1, 2, . . . , L (17a)

Tm ≤ Tmax, m = 1, 2, . . . , L (17b)∑L

m=1
PD

m ≤ PD
max, m = 1, 2, . . . , L (17c)

Pr
{
sD

m ≤ s0

} ≤ γ0, m = 1, 2, . . . , L (17d)

The objective of this optimization problem is to maximize the minimal achievable rate R∗
m, by

searching for overall optimal transmission power PD
m. The first constraint in Eq. (17a) is used to ensure

the reliability of D2D users. The constraint in Eq. (17b) is used to ensure the transmission time delay
(the delay cannot exceed the maximum transmission time delay Tmax ). Eq. (17c) is the transmission
power constraint, and there are limitations on the total transmission power, PD

max is the maximum
transmission power, and in Eq. (17d) γ0 is the maximum outage probability constraint.

The aforementioned problem P1 is difficult because, as demonstrated by Eqs. (1) and (14), the
achievable rate R∗

m is not convex due to interference, which is challenging to solve for power allocation.
To overcome this challenge, we use the bisection-based method, and to handle the non-convex objective
function in P1, an auxiliary variable t0 is introduced to simplify the objective function and formulate
a new problem P̂1 from power allocation problem P1:

P̂1 : max
PD

m

t0

s.t. ε∗
m ≤ εmax, m = 1, 2, . . . , L (18a)

Tm ≤ Tmax, m = 1, 2, . . . , L (18b)

PD
m ≥ 0, m = 1, 2, . . . , L (18c)

∑L

m=1
PD

m ≤ PD
max, m = 1, 2, . . . , L (18d)

R∗
m ≥ t0, m = 1, 2, . . . , L (18e)
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Pr
{
sD

m ≤ s0

} ≤ γ0, m = 1, 2, . . . , L (18f)

To solve the problem P̂1 and t0, can be accomplished by the max-min rate. Where (18c) assures
that non-negative power is assigned to each user, and (18d) establishes the maximum transmission
power PD

max. We can assign the value of t0 to a certain t1 and determine whether the max-min rate
can accomplish t1. We find the optimal auxiliary variable t1 from P̂1 and use in P1′. All D2D
users’ achievable rates are greater than t1, and the total power consumption

∑L

m=1 PD
m is examined

to determine whether it is less than the maximum transmit power PD
max. t1 can only be achieved if the

minimized power consumption is less than PD
max; otherwise, it cannot be achieved and formulate a

subsequent problem P1′:

P1′ : min
PD

m

∑L

m=1
PD

m

s.t. ε∗
m ≤ εmax, m = 1, 2, . . . , L (19a)

Tm ≤ Tmax, m = 1, 2, . . . , L (19b)

PD
m ≥ 0, m = 1, 2, . . . , L (19c)∑L

m=1
PD

m ≤ PD
max, m = 1, 2, . . . , L (19d)

R∗
m ≥ t1, m = 1, 2, . . . , L (19e)

Pr
{
sD

m ≤ s0

} ≤ γ0, m = 1, 2, . . . , L (19f)

According to this significant finding, by solving the following set of equations, the optimal
solution of P1′ can be achieved:

Rm = t1

⇔ Bm

ln2

[
Cm −

√
Vm

TmBm

fQ−1
(
ε∗

m

)] = t1

⇔ PD
m = PD2D

out

{
exp

[
Tmln2 (t1)

TmBm

+
√

1
TmBm

fQ−1
(
ε∗

m

)] − 1

}
(20)

Proof: See Appendix C.

Conventional Branch and Bound Algorithm

The traditional BB algorithm often addresses non-convex optimization problems by repeatedly
exploring a tree with high computational complexity [21]. The BB algorithm is a binary tree search
problem where the original problem is represented at the root node and each leaf node represents
a subproblem within its corresponding subregion [32]. All of the tree’s branches have been explored
to estimate the objective function’s upper bound and optimal power allocation [33]. If the optimal
transmit power exceeds the maximum transmit power, that particular branch is eliminated and
removed from the area being searched. Once all the branches have been investigated, the solution
that possesses the minimum value is regarded as the ultimate optimal solution [12,34]. All unexplored
branches are pruned, if the solution is found on the last branch, the majority of the branches will not
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be pruned; in this situation, the computational complexity will increase. Because of the BB algorithm’s
limited performance and high computational complexity, we proposed a learning-to-optimize-based
algorithm with low computational complexity that outperforms the conventional BB algorithm.

5 Learning-to-Optimize Approach

The learning-to-optimize approach is used to find a near-optimal solution for the power allocation
problem in D2D communication with URLLC QoS constraints and provide low computational
complexity. The conventional BB algorithm is used to learn the optimal pruning policy, which is the
process of learning a complicated step in a particular algorithm and using that policy to produce
optimal results with low computational complexity.

5.1 Proposed Learning-to-Optimize-Based Algorithm
The search process of the BB algorithm can be seen as a problem of making sequential decisions

in a binary tree. We generate the unbalanced training sample sets from the BB algorithm because the
number of preserve nodes is fewer than the number of prune nodes. An undersampling technique is
utilized to address the unbalanced problem. We sample multiple disjoint subsets of the majority set
with the same size as the minority set and then train a separate classifier for each dataset. Along with
the minority set, a balanced training set can be achieved for each classifier. Several classifiers are being
trained via ensemble learning, and their performance is subsequently improved by combining them. A
node in the tree is either pruned or not in each decision based on the pruning policy. We are considering
using supervised learning to develop a pruning policy that acts like a binary classifier. The feature node
serves as the input, and the decision to either preserve or prune is the output. A learning-to-optimize-
based algorithm learns the pruning policy from the BB algorithm search process and uses the features
and labels to optimize the solution and ensure that it effectively identifies nodes to determine whether
a node should be pruned or preserved with low computational complexity. Pruning policy explores
every branch of the tree to determine the upper bound, lower bound, and optimal transmit power for
the objective function. The related branch is deleted if the optimal transmit power is greater than the
maximum transmit power. The ultimate optimal solution is the one that among all explored branches,
has the lowest value. Fig. 2 shows the complete process of the training and testing phases. The major
components of the learning-to-optimize-based algorithm are the classifier, feature design, flow of the
algorithm, and computation complexity, which are defined in the following steps:

5.2 Classifier
Ensemble learning is used in conjunction with supervised learning to train multiple classifiers and

combine their outputs for improved performance [35]. Using neural networks as a classifier in pruning
policy involves training an L-layer binary classifier model to identify and remove unimportant param-
eters to reduce the model’s complexity while maintaining accuracy. Rectified linear unit function, i.e.,
Reul = max (0, ·) used for input and hidden layers as an active function, and softmax function used
as an active function for output layer. The probability of each classification being preserved or pruned
is defined as

oL [y] = exp (iL [y])∑2

y′=1exp (iL [y′])
, y = 1, 2 (21)
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where iL [y] is the input layer and oL [y] is the output layer of the L-layer. The label u for the optimal
solution is denoted as (1, 0) , and for the non-optimal solution, it is donated as (0, 1). The cross-
entropy provided by the loss function default value is defined as

Loos = −u [1] log (oL [1]) − u [2] log (oL [2]) (22)

Figure 2: The complete process of the training and testing phases

5.3 Feature Design
To effectively train classifiers, feature design is very important. An optimal solution to the problem

P1′ that maps the features, φ (α) is the feature node, where φ (·) denote the feature map. The nodes
that contain the optimal solution within their feasible regions should be designated as “preserve,”
while all other nodes should be categorized as “prune”. The input feature has a significant impact
on classification accuracy and computational complexity. To improve accuracy, we need to find
effective features that are closely related to the problem. We distinguish between two types of features:
independent features and dependent features.
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5.3.1 Independent Features

Independent features contain information about the conventional BB algorithm search processes,
such as node features, branching features, and tree features; they contain the upper bound, lower
bound, optimal value, and argument set α.

5.3.2 Dependent Features

The dependent features are strongly associated with specific problems such as URLLC QoS
constraints, channel state information (CSI), SINR, and power allocation constraints for D2D
communication.

5.4 Flow of Algorithm
The proposed algorithm consists of a training dataset generated by the BB algorithm. An

undersampling method is utilized for an imbalanced training dataset that integrates ensemble learning
to train multiple classifiers and combine them to improve performance. The proposed learning-to-
optimize-based algorithm explains in the following key steps:

In steps 1-2, the conventional BB algorithm is used to produce the training dataset. The features
of every node that was explored are recorded by the algorithm. Nodes that have a feasible region that
includes the best possible solution are identified as “preserve,” whereas the other nodes are designated
as “prune” and store all the features and optimal solution into X .

In steps 3-4, the training set generated by the BB algorithm is unbalanced because there are
fewer nodes that are preserved compared to the nodes that are pruned. Using this training set with
traditional supervised learning, the classifier may not obtain the optimal solution for optimal nodes
and bias for non-optimal nodes. We used the undersampling supervised learning technique to avoid
the unbalanced training set problem. Undersampling creates multiple training sets that include both
the minority class and a random subset of the majority class and then trains a classifier on each of
these sets [36]. We divide the training set X into two subsets as Xoptimal and Xnon−optimal denotes optimal set
and non-optimal set. Randomly split the Xnon−optimal according to Xoptimal, where

∣∣Xnon−optimal

∣∣ = ∣∣Xoptimal

∣∣
and X 1

non−optimal, X 2
non−optimal, . . . , X Y

non−optimal from Xnon−optimal, ∀y ∈ {1, 2, . . . , Y}. The size of the X Y
non−optimal

subset Y is based on the size of Xoptimal and Xnon−optimal where Y ∈ {
1, 2, . . . ,

⌈∣∣Xnon−optimal

∣∣ / ∣∣Xoptimal

∣∣⌉}
.

The balanced training subset is denoted as X y
non−optimal ∪ Xoptimal where y = 1, 2, . . . , Y , now we have Y

training sets that can train for Y classifiers.

In step 5, we used an ensemble-based test that is similar to ensemble learning to test the multiple
classifiers. Specifically, the proposed learning-to-optimize-based algorithm is run for Y times, each
time for the different classifiers.

In steps 6−7, the upper bound is set to Pub = log
(

1 + PD
max gD

max

σ 2

)
, where gD

max the maximal value

among all gD
m and lower bound set to Plb = 0.

In step 8, instead of using a counter, we establish a tolerance threshold � to determine when to
terminate the loop.

In step 9, set the auxiliary variable t1 and obtain the PD
m by solving Eq. (20) with t1.

In steps 10–16, ensemble learning is used for better performance, Ay (·) is the output of the y − th
classifier and φ (α) is the features. If Ay ( φ (α)) is greater than or equal to the threshold ω then it is an
optimal solution; otherwise, non-optimal. The threshold ω ∈ [1, 0] is employed to restrict the search
space. If

∑L

m=1 PD
m ≤ PD

max and Ay ( φ (α)) ≥ ω is optimal, then PD∗
y = PD

m and lower bound set to t1. If
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∑L

m=1 PD
m > PD

max and Ay ( φ (α)) < ω is not optimal, then the upper bound is set to t1. By comparing
the PD

m with PD
max, we can examine whether t1 can be achieved as mentioned.

In step 20, we get the most optimal solution among all classifiers. The proposed learning-to-
optimize-based algorithm is shown in Algorithm 1.

Algorithm 1: Learning-to-optimize-based Algorithm
1 Apply the conventional BB algorithm to find a solution to the problem and generate the set

of data that is used for training.
2 All features and optimal solutions save into X .
3 Derived two sets Xoptimal and Xnon−optimal from set X .
4 Train the y − th classifier using X y

non−optimal ∪ Xoptimal, where X 1
non−optimal, X 2

non−optimal, . . . ,
X Y

non−optimal, y = 1, 2, . . . , Y .
5 for y = 1, 2, . . . , Y do

6 Set Pub = log
(

1 + PD
max gD

max

σ 2

)
;

7 Set Plb = 0;
8 while Pub − Plb > � do

9 Set t1 =
(
Pub + Plb

)
2

, solve the optimization problem P1′ via Eq. (20) to obtain PD
m;

10 if
∑L

m=1 PD
m ≤ PD

max and Ay ( φ (α)) ≥ ω then
11 Set Plb = t1;
12 if PD

m ≤ PD∗
y then

13 PD∗
y = PD

m;
14 end if
15 else
16 Set Pub = t1;
17 end if
18 end while
19 end for

20 Select the best solution from the different classifiers PD∗ = arg
min
y = 1, 2, . . . Y PD∗

y

5.5 Complexity Analysis
The complexity of the learning-to-optimize-based algorithm can be evaluated by measuring the

expected number of nodes explored. The anticipated number of examined nodes and the number of
relaxed problems solved is O

(
M2

)
, where M is the depth of the learning-to-optimize-based algorithm

corresponding to the search procedure [12].

6 Simulation and Numerical Results

The performance of the proposed method is illustrated in this section through simulation results.
We evaluate the performance achieved by the learning-to-optimize-based algorithm and compare it
with the BB algorithm and heuristic algorithm. The optimization problem is to maximize the minimal
achievable rate where the power allocation is optimized under the Rician fading channel. It is further
obtained that the proposed learning-to-optimize-based algorithm minimizes the power consumption
under the URLLC requirements. The dataset encompasses various data elements, including node
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features, branching features, tree features, upper bound, lower bound, optimal value, the argument set
α, CSI, URLLC QoS constraints, SINR, and power allocation constraints for D2D communication.

The error tolerance threshold � is set to 0.001, and the learning rate for each classifier is set to 0.0005.
Table 1 summarizes the simulation parameters we used.

Table 1: Simulation parameters

Parameters Value

Number of cellular users UN 10
Number of D2D users LM 8
Rician K-factor K 1, 2, 4, 6, 8, 10
Noise spectral density −174 dBm/Hz
Cellular D2D links path loss model 148 + 40log(d)
Shadowing standard deviation 10 dB
Maximum transmit power PD

max 20 dBm
Maximum bandwidth Bmax 20 MHz
Maximum transmission error probability εmax 1 × 10−5

Maximum transmission time delay Tmax 0.1 ms
Maximum tolerance � 1 × 10−3

Outage probability threshold γ0 1 × 10−2

Classification threshold ω [0, 1]

The outage probability of D2D communication is demonstrated in Fig. 3 with different Rician K-
factors. The Rician parameter K affects the outage probability significantly in D2D communication.
The outage probability decreases as the Rician K-factor increases because there is a stronger line of
sight (LoS) component and a weaker propagation loss as a result of multiple paths. We observe that
communication quality improves significantly when there is a LoS between communicators.

Figure 3: Outage probability of D2D communication with different Rician K-factor
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Fig. 4 illustrates the transmit power performance of the learning-to-optimize-based algorithm
compared with the BB algorithm and heuristic algorithm. We used different Rician K-factors, and
we can see that the learning-to-optimize-based algorithm provides the optimal solution and minimum
power consumption in D2D communication.

Figure 4: Optimal transmit power of D2D communication under URLLC with different Rician
K-factor

At the same time, there is a considerable performance gap between the heuristic algorithm, BB
algorithm, and the learning-to-optimize-based algorithm, which shows the optimality of our proposed
algorithm. When the Rician K-factor increases, the transmit power is optimized because a higher K-
factor means a stronger LoS component and a weaker propagation loss due to multiple paths. We
notice that when there is a LoS between communicators, the quality of communication significantly
improves, leading to higher data rates for users.

Table 2 presents the computation time and average transmit power for different Rician K-
factors. The learning-to-optimize-based algorithm provides optimal results with lower computational
complexity. It can be seen that the proposed learning-to-optimize-based algorithm runs faster than
the BB algorithm and heuristic algorithm and also provides optimal power allocation. Heuristic
algorithms have high computational complexity but faster than the BB algorithm.

Fig. 5 plots the gap between the upper bound
(
Pub

)
and lower bound

(
Plb

)
of the transmit power

returned by the proposed algorithm and BB algorithm. We can observe that the gap Pub − Plb of the
learning-to-optimize-based algorithm reduces much faster than the BB algorithm.
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Table 2: Average transmit power (w) and average computation time (s)

K BB algorithm Learning-to-optimize-based
algorithm

Heuristic algorithm

Average
transmit
power

Average
computation
time

Average
transmit
power

Average
computation
time

Average
transmit
power

Average
computation
time

1 7.21 × 10−4 19.93 5.67 × 10−4 4.41 8.70 × 10−4 9.35
2 6.68 × 10−4 15.09 5.19 × 10−4 4.32 8.23 × 10−4 9.18
4 5.10 × 10−4 27.02 4.46 × 10−4 4.33 5.36 × 10−4 9.16
6 3.89 × 10−4 18.85 3.83 × 10−4 4.37 4.07 × 10−4 9.23
8 3.15 × 10−4 23.85 2.88 × 10−4 4.45 3.52 × 10−4 9.04
10 2.58 × 10−4 26.36 2.41 × 10−4 4.36 2.74 × 10−4 9.15

Figure 5: Convergence behavior of learning-to-optimize-based algorithm and BB algorithm with
K = 8

In Fig. 6, by comparing the achievable capacity of D2D communication, we can notice that
the Rician K-factor increases and the system capacity also improves. This is due to the strong LoS
communication and less loss of multi-path propagation. The learning-to-optimize-based algorithm
performed better than the conventional BB algorithm and heuristic algorithm. The overall perfor-
mance of the learning-to-optimize-based algorithm is better than the conventional BB algorithm and
a heuristic algorithm. Our proposed algorithm provides the minimum power consumption in URLLC
D2D communication under the Rician fading channel, which shows the optimality of our proposed
algorithm.
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Figure 6: Achievable capacity of D2D communication with different K values

7 Conclusion

This paper focused on finding the optimal power allocation in D2D communication. We consid-
ered an uplink D2D communication underlying the cellular system in a single-cell environment, and
the Rician fading channel was investigated. The impact of the Rician K-factor was examined in the
simulation and numerical results. We formulated the optimization problem of power allocation and
maximized the minimal rate of D2D communication. The learning-to-optimize-based algorithm is
proposed for optimizing the power allocation under the constraints of URLLC with Rician fading
in D2D communication. The pruning policy learns from the BB algorithm, and the unbalanced
dataset problem is handled by the undersampling method. Ensemble learning is used with supervised
learning to train and combine multiple classifiers for better performance. The learning-to-optimize-
based algorithm iteratively achieves an optimal solution and is compared with the BB algorithm
and heuristic algorithm. The study has found that the learning-to-optimize-based algorithm has
considerably lower computational complexity than the BB algorithm and heuristic algorithm and
achieves better performance than the conventional BB algorithm.
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Appendix A

Regarding the outage probability of the D2D link, we have

PD2D
out = {

sD
m ≤ s0

} = Pr
(

PD
m gD

m hD
m∑

n∈U pn,mPC
n gCD

n,mhCD
n,m

≤ s0

)
(23)

PD2D
out = 1 −

∫ ∞

sth

(∫ sD
s0

0

fsI (sI) dsI

)
fsD (sD) dsD (24)

The outage probability of D2D can be rewritten by using Eqs. (5) and (6) in Eq. (24)

PD2D
out = 1 −

∫ ∞

sth

(∫ sD
s0

0

sI
WI −1

sWI
I (WI − 1)!

exp
(

− sI

sI

)) ⎛
⎝ (K + 1)

sD
e

[
−K− (K+1)sD

sD

]
I0

⎛
⎝2

√
K(K + 1)sD

sD

⎞
⎠

⎞
⎠ dsD (25)
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Solving the inner integral of Eq. (25) and getting the outage probability as

PD2D
out = 1 − Q1

⎛
⎝√

2K,

√
2 (K + 1) sth

sD

⎞
⎠ + K + 1

sD

∑WI −1

j=0

1
j!

∫ ∞

sth

(
sD

s0sI

)j

exp
[
−K −

(
1

s0sI

+ K + 1
sD

)
sD

]

I0

⎛
⎝2

√
K (K + 1) sD

sD

⎞
⎠ dsD (26)

where Q1 (·, ·) is the first-order Marcum Q-function. Solving the integral and using Q-function to
simplify Eq. (26) [37], the outage probability can be expressed as

PD2D
out = 1 − Q1

⎛
⎝√

2K,

√
2 (K + 1) sth

sD

⎞
⎠ + a2

2K

∑WI −1

j=0

βj

j!
Q2j+1,0 (a, b) (27)

where βj =

exp

⎡
⎢⎢⎣−K+ K(

1+ sD

(K+1) s0sI

)
⎤
⎥⎥⎦

(
2+ 2 (K+1) s0sI

sD

)j , a=
√√√√√ 2K(

1+ sD

(K+1) s0sI

) and b=
√

2
(

1+K+ sD

s0sI

)
s0

sD

where WI = 1 [28,38] the Eq. (27) can be expressed as

PD2D
out = 1 − Q1

⎛
⎝√

2K,

√
2 (K + 1) sth

sD

⎞
⎠ + a2

2K
exp

[
−K + a2

2

]
Q1 (a, b) (28)

The interference-limited sth = 0, Eq. (28) can be

PD2D
out =

exp

⎡
⎢⎢⎣−K + K⎛

⎜⎝1+
sD

(K + 1) sD

⎞
⎟⎠

⎤
⎥⎥⎦

(
1 + sD

(K + 1) s0sI

) (29)

Appendix B. Proof of Theorem 1

Applying integration-by-parts

Cm = E
[
log

(
1 + sD

m

)]
=

∫ ∞

0

log (1 + z) fsD
m

(z) dz (30)

=
∫ ∞

z=0

∫ z

y=0

1
1 + y

fsD
m

(z) dydz (31)

=
∫ ∞

y=0

1
1 + y

dy
∫ ∞

z=y

fsD
m

(z) dz (32)
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=
∫ ∞

0

1 − FsD
m

(z)

1 + z
dz (33)

The Eq. (33) is derived by substituting FsD
m

(z) = Pr
(
sD

m ≤ s0

)
, where Pr

{
sD

m ≤ s0

}
is given in

Eq. (8).

Appendix C

The minimum transmit power can be derived from Eq. (9) with an auxiliary variable t1

Rm = t1 (34)

TmBm

Tmln2

[
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√
1
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(
ε∗

m

)] = t1 (35)
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)
(36)

Cm = Tmln2 ( t1)
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where

∑
n∈U pn,mPC

n gCD
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n,m + σ 2
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m

solved by outage probability Eq. (3)

PD
m = PD2D

out

{
exp

[
Tmln2 (t1)

TmBm

+
√

1
TmBm

fQ−1
(
ε∗

m

)] − 1

}
(41)


	Optimizing Power Allocation for D2D Communication with URLLC under Rician Fading Channel: A Learning-to-Optimize Approach
	1 Introduction
	2 Related Work
	3 System Model
	4 Problem Formulation
	5 Learning-to-Optimize Approach
	6 Simulation and Numerical Results
	7 Conclusion
	References
	Appendix A 
	Appendix B. Proof of Theorem 1
	Appendix C 


