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Abstract: As the internet of things (IoT) continues to expand rapidly, the
significance of its security concerns has grown in recent years. To address these
concerns, physical unclonable functions (PUFs) have emerged as valuable
tools for enhancing IoT security. PUFs leverage the inherent randomness
found in the embedded hardware of IoT devices. However, it has been shown
that some PUFs can be modeled by attackers using machine-learning-based
approaches. In this paper, a new deep learning (DL)-based modeling attack
is introduced to break the resistance of complex XAPUFs. Because training
DL models is a problem that falls under the category of NP-hard problems,
there has been a significant increase in the use of meta-heuristics (MH) to
optimize DL parameters. Nevertheless, it is widely recognized that finding
the right balance between exploration and exploitation when dealing with
complex problems can pose a significant challenge. To address these chal-
lenges, a novel migration-based multi-parent genetic algorithm (MBMPGA)
is developed to train the deep convolutional neural network (DCNN) in order
to achieve a higher rate of accuracy and convergence speed while decreas-
ing the run-time of the attack. In the proposed MBMPGA, a non-linear
migration model of the biogeography-based optimization (BBO) is utilized
to enhance the exploitation ability of GA. A new multi-parent crossover is
then introduced to enhance the exploration ability of GA. The behavior of the
proposed MBMPGA is examined on two real-world optimization problems.
In benchmark problems, MBMPGA outperforms other MH algorithms in
convergence rate. The proposed model are also compared with previous
attacking models on several simulated challenge-response pairs (CRPs). The
simulation results on the XAPUF datasets show that the introduced attack
in this paper obtains more than 99% modeling accuracy even on 8-XAPUF.
In addition, the proposed MBMPGA-DCNN outperforms the state-of-the-
art modeling attacks in a reduced timeframe and with a smaller number of
required sets of CRPs. The area under the curve (AUC) of MBMPGA-DCNN
outperforms other architectures. MBMPGA-DCNN achieved sensitivities,
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specificities, and accuracies of 99.12%, 95.14%, and 98.21%, respectively, in
the test datasets, establishing it as the most successful method.

Keywords: IoT security; PUFs; modeling attacks; evolutionary deep learning;
migration-based multi-parent genetic algorithm

1 Introduction

The Internet of Things (IoT) is a wide network of different nodes that are connected using the
Internet. Nowadays, the existence of many telecommunication networks with limited computing,
power, and communication capacity has made the necessity of IoT inevitable in many infrastructures
[1–3]. Security is one of the major concerns that needs to be considered for IoT to be practically
available in the near future, as it is with all communication networks, especially given the unique
features of IoT. Many efforts have been made so far to address security issues in the IoT, though
providing a suitable security solution considering the limitations of the IoT has been an open problem
[4–7]. Among all proposed security solutions for the IoT, physically unclonable functions (PUFs) [8]
are among the most popular primitives because they provide lightweight authentication as well as
security against physical attacks, which are among the most important attacks in IoT networks [9–14].

PUFs work as challenge-response black boxes and can be utilized to extract unique random bits by
using the unique manufacturing-related physical properties of an electronic device. In this way, many
challenge-response pairs (CRPs) can be generated as cryptographic keys for device authentication
purposes in IoT networks using the embedded PUF in IoT devices [15–17]. These responses are
typically extremely difficult for an adversary to replicate or predict. Several authentication schemes
have been introduced to eliminate the practical restrictions where a server with high computational
capacity authenticates a low-power device [18].

The Arbiter PUF (APUF) was proposed and implemented at the very beginning of PUFs as a
low-power device-oriented secret key generator [19] with a simple structure and functionality and low
implementation costs. However, it has been shown that APUFs are assailable to different modeling
threats. For example, an adversary who can get access to a set of CRPs from a PUF instance attempts
to build a mathematical framework using the gathered CRPs and predict a PUF response with a high
probability. Among all modeling attack techniques, machine learning (ML) algorithms like support
vector machine (SVM) and logistic regression (LR) have been the most favorite attacks that could
have broken the resistance of APUF. More importantly, multiple-layer perceptron neural networks
(MLPNN) have been recently employed to break the security of APUF [20–25]. On the other hand,
XOR APUFs (XAPUFs) have been recently proposed to increase the security of APUFs against
modeling attacks [26]. Although some efforts have shown that XAPUFs can be modeled by some ML-
based approaches [27–31], breaking the security of the more complex XAPUF is still an open problem.
Furthermore, the majority of the proposed XAPUF attacks place a high computational burden on the
attacker’s side. Therefore, another motivation for this paper is to propose more practical attacks for
breaking the security of complex XAPUFs structures.

According to the literature [32–43], different ML algorithms have been proposed to break the
security of XAPUFs, containing deep learning (DL), neural networks (NNs), and SVMs. Although
the most effective approach is uncertain, since 2006, DL has gained popularity in the ML field. DL
models have surpassed conventional ML models because of advancements in information availability.
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The popularity of DL techniques has also gained due to improvements in decreasing execution
time and enhancing the convergence rate. Therefore, this paper uses a deep convolutional neural
network (DCNN) to bypass the security of XAPUFs. However, an effective DL training approach
is known to be one of the major ML tasks. Gradient-based methods have significant limitations, such
as becoming stuck at local extremums in multi-objective loss functions, considerable computational
cost, and requiring continuous objective functions [44–46]. To address this challenge, researchers have
delved into the application of MH algorithms for parameter optimization in DL. In this paper, a new
migration-based multi-parent genetic algorithm (MBMPGA) has been developed to train DCNN.
MH algorithms are able to greatly enhance the training of DL models by enhancing the learning
process, leading to better accuracy and decreased computational complexity.

1.1 Paper Contributions
We intend to develop a deep architecture by proposing a novel MBMPGA to train the fully

connected NN in the proposed deep structure for achieving higher attack accuracy. The major
contributions of this paper can be summarized as follows:

• A new MH algorithm named MBMPGA is introduced to enhance the exploitation and
exploration abilities of GA by using the non-linear migration operator in BBO and multi-parent
crossover, respectively.

• The performance of a deep CNN as an attacking tool is improved by tuning the weights and
biases in its NN using the proposed MBMPGA in order to reach a high rate of accuracy for
modeling complex XAPUFs.

• The performance of the proposed MBMPGA-DCNN is compared against eight different mod-
els, namely GA-DCNN, particle swarm optimization (PSO)-DCNN, BBO-DCNN, improved
crow search algorithm (I-CSA)-DCNN, black widow optimization (BWO)-DCNN, DCNN,
MLPNN, and SVM.

• The performance of MBMPGA is evaluated using several real-word datasets, namely tension
spring design, three-bar truss design, and complex XAPUFs problems. To compare the models,
various metrics were utilized, including sensitivity, accuracy, specificity, mean square error
(MSE), receiver operating characteristic (ROC) curve, convergence curve, execution time, best
fitness function, mean fitness function, and standard deviation.

• Compared to previous attacking models, the simulation results of the proposed model on some
simulated CRPs [33] show a significant improvement in computational cost and the number of
CRPs needed for training the model.

1.2 Paper Organization
The remainder of this paper is formed as follows: Section 2 presents the related works. Section 3

presents the proposed MBMPGA algorithm. Section 4 elaborates on the DL model improved by
MBMPGA. Section 5 first measures the performance of MBMPGA using different benchmark
datasets, then compares the performance of the proposed DL architecture in modeling different
complex XAPUFs, and finally draws a conclusion about this work in Section 6.

2 Related Works

In typical modeling attacks on PUFs, by using a CRP sub-related to a PUF instance, an adversary
can drive a numerical PUF structure. Accordingly, many efforts have been made to study the resistance
of XAPUFs against machine-learning-based attacks. These efforts have usually utilized various attack
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models. Ruhrmair et al. [27] employed LR to model 4-XAPUF, 5-XAPUF, and 6-XAPUF with 64-bit
128-bit challenges, and the attack models could predict the PUF responses with 99% accuracy. With the
exception of 4-XAPUF, their attacks took some time to train their model. Tobisch et al. [30] suggested
parallelizing the LR-based technique according to [27]. By having 2 × 107 and 1.5 × 108 CRPs, a
better accuracy was achieved for 7-XAPUF and 8-XAPUF with 64-bit challenge bits. However, the
suggested modeling attack needed a long-time training process.

For the first time, Hospodar et al. [32] used an MLP neural network to attack XAPUFs. They
achieved approximately 90% accuracy when attacking the 2-XAPUF with a challenge-bit length of 64
bits. Santikellur et al. [28] introduced the earliest effective employment of DL in modeling different
types of APUF. Their modeling results have shown 98% accuracy on 5-XAPUF and 6-XAPUF with
64-bit challenge-bit length. In [29], Aseeri et al. proposed an MLP NN for the 4to8-XOR-APUF for
different challenge bits. By employing just 3 × 107 CRPs, they were able to predict the testing CRPs
of the 8-XOR-APUF with 64-bit challenge-bit length with 99% accuracy.

Mursi et al. [33] have proposed MLP-based attacks on 5to9-XOR-APUFs. Their attack’s structure
followed the Aseeri techniques, though the number of used hidden layers in NN was 50% reduced.
Shi et al. have proposed two novel modeling attacks, the logical approximation and the global
approximation, which utilize an ANN for modeling the nonlinear nature of the XOR-APUFs [34]. In
addition, an effective attack entitled CANDECOMP/PARAFAC-Tensor Regression Network (CP-
TRN) has been introduced by Santikellur et al. [31] to reduce the computational complexity of the
attack on XAPUFs. This is important to mention that CP-TRN is a type of CP-decomposition-based
TRN. Cui et al. [35] proposed an ML-based attack on different types of strong PUFs. To achieve
this, XORs in the XOR-based Multi-PUF were substituted with multiplexers [36]. According to the
literature, different ML algorithms have been proposed to break the security of XAPUFs. However,
these attacks have typically failed to model the more complex structure of XAPUF, necessitating a
large set of CRPs as well as significant computational power.

Based on the review of the papers, it becomes evident that in order to achieve more precise
modeling of complex XAPUFs problem, the utilization of more robust DL algorithms is necessary. The
optimization of parameters in DLs is a challenging task owing to their NP-hard nature. To address this
challenge, researchers have delved into the application of MH algorithms for parameter optimization
in DL. Although MH-based methods have been effective in finding optimal solutions for complex
problems, the use of MH for optimizing different DL structures is a relatively new research area. The
first attempt to employ a GA to train a DCNN was proposed in [47]. This method used the advantages
of various GA operators to train the DCNN by treating the parameters of the NN as chromosomes.
Fan et al. proposed an approach using progressive unsupervised learning (PUL) to optimize the
variables of a pre-trained DCNN [48]. Their scheme demonstrated efficient implementation and was
employed as an optimized principle for unsupervised learning. Sun et al. presented a GA-trained
DCNN in order to classify image features without requiring extra information about the used DCNN.
However, the major drawback of the mentioned scheme was that the training algorithm becomes slow
when the deep architecture is relatively large due to the large size of the GA’s chromosomes [49]. In
recent years, several other training algorithms have been introduced to enhance the performance of
different DL models [44,50].

In the context of complex APUFs, several technical gaps have been identified, leading to the
development of the proposed methodology utilizing MBMPGA for training DCNNs. The following
technical gaps have motivated the design of this novel approach:
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• Existing methodologies lack effective attack strategies specifically tailored for complex APUFs.
This gap highlights the need for an innovative algorithm that can successfully exploit vulnera-
bilities in these systems.

• Optimizing the parameters of DL models is a difficult task. To tackle this challenge, researchers
have explored the use of MHs for DL parameter optimization. Over the years, a plethora of
MH algorithms have been proposed and shown promising results in solving various engineering
problems. As problems become more intricate, the demand for new MH algorithms becomes
more apparent than ever. There are five main motivations that drive this need a) flexibility; b)
derivation-free mechanisms; c) simple and effective implementation; d) simple structure and
concepts; e) local optima avoidance. Addressing the exploration and exploitation aspects of
complex optimization problems is recognized as a challenging endeavor. To overcome these
difficulties, in this paper, a new MBMPGA algorithm has been developed to train DCNN.

• Traditional genetic algorithms often rely on a single parent population, limiting the explo-
ration and exploitation of diverse solutions. The proposed MBMPGA addresses this gap by
incorporating multiple parent populations and migration strategies to enhance diversity and
convergence speed.

3 Migration-Based Multi-Parent Genetic Algorithm (MBMPGA)

GA is a type of search algorithm that takes inspiration from Charles Darwin’s theory of natural
evolution. First presented by Holland in 1975 [37], the aim of GA is to produce offspring that are
biologically superior to their parents. The algorithm works by selecting the most competent individuals
from the population and allowing them to reproduce by producing offspring. During the reproduction
process, the genes from both parents’ crossover, leading to a genetic mutation. The offspring then
reproduce, and the cycle continues, resulting in the production of healthier generations. GA consists
of four distinct phases [38].

At the beginning of the genetic algorithm, a collection of solutions called the “initial population”
is generated. Each solution is represented by a chromosome, consisting of a set of genes that define the
variables of the problem. The next step involves selecting two pairs of chromosomes (parents) based
on their fitness values using a selection method such as the roulette wheel. The most important step in
the algorithm is the crossover operator, which involves randomly selecting a crossover point within the
genes and exchanging them between the parents to create offspring. This operator is used to enhance
the exploitation of GA by searching the space around a chromosome. The mutation is also introduced
to enhance exploration by randomly modifying the genes of some newly formed offspring.

There are several drawbacks known for the original GA e.g., weaker exploitation ability and
getting stuck in local extremums. However, if chromosomes suddenly and rapidly change their motion
space to move in the desired direction, the GA algorithm converges faster. Fig. 1 indicates the single-
point crossover operator of the normal GA. As it is observed, in this method, only two parents are
mixed, thus the chromosomes generated (offspring) are not very distinct from the parents [39].

Another disadvantage of standard single-point crossover is that it only searches the space between
two parents. If a better global search is done in GA, in addition to diversifying the answers, the
convergence curve of the GA will also improve. In this article, a novel MBMPGA algorithm is
presented as an innovative operator to enhance the exploitation and exploration of GA. In MBMPGA,
the migration operator of the BBO is employed to enhance the exploitation of GA. Multi-parent
crossover (as a new operator) is then introduced to develop the exploration ability of GA. Considering
the comparison of the performances of different migration models, in this paper, the generalized
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sinusoidal model has been used. Emigration (μk(j)) and immigration rates (λk(j)) are defined as Eqs. (1)
and (2).

μk(j) = E
2

× (−cos cos
(

k(j)π
N

+ ϕ

)
+ 1) (1)

λk(j) = I
2

× (cos cos
(

k(j)π
N

+ ϕ

)
+ 1) (2)

where k(j) denotes the rank of species in the jth habitat. E and I show the maximum rates of emigration
and immigration, respectively. Figs. 2 and 3 show examples of multi-parent crossover and migration-
based multi-parent crossover in the MBMPGA, respectively. As is observed, the value of RMSE is like
the objective function, and the lower the RMSE, the better the approach. In MBMPGA, when several
of the best parents are selected to generate a new offspring simultaneously, the resulting offspring bears
less resemblance to one parent, i.e., the offspring is more diverse (improving exploration). However,
since the offspring have obtained all of their genes from multiple chromosomes, the exploitation
of the algorithm improves. Fig. 4 shows the flowchart of the MBMPGA. The pseudo-codes of the
MBMPGA are also shown in Algorithm 1.

Figure 1: An example of a single-point crossover

4 Training DCNN Architecture

A DCNN is built upon four main layers: convolution, pooling, activation, and fully connected
layers. In the convolution layer, a convolution filter is applied to the input data to extract features.
This involves multiplying the input data with a set of values determined by the filter. The kernel then
bypasses the image multiple times, with the weights being multiplied by the input data at each position.
The kernel moves from top to bottom and from left to right to mask all the input data before an
operation is applied. The results of this process are summed up to produce a distinctive value for each
kernel position.
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Figure 2: An example of multi-parent crossover

Figure 3: An example of multi-parent crossover
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In the subsequent step, the output of the convolution operation is passed through a nonlinear
activation function known as the Rectified Linear Unit (ReLU). This function replaces all negative
values with zeros, which helps to further process the data. The pooling layer then performs the task of
reducing the input data size while retaining the most useful information. For instance, in a group of
eight pixels, max pooling selects the most noteworthy ones. This layer plays a vital role in deep learning
as it helps to reduce computational costs and minimize over fitting. Following the convolution and
pooling stages, the fully connected layer comes into play, which mainly consists of an MLP NN.

Figure 4: The flowchart of the proposed MBMPGA

Algorithm 1: Pseudo-codes of MBMPGA
1 %% Chromosomes initialization;
2 for i = 1 to N do
3 Create initial population;
4 Evaluate fitness function;
5 Set parameters;
6 Calculate the immigration and emigration rates of chromosomes;
7 end
8 %%Main loop;
9 While (termination criteria is not met) do
10 for i = 1 to N do
11 Select parents (Roulette wheel);
12 Select parents (migration rates (μ, λ));
13 Migration-based multi-parent crossover;
14 Mutation;
15 Elitism;
16 end

(Continued)
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Algorithm 1 (continued)
17 Calculate the fitness and sort the population from the best to the worst;
18 end

In our experiment setup, the deep architecture has four 1D convolutional layers with increasing
numbers of filters (32, 64, 128, and 256, respectively) with a kernel size of 5, followed by max-pooling
layers with pool sizes of 2 to reduce the dimensionality of the feature maps. Each convolutional layer
is followed by a dropout layer (0.25) to prevent overfitting. The output of the fourth convolutional
layer is flattened and passed through two fully connected layers (with 512 and 256 units, respectively)
each of which is also followed by a dropout layer (0.5). The output layer consists of a single Sigmoid
unit representing the predicted output of the XOR Arbiter PUF. The model uses the Adam optimizer
and binary cross-entropy loss function, and accuracy is used as the evaluation metric. We have used
106 CRPs of which 80% have been used for training and 20% have been used for testing.

In this paper, MBMPGA is used to train DCNN. In the suggested approach, MBMPGA tunes
the weights and biases of the DCNN. When it comes to MBMPGA modeling, a crucial objective
is to establish a chromosome-based solution. Fig. 5 demonstrates the structure of a chromosome in
MBMPGA. The cost function of the algorithm can be shown in Eq. (3).

Figure 5: Chromosome definition in proposed MBMPGA-DCNN

Mean Square Error (MSE) = 1
k

∑k

i=1
(Oi − Di)

2 (3)

where, k shows the number of samples, Oi shows the output, and Di shows the desired value. Many
chromosomes are randomly produced to build an initial population. The roulette wheel method
(Eq. (4)) and Migration rates (μ, λ) are also used to select parent chromosomes.

Pr = F(Xr)∑n

k=1 F(Xk)
(4)

where, Pr is the probability of choosing chromosome r, F (Xr)is the cost function, and n is the total
number of the initial population. The migration-based multi-parent crossover operator is the same as
Fig. 3. Finally, Fig. 6 shows the mutation operator of MBMPGA.

Figure 6: Example of the mutation operator in MBMPGA-DCNN

5 MBMPGA-DCNN Performance Evaluation

In this section, the performance of the proposed MBMPGA on two benchmark engineering
problems is measured in compared to some MHs, including GA, PSO, BBO, I-CSA, and BWO. In
the following subsection, the performance of the proposed MBMPGA-DCNN for modeling complex
XAPUFs is evaluated. All algorithms were coded in MATLAB software and the calibration variables
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of the MHs are demonstrated in Table 1. In this paper trial and error method has been used. The
objective function defines the main criterion for resetting the parameters.

Table 1: Calibration of algorithm parameters by trial and error method

Algorithm Parameter Value

Elitism percent 8%
Mutation rate 0.09
Crossover rate 0.90

MBMPGA The probability range for migrating into for each gene [0,1]
Maximum emigration (I) and immigration (E) coefficient 1
Population size 120
Iteration 300
Flight length (fl) 2

I-CSA Awareness probability (AP) 0.1
Population size 120
Iteration 300
Procreate rate (PP) 0.62
Mutation rate (PM) 0.23

BWO Cannibalism rate (CR) 0.46
Population size 120
Iteration 300
Elitism percent 13%
Mutation rate 0.11

GA Crossover rate 0.94
Population size 120
Iteration 300
The probability range for migrating into for each gene [0,1]
Maximum emigration (I) and immigration (E) coefficient 1

BBO Elitism percent 10%
Mutation rate 0.12
Population size 120
Iteration 300
The inertial movement rate (α) 0.15

PSO The movement toward the best personal experience rate (�1) 0.68
The movement toward the best global experience rate (�2) 0.83
Population size 120
Iteration 300
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5.1 Tension Spring Design
In this part, the performance of the proposed MBMPGA on a tension spring design is eval-

uated. Fig. 7 provides a schematic of the problem, and its formulation can be expressed through
Eqs. (5)–(10) [46].

f (X) = (x3 + 2)x2x2
1 (5)

Subjected to

g1 (X) = 1 − x3x3
2

71785x4
1

≤ 0 (6)

g2 (X) = 4x2
2 − x1x2

12566(x2x3
1 − x4

1)
+ 1

5108x2
1

− 1 ≤ 0 (7)

g3 (X) = 1 − 140.45x1

x2
2x3

≤ 0 (8)

g4 (X) = x1 + x2

1.5
− 1 ≤ 0 (9)

0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2 ≤ x3 ≤ 15 (10)

where, x1 = Wire diameter (d), x2 = Mean coil diameter (D), x3 = number of active coils (N).

Figure 7: A schematic view of the design of the tension spring

Table 2 indicates the results of the algorithms on the tension spring problem. The table consists
of four columns: Best of fitness, mean of fitness, standard deviation, and iteration. As is observed,
MBMPGA achieved the best objective function value (Best fitness). The best solution (by MBMPGA)
for this problem is 0.012666. MBMPGA also has the best standard deviation, as seen in the table.
Fig. 8 shows the convergence curve of MBMPGA for this problem. The x-axis represents the iterations,
while the y-axis shows the value of best fitness function. According to Fig. 8, MBMPGA has the best
convergence rate. MBMPGA, in its 75th iteration, has achieved significant advancements and emerged
with the most optimal solutions.
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Table 2: The results of proposed algorithms for a spring system problem

Algorithm Best fitness Mean fitness Standard deviation Iteration

MBMPGA 1.26660E-2 1.29025E-2 0.0000356 300
I-CSA 1.26789E-2 1.38512E-2 0.0005296 300
BWO 1.26868E-2 1.45321E-2 0.0258563 300
BBO 1.26919E-2 1.48652E-2 0.7541239 300
PSO 1.27368E-2 1.89652E-2 1.9856321 300
GA 1.27396E-2 1.98632E-2 2.5232149 300

Figure 8: The convergence curve of algorithms for spring system design problem

5.2 Three-Bar Truss Design Problem
Here, we aim to obtain the minimum weight of the three-bar truss. Fig. 9 shows an overview of

this problem and can be formulated as Eqs. (11)–(15).

f (X) = (2
√

2x1 + x2) × l (11)

Subjected to

g1 (X) =
√

2x1 + x2√
2x2

1 + 2x1x2

P − σ ≤ 0 (12)

g2 (X) = x2√
2x2

1 + 2x1x2

P − σ ≤ 0 (13)

g3 (X) = 1√
2x2 + x1

P − σ ≤ 0 (14)

0 ≤ x1, x2 ≤ 1 (15)

where, l = 100 cm, P = 2 KN/cm2 , σ = 2 KN/cm2
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Figure 9: A schematic view of the truss design problem

The outcomes of various algorithms are displayed in Table 3. The table consists of four columns:
Best of fitness, mean of fitness, standard deviation, and iteration. It is evident that MBMPGA has the
best value for the cost function, resulting in a solution of 263.921453. Furthermore, MBMPGA has
the best standard deviation, as seen in the table. Fig. 10 depicts the convergence rate for MBMPGA
and other MHs. The x-axis represents the iterations, while the y-axis shows the value of best fitness
function. MBMPGA’s convergence rate is better than those of other MHs. MBMPGA, in its 100th
iteration, has achieved significant advancements and emerged with the most optimal solutions.

Table 3: The results of algorithms for the three-bar truss design problem

Algorithm Best fitness Mean fitness Standard deviation Iteration

MBMPGA 263.921453 265.965214 0.0000483 300
I-CSA 263.974256 272.745268 0.0053269 300
BWO 264.195214 274.875632 0.0896521 300
BBO 264.865231 278.854123 1.0145893 300
PSO 265.562489 279.456328 2.7596321 300
GA 266.147023 280.214589 3.4789632 300

5.3 Simulation Results for Modeling the Complex XAPUFs
In this section, the performance of the MBMPGA-DCNN and other ML architectures for

XAPUFs is evaluated. To do so, we exploited the generated CRPs from [33] to model complex
XAPUFs. The CRPs were generated in an additive delay model (ADM)-based simulator [40]. The
APUFs used in XAPUFs are 64-bit APUFs, and the corresponding challenges within each simulation
were randomly determined from 0 to 264. Gaussian distribution with a standard deviation of σ = 40
and a mean of μ = 300 has also been utilized to uniformly determine the MUX delays in APUFs. For
this comparison, sensitivity, accuracy, and specificity analyses are utilized. These analyses are derived
from the confusion matrix and are computable as Eqs. (16)–(18).
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Figure 10: The convergence curve of algorithms for spring system design problem

Sensitivity = TP
TP + FN

(16)

Specificity = TN
TN + FP

(17)

Accuracy = TP + TN
TP + FN + FP + TN

(18)

where, TP = True positive, TN = True negative, FN = False negative, FP = False positive.

Table 4 indicates the sensitivity, specificity, and accuracy of different evolutionary DL structures
for complex XAPUF. As is observed, the MBMPGA-DCNN architecture shows the best performance
in sensitivity, specificity, and accuracy for training and validation datasets. SVM also shows the worst
performance in training and validation datasets. MBMPGA-DCNN reached 99.41% and 98.86%
accuracy in the test and training datasets, respectively. Figs. 11 and 12 indicate the comparison of
proposed structures in training and validation datasets, respectively (According to Table 4).

Table 4: Algorithms results for complex XAPUFs

Proposed
architectures

Training datasets Validation datasets

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)

MBMPGA-
DCNN

99.73 96.53 99.53 99.12 95.14 98.21

I-CSA-
DCNN

99.12 95.91 98.62 98.20 94.73 97.83

BWO-DCNN 98.72 95.17 98.19 97.65 94.77 97.51
BBO-DCNN 98.14 95.20 97.75 97.10 94.13 96.76
PSO-DCNN 97.83 94.63 96.60 96.44 93.86 95.49
GA-DCNN 97.18 93.88 96.73 96.30 93.22 95.23

(Continued)
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Table 4 (continued)
Proposed
architectures

Training datasets Validation datasets

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)

Standard
DCNN

95.08 92.50 94.06 94.04 91.16 93.19

MLPNN 94.11 91.29 93.74 93.49 90.86 92.65
SVM 92.56 90.14 92.04 91.75 89.25 91.24

Figure 11: Comparison of ML approaches in training datasets

Figure 12: Comparison of ML approaches in validation datasets
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Fig. 13 shows the ROC curve of architectures. The ROC Curve is valuable not only because it gives
us an overview of our model’s performance, but because it also gives us an easy visual to compare
the performance of different classifiers to one another. As can be seen, the area under the curve
(AUC) of MBMPGA-DCNN is better than other architectures. Table 5 shows a comparison of the
proposed models using MSE criteria. MSE is lower in the MBMPGA-DCNN architecture than in
other architectures. Thus, the introduced approach has been useful for solving this problem.

Figure 13: The ROC curve of architectures

Table 5: Comparison of the proposed models in MSE criteria

Proposed architectures Mean Square Error (MSE)

Training datasets Validation datasets

MBMPGA-DCNN 0.00005 0.00048
I-CSA-DCNN 0.00098 0.02156
BWO-DCNN 0.01181 0.07456
BBO-DCNN 0.08452 0.20156
PSO-DCNN 0.31530 0.50256
GA-DCNN 0.44215 0.63254
Standard DCNN 0.71865 0.92561
MLPNN 0.85632 0.99856
SVM 1.15638 1.35266

Fig. 14 indicates the convergence of MBMPGA-DCNN and other architectures in the accuracy
criterion. The x-axis represents the epochs, while the y-axis shows the value of MSE. In MBMPGA,
when several of the best chromosomes are selected to generate a new offspring, the resulting offspring
bears less resemblance to one parent, i.e., the offspring is more diverse. However, since the offspring
have obtained all of their genes from multiple chromosomes, the exploitation of the algorithm
improves.
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Figure 14: The convergence of architectures in the accuracy criterion

Table 6 demonstrates the trend of accuracy and execution time of all architectures in different
epochs. Based on the results, the MBMPGA-DCNN has obtained the best accuracy (99.53%) in
the shortest execution time. The accuracy of the I-CSA-DCNN, BWO-DCNN, BBO-DCNN, PSO-
DCNN, GA-DCNN, DCNN, MLPNN, and SVM is 98.62%, 98.19%, 97.75%, 96.60%, 96.73%,
94.06%, 93.74%, and 92.04%, respectively. Fig. 15 compares the total “Runtime (s)” of the different
models. As can be observed, the execution time of MBMPGA-DCNN is shorter than other models.

Table 6: The trend of accuracy and runtime of the architectures in different epochs

DL models Metric
Epoch

30 60 90 120 150 180 210 240 270 300

MBMPGA-DCNN
Accuracy (%) 89.18 92.15 92.96 93.86 96.33 97.88 98.89 99.53 99.53 99.53
Runtime (s) 70 149 791 279 331 374 460 523 600 589

I-CSA-DCNN
Accuracy (%) 88.89 90.54 92.09 93.88 94.49 95.91 97.89 98.20 98.62 98.62
Runtime (s) 81 159 244 300 347 430 490 553 600 710

BWO-DCNN
Accuracy (%) 88.29 90.18 92.49 93.27 94.51 95.20 96.88 97.83 98.01 98.19
Runtime (s) 96 179 240 302 370 439 504 586 630 735

BBO-DCNN
Accuracy (%) 86.12 88.47 91.05 91.96 92.70 93.43 95.76 96.15 97.29 97.75
Runtime (s) 120 195 240 300 390 422 500 589 669 740

PSO-DCNN
Accuracy (%) 87.08 88.84 89.15 90.45 91.86 92.19 93.47 95.16 96.50 96.60
Runtime (s) 141 215 259 320 399 462 566 651 700 790

GA-DCNN
Accuracy (%) 85.26 86.76 88.73 90.83 92.73 93.40 94.10 95.19 95.89 96.73
Runtime (s) 119 200 259 320 410 460 541 600 683 753

Standard DCNN
Accuracy (%) 80.12 81.86 84.12 88.40 89.43 90.56 91.30 92.19 93.76 94.06
Runtime (s) 170 263 360 414 490 542 630 730 800 879

MLPNN
Accuracy (%) 78.63 79.29 82.15 84.25 88.86 89.63 90.14 91.79 92.19 93.74
Runtime (s) 163 251 369 425 501 552 627 719 796 865

SVM
Accuracy (%) 75.96 77.85 81.25 82.59 85.17 88.19 89.49 90.86 91.19 92.04
Runtime (s) 112 205 308 395 474 521 603 689 762 829
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Figure 15: Total runtime of DL models

Table 7 exhibits how effective the proposed MBMPGA-DCNN model is in attacking XOR-APUF
in comparison to other methods. The “Number of CRPs” column indicates the size of the training
datasets required for successful machine learning training of the models, and the “Attacking Model”
column mentions the machine learning methods used. As demonstrated in Table 7, our approach is
more efficient than other related works in terms of the number of CRPs utilized, the needed time, and
the accuracy of the results.

Table 7: Comparison of our PUF modeling with the related works

K-XOR-APUF Method Attacking model Number of
CRPs

Train time Test accuracy

5-XOR-APUF [28]
[29]
[31]
[33]
[34]
[36]
Ours

LR
MLP
MLP
DL
ECP-TRN
FC-LSTM
MBMPGA-DCNN

80 × 104

14.5 × 104

80 × 104

4.5 × 104

8 × 104

9 × 104

6.5 × 104

2:8:0
0:10:12
0:0:58
0:2:46
0:18:00
0:1:20
0:1:10

99%
98%
99%
98%
98%
99%
>99%

6-XOR-APUF [28]
[29]
[31]
[33]
[34]
[36]
Ours

LR
MLP
MLP
LD
ECP-TRN
FC-LSTM
MBMPGA-DCNN

20 × 104

68 × 104

200 × 104

21 × 104

32 × 104

21 × 104

16 × 104

31:01:0
0:20:52
0:7:42
0:30:24
0:40:20
0:5:41
0:5:11

99%
97%
99%
98%
97%
99%
>99%

7-XOR-APUF [29]
[31]
[33]
[34]
[36]
Ours

MLP
MLP
DL
ECP-TRN
FC-LSTM
MBMPGA-DCNN

120 × 104

500 × 104

300 × 104

56 × 104

99 × 104

67 × 104

-
0:11:8
2:43:0
6:20:0
0:9:54
0:8:49

-
99%
-
97%
99%
>99%

(Continued)
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Table 7 (continued)

K-XOR-APUF Method Attacking model Number of
CRPs

Train time Test accuracy

8-XOR-APUF [31]
[33]
[34]
[36]
Ours

MLP
DL
ECP-TRN
FC-LSTM
MBMPGA-DCNN

30 × 106

40 × 106

2.7 × 106

2 × 106

8 × 105

0:23:3
6:31:0
15:50:0
0:16:18
0:19:12

99%
-
97%
99%
>99%

6 Conclusion and Future Research Direction

In this paper, we propose a novel DL-based modeling attack to break the resistance of complex
XAPUFs. More specifically, we introduce a new algorithm named MBMPGA to train the deep
architecture for obtaining a higher rate of accuracy and convergence speed while decreasing the run-
time of the attack. First, we evaluated the performance of MBMPGA on some well-known benchmark
datasets. After successfully passing the benchmark tests, we used the generated CRPs from [33] to
model complex XAPUFs using the proposed MBMPGA-based deep architecture. The simulation
results on the XAPUF dataset show that the suggested modeling attack obtains more than 99%
modeling accuracy and a high rate of specificity and sensitivity. The accuracy of MBMPGA-DCNN
on the training and validation datasets was 99.53% and 98.21%, respectively, which were the highest
accuracy rates.

The precise configuration of the MBMPGA’s initial parameters can pose a constraint, and it
may be necessary to utilize specific techniques, such as the Taguchi method. Another issue in practical
applications can the computational overhead of MBMPGA. For instance, in a single generation of the
MBMPGA, many chromosomes are produced. Typically, the computation of the loss function for all
possible solutions and selecting the best one is a complex process that requires significant computing
resources, especially for solving real-world problems, e.g., modeling more complex PUF structures.

There are several avenues for future research that can be recommended. Firstly, exploring the
adaptation of variants of MBMPGA to address a wide range of real-world problems, including
multi-objective and discrete problems, would be valuable. This would expand the applicability and
versatility of the methodology. Moreover, further work can focus on optimizing specific thresholds
within the equations of MBMPGA to enhance its efficiency. Fine-tuning these aspects can lead to more
effective optimization outcomes. The utilization of hybrid algorithms is another promising direction
for future research. Incorporating elements from different algorithms can enhance the operators within
MBMPGA and potentially improve its overall effectiveness. Considering the challenges posed by
limited training data in big data problems, future research should address this issue by proposing
DL-based approaches that utilize multiple training datasets. By leveraging diverse datasets, DLs can
overcome the limitations imposed by data scarcity and enhance their performance. Furthermore,
the next generation of DL methods is anticipated to be semi-supervised and unsupervised. Future
research should explore incorporating clustering concepts and techniques into DLs to improve their
performance and efficiency.
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As APUFs become more prevalent in security-critical applications, the development of effective
defense mechanisms against adversarial attacks becomes crucial. Future research can focus on design-
ing and evaluating robust defense mechanisms that can withstand the proposed attack methodology
and mitigate its impact. While the proposed methodology primarily focuses on complex APUFs,
future research could explore the applicability of the developed MBMPGA and DCNN-based attack
techniques to other security-sensitive domains. This could involve investigating their effectiveness in
attacking other hardware security primitives or cryptographic systems.
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