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Abstract: The combination of the Industrial Internet of Things (IIoT) and
digital twin (DT) technology makes it possible for the DT model to realize
the dynamic perception of equipment status and performance. However,
conventional digital modeling is weak in the fusion and adjustment ability
between virtual and real information. The performance prediction based
on experience greatly reduces the inclusiveness and accuracy of the model.
In this paper, a DT-IIoT optimization model is proposed to improve the
real-time representation and prediction ability of the key equipment state.
Firstly, a global real-time feedback and the dynamic adjustment mechanism
is established by combining DT-IIoT with algorithm optimization. Secondly,
a strong screening dual-model optimization (SSDO) prediction method based
on Stacking integration and fusion is proposed in the dynamic regulation
mechanism. Lightweight screening and multi-round optimization are used
to improve the prediction accuracy of the evolution model. Finally, tak-
ing the boiler performance of a power plant in Shanxi as an example, the
accurate representation and evolution prediction of boiler steam quantity
is realized. The results show that the real-time state representation and life
cycle performance prediction of large key equipment is optimized through
these methods. The self-lifting ability of the Stacking integration and fusion-
based SSDO prediction method is 15.85% on average, and the optimal self-
lifting ability is 18.16%. The optimization model reduces the MSE loss from
the initial 0.318 to the optimal 0.1074, and increases R2 from the initial
0.731 to the optimal 0.9092. The adaptability and reliability of the model
are comprehensively improved, and better prediction and analysis results are
achieved. This ensures the stable operation of core equipment, and is of
great significance to comprehensively understanding the equipment status and
performance.
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1 Introduction

With the development of the Industrial Internet of Things (IIoT), to understand the future
operating state of equipment, it is necessary to accurately capture the state characteristics of industrial
equipment and accurately predict the operating performance of equipment. Competencies in collecting
data about the equipment and predicting its abilities are key in progressing from passive maintenance
of the system to active prevention of complications. Conventional manual spot inspection methods
often lead to difficulties in quickly capturing the degradation characteristics of large industrial
equipment. Once failure or serious performance degradation occurs, a high amount of human,
material and financial losses can be incurred. The combination of DT technology and the IIoT
enables sensor-based information transfer to be linked with digital-driven state representation and
conventional device-based performance trend prediction.

Through the IIoT network, the equipment status of industrial systems can be remotely monitored,
and subject to intelligent perception as well as intelligent recognition before data-driven dynamic
representation of the equipment’s entire process is obtained. A machine learning-based optimization
algorithm is used to identify and predict the equipment’s health status; then, the lightweight digital
prediction and evaluation system is derived. These algorithms are of great significance in ensuring the
operation safety as well as the reliability and effectiveness of complex equipment.

Conventional statistical fusion of sensor data has limitations in establishing an effective correla-
tion between historical data and equipment health status. Common digital data-driven methods are
mainly based on data modeling and analysis, which often make representing the state information of
equipment in real-time difficult [1].

The DT system can fully and accurately represent the changing states of large, complicated
equipment throughout its life cycle. Thanks to the emergence of DT technology, more data on the core
equipment in the industrial system can be visually represented [2]. Within this system, bidirectional
transmission and regulation of virtual-real model data are particularly significant. The combination
of IIoT, sensor output, and big data analysis is adapted to update real-time data based on drive data
[3]. The results of the simulation control and virtual computation are applied to the physical entity to
form a closed-loop control [4]. The abilities of DT systems include simulation, monitoring, regulation,
and advanced prediction. Based on real data, the virtual system updates the representation indicators
in real-time and provides better predictive decision support for the physical system [5].

However, dynamic representation based on DT also faces some challenges when combined with
large-scale industrial equipment. In the past, researchers focused on the role of big data sample analysis
on equipment performance prediction; less attention has been paid to the complexity of real operating
environments and the instability of data samples [6]. These factors affect the accuracy of real-time
representation of a DT system. The closed-loop control of the system is based on steady-state statistical
data, and the optimal regulation of the control strategy cannot reach the effect of dynamic feedback
and real-time adjustment [7]. The evolution prediction of key equipment state depends more on expert
experience or prior degradation characteristics. Thus, the inclusive and dynamic evaluation ability of
the evaluation system has limitations [8]. To overcome the existing research problems, this paper makes
the following contributions:

• A dynamic regulation mechanism is proposed in the new DT cluster system, integrating IIoT
with algorithm optimization. The dynamic perception and intelligent feedback of complex
equipment states are realized.

• A strong screening dual-model optimization prediction method based on Stacking integration
and fusion is proposed to improve the accuracy of dynamic regulation in the DT system.
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• The real-time state representation and life-cycle performance prediction of large key equipment
are significantly optimized.

The remainder of this research article is organized as follows. Section 2 reviews and discusses
related work. Section 3 establishes the dynamic real-time feedback model based on a DT system, and
analyzes the optimization mechanism of the SSDO algorithm. Section 4 verifies the effectiveness of
the proposed model and method through experimental evaluations. Section 5 covers the conclusions
of this study and discusses future work.

2 Related Work
2.1 DT Dynamic Perception Combined with IIoT

Digital twinning is an effective means of establishing the all-platform digital state representation.
In real IIoT scenarios, dynamic representation based on a DT is gradually applied. The combination
of the IIoT and DT has gone through several signature phases [9]. In the single simulation, physical
entity simulation [10], industrial environment DT capture, DT industrial environment application, DT
and IIOT effective communication stages [11], some scholars have carried out continuous technical
exploration. It shows obvious advantages in real-time information capture and dynamic data display
[12]. For example, in an intelligent transportation system, the DT-supported IIoT architecture is
built to capture information from the equipment base station to achieve intelligent perception and
intelligent control of the infrastructure [13]. Platenius-Mohr et al. [14] built an interoperable digital
twin under the IIoT system to realize flexible transformation of information model. Cheng et al. [15]
used DT technology to build an enhanced framework for the IIoT, and propose improvement strategies
for effective data transmission from DT systems. Cecil et al. [16] proposed a network physical
framework based on the Internet of Things, which includes five collaborative entities: management
system, cloud services, network components, physical information interaction and operating equip-
ment. The combination of DT with IIoT, PLC control system, cloud storage and transmission, and
web visualization has potential applications in solving the coupling problem of different system
architectures. Tao et al. [17] conducted in-depth studies on standard model and model standardization
construction. However, there remain some difficulties in terms of explaining the real-time information
interaction of complex data-driven by big data. The industrial application of DT technology and
efficient information communication remains a major challenge for the combination of DT technology
and IIoT.

To solve these problems, the authors focus their attention on dynamic representations of industrial
information with feedback regulation. Combined with IIoT, a new DT architecture is constructed. The
real-time interactive perception between the DT system, control system, multi-sensor network, and the
physical entity is preliminarily realized. The real-time dynamic representation of complex equipment
operating state can be completed.

2.2 DT Dynamic Model Based on Machine Learning Algorithm Optimization
Digital twins can present and regulate some complex industrial operating states that are difficult

to identify intuitively. Combined with big data machine learning processing methods and deep learning
algorithm optimization, the analysis platform can independently learn, reason, train, and model.

Many scholars have studied improving the self-learning ability and self-optimization ability of
the DT system. The earliest combination of machine learning and DT models is predictive analysis
for fault diagnosis [18]. It has been gradually improved in the aspects of data cleaning, deep learning
performance prediction [19], data fusion feature extraction and complex equipment optimization [20].
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Xia et al. [21] proposed a reinforcement learning framework to adjust the risk of real-time abnormal
values to the system. Xiao et al. [22] established a bionic information physical system for smart
power plants and suggests that a smart system should possess the abilities of self-learning, self-drive
optimization, self-coordination, and global optimization. Rasheed et al. [23] modified the hybrid
prediction model driven by DT technology and uses the hybrid improved algorithm to predict the
component life, thus effectively improving the prediction accuracy of the system.

If data modeling analysis is carried out on complex DT models with insufficient data samples,
obtaining an accurate evolutionary model will be challenging. Kucera et al. [24] completed a large
number of theoretical and experimental studies on the virtual-real interaction and logic control
optimization of production systems. However, the control evaluation model relies on the experience
and knowledge of experts, and the system is prone to problems such as inaccurate, untimely, and
unintelligent representation results. Liu et al. [9] proposed a state representation and predictive analysis
method for machine learning algorithms at the application level. However, the lack of a comprehensive
evaluation mechanism needs to be considered when realizing the state representation of the whole life
cycle using this method.

To solve the above problems, the authors focus on establishing a dynamic regulation mechanism
in DT system. The existing DT-IIoT platform combined with machine learning algorithm is used
for optimization. The collected data is continuously added in real-time and the valid samples are
supplemented to engage in the global control evaluation. The proposed dynamic regulation mechanism
improves the representation and prediction ability of the DT model effectively.

2.3 Multi-Model Integration Fusion for DT Evolution Model
As the operating environment of real industrial sensors is complex, full sample data needs to be

quickly and effectively screened. Malakuti et al. [25] solved the unstable data-dependent interference
in machine learning systems by integrating DT models. Li et al. [26] proposed that multi-sensor
information fusion and error analysis are key in ensuring the accuracy of information extraction from
the source. Multi-model integration and fusion can effectively improve the prediction performance
of the model. Currently, model fusion based on weighted combination and bagging algorithm is
comparatively more widely used than fusion based on Stacking model. Some of the commonly-used
Stacking-based models include: Kernel Ridge Regression Model (KRR), Decision Tree Model (dtm),
Gradient Boosting Regression (GBDT), Random Forest (RF), and Neural Network Model (NN).
Li et al. [27] used the regression single model to optimize the parameters of a heating boiler and
realize the multi-operating condition performance optimization of the boiler. An XGBoost model is
adopted for load prediction; the load prediction of similar days is analyzed via a clustering method.
Chen et al. [28] compared this model with deep learning Long-Short Term Memory (LSTM) networks,
and conclude that the XGBoost method has more advantages in terms of higher accuracy and superior
generalization ability. Combining different types of base Stacking models leads to comparative
advantages and significantly improved prediction accuracy of the model.

The authors pay more attention to the inclusive optimization effect of the integration model.
Through the comprehensive comparison of various models, we try to obtain a more inclusive
performance prediction and evaluation system.

In summary, through the combination of DT-IIoT platform and machine learning algorithm
optimization, the DT model has the capability of multi-sensor real-time perception and equipment
performance prediction. In this paper, a dynamic, high-accuracy, and lightweight DT cluster system is
studied by combining DT-IIoT with integration algorithm optimization. The DT-IIoT optimization
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model realizes real-time dynamic feedback regulation. It also provides accurate state representation
and performance evaluation for industrial key equipment.

3 DT-IIoT Architecture and Optimization Methods

A DT-IIoT optimization model combined with integration algorithm optimization is used to
construct a dynamic regulation mechanism. The system-level real-time bidirectional regulation is
created based on algorithms and a control system. A strong-screening dual-model optimization
prediction method based on stacking integration and fusion is proposed to improve the accuracy of the
prediction algorithm. The framework of this DT-IIoT optimization model is presented in this section.

3.1 Basic Architecture of DT-IIoT Optimization Model
The DT-IIoT optimization model tries to build a DT cluster system with real-time feedback and

dynamic regulation. It provides real-time perception, state representation, and performance prediction
evaluation for industrial key equipment. The new DT system consists of an equipment acquisition
layer, data perception layer, data transfer layer, intelligent analysis layer, and display layer, as shown
in Fig. 1.
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Figure 1: Architecture of DT-IIoT optimization model for industrial key equipment

By taking advantage of real IIoT networking, multi-sensor information for industrial equipment is
captured in real-time. Time series data from the equipment layer is collected into local storage or cloud
storage to construct a real-time information management system. A DT virtual equipment cluster
model is established by 3D modeling. Data preprocessing, data state representation and performance
prediction analysis of time series data are completed in virtual space. The DT-IIoT optimization model
optimizes the above processes in subsequent order.

Data preprocessing optimization strategy: To solve the influence of discrete data instability on data
representation, the DT-IIoT optimization model uses DT virtual space to implement multiple rounds
of strong screening and optimal feature dimension reduction selection strategies to obtain more stable
data samples. By accessing, transmitting, reading, and screening the collected data in the Data transfer
layer, a data-driven sample of the DT system is obtained, and real-time data-driven trigger control is
realized.
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Data state representation optimization strategy: The dynamic regulation mechanism of DT system
with global feedback response is established. In the Intelligent analysis layer, the DT-IIoT platform
combined with machine learning algorithm is used for optimization. Continuous adding of the data
collected in real-time and supplementation of the valid samples allow participation in the global
control evaluation. The DT system continuously adds data from the management system to expand the
valid samples of the analysis model. Real-time data is used to participate in the training and correction
of machine learning models. The calculation results are fed back to the management control system
to realize the global real-time control evaluation.

Performance prediction optimization strategy: A SSDO prediction method based on Stacking
integration and fusion is proposed in the dynamic systematic regulation. A lightweight evolution
prediction system is constructed based on the inclusiveness of the integrated model, and the equipment
performance in the whole life cycle is represented digitally.

3.2 Dynamic Regulation Mechanism Implementation
The dynamic regulation mechanism, which combines the advantages of the IIoT platform and

machine learning algorithm optimization, is the global feedback regulation. It is helpful to link the
feedback adjustment of DT system to the real system and the guiding adjustment of the originally
collected data to the DT system. The steps of dynamic regulation mechanism are shown in Fig. 2. (1)
Transmitting multi-sensor data samples from the acquisition layer to DT-IIoT optimization model.
(2) Checking feedback real-time operating data between DT model and the control system. (3)
Sensing multi-sensor features to realize control triggers based on equipment performance data. (4) The
lightweight prediction model based on the Stacking-integrated optimization algorithm is constructed
to realize the evolution prediction of existing data. (5) Global real-time control evaluation: Combined
with the real-time supplementary data, the evolutionary data value is compared with the expected
value. If it meets the expectation, the iteration is continued; if not, the adjustment strategy is fed to the
real control system.
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Figure 2: Implementation steps of dynamic regulation mechanism

3.3 Stacking Integrated Optimization Algorithm Implementation
Because of the complexity, diversity and instability of industrial data, the dynamic representation

and prediction of equipment real-time performance are greatly affected. In the self-adjustment and
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reconstruction stage of the DT model, the inclusive lightweight prediction model is more conducive
to real-time representation. A SSDO prediction method based on stacking integration and fusion
is proposed. Machine learning algorithms are used to optimize the multi-sensor information fusion
process.

The stacking integration algorithm is introduced into the global fusion optimization of the DT-
IIoT optimization model. A complete dual-model prediction optimization is constructed by multi-
round optimization of the base model and meta-model. The dynamic regulation mechanism proposed
in Section 2.2 is used to achieve real-time performance prediction and evaluation. The construction
method is shown in Fig. 3. Implementation details are shown in the following section.
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Figure 3: The overall strategy of strong screening dual-model optimization (SSDO) prediction
algorithm

3.3.1 Data Preprocessing Optimization Implementation

(1) Data Lightweight Strong Screening

To eliminate the influence of discrete data instability on data representation, Spearman correlation
analysis is used to clean the multi-sensor data in DT system. Feature dimension reduction of target
performance data is implemented by a multicollinearity check. Multivariate collinearity test results of
variance inflation factor (VIF) are used as the weight value to participate in the feature heterogeneity
evaluation of Spearman correlation coefficients. Lightweight screening and accurate feature retention
of massive data are realized. The basic weight value optimization method is shown in Eqs. (1)–(3):

WE = 1
1 − R2

(1)

r = 1 − 6
n (n2 − 1)

n∑
k=1

(Rk − Qk)
2 (2)

where R2 is the coefficient of determination. Suppose (Xk, Yk) is the sample taken from the population
sample (X, Y), k = 1, 2, . . . , n, and n is the total number of samples. Rank the elements in X, Y in
ascending order. Using Rk to represent the rank of Xk in X. Using Qk to represent the rank of Yk in r.
The feature values samples with a certain correlation between x and y are selected as follows:

Feas =
{

(W1 × Fea1, . . . , Wi × Feai, . . . , Wn × Fean)opt , Wi =
n∏

i=1

ri × WEi

}
(3)
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Fea is the category of feature values, S is the optimal selection value; r is the correlation coefficient;
i is the number of feature samples;

(2) Lightweight Dimension Reduction for Multi-feature Data

Lightweight dimension reduction is considered in this part to preserve data integrity. The typical
dimension reduction methods include linear dimension reduction methods, such as PCA, ICA
(Independent Component Analysis), and MDS (Multidimensional Scaling); Kernel-based nonlinear
dimension reduction methods, such as KPCA; Feature values-based nonlinear dimension reduction
methods (manifold learning), such as ISOMAP, LLE (Locally Linear Embedding), and Spectral
Embedding methods [29]. To compare the adaptability of the above methods to industrial discrete
data processing, the implementation steps are as follows: (1) Selecting the target prediction model
Model_aim preliminarily. (2) Standardizing the preprocessed data, using 7 different classical methods
to reduce the dimension of data samples. The obtained new data samples Datai are divided into new
training sets and new test sets. (3) New data sets for each category are brought back into Model_aim
to obtain prediction results. (4) Evaluating the effects of dimensionality reduction algorithms by
evaluation index (such as R2). The optimal preprocessing algorithm Fea OPT is obtained.

Datanew = train_test_split(Datai, train, target) i = 0....6, (4)

Fea algOPT = max
{
R2_score(test_target, Predi)

}
i = 0....6 (5)

Stable data samples are obtained through multiple rounds of strong screening and comparison of
the feature dimension reduction method.

3.3.2 Dual-Model Stacking Integrated Optimization Implementation

Conventional Stacking integration models divide data sets into multiple subsets. Independent
performance prediction is performed for each multilevel training subset. The predicted results are
used as the new reference group to obtain the final prediction results. In model selection, multiple
base models and one meta-model are used to directly obtain prediction results, as shown in Fig. 3.
Because the Stacking integration structure absorbs the processing advantages of every single model,
the accuracy of the prediction model is effectively improved.

In this paper, dual-model stacking integration optimization is proposed based on the Stacking
integration structure. Dual-model and multiple rounds hyperparameter optimization are performed
for both the base model and meta-model. The implementation steps are as follows: (1) Dividing k-
fold subsets, the grid search method is used to optimize the hyperparameter of different target base
models. (2) Changing the combination number of base models, and implementing global optimization
of model accuracy, the lightweight combination structure with the highest adaptability is obtained.
(3) Optimizing the single base model with the highest accuracy again. The GWO algorithm, GA
algorithm, PSO algorithm, CV-Grid Search, and other optimization strategies are used in obtaining
the optimal meta-model. (4) The new meta-model is brought back into the Stacking integration model
to participate in the global optimization. In each round of global optimization of the integrated model,
the CV-Grid Search method is used for the first optimization. The second optimization adopts an
automatic hyperparameter tuning method, and the global optimal lightweight prediction model is
obtained. The optimization strategy flow is shown in Fig. 4.
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Figure 4: Dual-model stacking integrated optimization algorithm

In the stackingI layer, eight typical algorithms are selected as comparison targets to participate in
performance comparison and combinatorial optimization. These algorithms include: Random Forest
(RF), Gradient Enhancement (GB), Adaptive Boosting (Ada Boost), K-nearest Neighbors (KNN),
Support Vector Machine (SVR), XGBoost, Extreme Tree (ET), and Decision Tree (dt). By correlation
analysis and combinatorial optimization, a stackingI minimalist model with a high fitting degree
and the minimum number of basic models is obtained. In the stackingII layer, a prediction model
with a higher fitting degree and stronger generalization ability is selected based on the comparison
results from stackingI. The optimal real-time lightweight model is obtained through the use of local
hyperparameter tuning with feedback. Through secondary optimization, the generalization ability and
prediction accuracy of the algorithm are improved comprehensively.

3.4 Evaluation Index
To verify the global optimization performance of the system, Mean Squared Error (MSE) and

determination coefficient: R2 (R-Square) are adopted as evaluation indexes, expressed as:

(1) Mean Squared Error: MSE

MSE = 1
m

m∑
i=1

(
yi − ŷi

)2
(6)

where yi − ŷi is the real value - the predicted value on the test set. m is the number of samples.

(2) Determination Coefficient: R2 (R-square).

R2 = 1 −
∑

i

(
ŷi − yi

)2∑
i (ȳi − yi)

2 (7)

where yi: real value ŷi: predicted value.
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4 Results and Discussion
4.1 Construction of Digital Twin System

To verify the optimization effect of the DT-IIoT optimization model, the key equipment boiler in
a large power plant is applied as the research object in this paper. Taking the actual IIoT operation
data of a power plant located in Shanxi Province as a case study, all used data is self-collected data.
The steam production performance of a 2 × 350 MW circulating fluidized bed boiler is analyzed. The
DT-IIoT model of the boiler and peripheral equipment is established, as shown in Fig. 5.

(a) DT model of boiler and peripheral components (b) Global system dynamic regulation mechanism
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Figure 5: Digital twin model construction and control strategy framework

The IIoT and multi-sensor information collection are used to sense and read all kinds of real
information about boiler steam quantity and boiler peripheral equipment. The boiler is a supercritical
pressure operation boiler. It adopts a single furnace, M layout, primary intermediate reheating,
and circulating fluidized bed combustion mode. The main parameters collected by the sensor are:
mainstream flow, main steam pressure, main steam temperature, reheating steam pressure, reheating
steam temperature, feed water flow, feed water temperature, furnace negative pressure, smoke exhaust
temperature, economizer outlet flue gas oxygen content, total air supply pressure, primary air pressure,
pressure difference between bellows and furnaces, preheater outlet air temperature, coal feed to coal
feeder, primary air volume, primary air temperature, bed temperature, bed pressure, re-feed fluidized
air pressure, etc. The information collected by the sensor is mainly from the equipment information
management system of the local control system. The DT-IIoT optimization model conducts data-
based strong screening and data dimension reduction. The proposed strong screening dual model
optimization prediction method based on Stacking integration and fusion is used to dynamically
adjust the evolution prediction of steam quantity. Local 3D modeling representation based on digital
twinning is shown in Fig. 5a. The IIoT system uses Modbus and TCP communication protocols to
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obtain PLC control data, boiler operation parameters, peripheral key equipment parameters, and
other auxiliary performance parameters. The actual operation data is transferred to the DT system,
subscribed, and received/sent via the MQTT protocol. The DT virtual engine is connected by MQTT
to realize the control trigger. The dynamic regulation mechanism proposed in this paper is used to
realize the global systematic feedback regulation and state representation, as shown in Fig. 5c.

The global system dynamic regulation mechanism is shown in Fig. 5b. A machine learning-based
DT-IIoT platform works with control system to establish bidirectional response regulation. The DT
model constantly introduces data from the management system, expands the analysis model, and
uses real-time data to participate in the training and correction of machine learning model. The
training results are fed back to the management system to realize the global control evaluation. The
implementation architecture of the dynamic regulation mechanism, in this case, is shown in Fig. 6.
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DT-IIoT optimization model uses the proposed dual-model integrated optimization algorithm to
establish an evolution prediction and evaluation system. Real-time samples and prediction deviation
are introduced into DT dynamic representation by dynamic regulation mechanism. Based on multi-
sensor historical samples, the state characteristics of the target equipment are obtained. The historical
data used in this paper are the actual operation data of the boiler and peripheral components from
2021 to 2022. The local IIoT systems acquire the long-term operational data that is collected by sensors
in a 10 min acquisition cycle. Multiple rounds of strong screening and effective dimension reduction
are carried out for discrete data. The optimal applicability model is obtained through the dual-model
integration optimization to realize the prediction and evolution evaluation of steam quantity. The
real-time status display of each data collection point is shown in Fig. 5d. The data set covers the
target predicted value, which is steam quantity, and other 37 operating parameters that affect steam
production. This paper uses a set of collected data with a total of 2886 × 38 data features. There are
many unstable factors in the data, such as missing values, abnormal values, and noise interference
data, which challenge the accuracy of steam quantity prediction.

4.2 Discrete and Unstable Data Screening
The DT-IIoT optimization model makes strong screening, reduction, and fusion processing for

discrete and unstable data. The main research results are as follows:
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(1) Screening of Original Oscillation Data

A box plot is used to plan the distribution of the original data obtained in the data set, as shown
in Fig. 7. The comprehensive distribution of all original data is relatively uniform, but it still contains
data values with large deviations, such as V9, V25 and V16. Therefore, it is necessary to delete the
deviation information of the multi-sensor data that has whole sequence features, and to reduce the
dimension of complex features.

Figure 7: Data dispersion and distribution characteristics

The 37 data features are linked with the steam quantity target value. More stable data types are
obtained by fusion screening of Spearman correlation coefficient and multicollinearity test. Kernel
Density Estimation (KDE) for each feature is finally obtained, as shown in Fig. 8.

(a) Feature distribution (after preliminary screening) (b) Featuredistribution (after multicollinearity test)

Figure 8: Data screening and feature distribution

The original screening characteristics are shown in Fig. 8a. Each feature deviates from the core
region in an oscillatory manner between (0.3–0.9). The overall stability of the distribution is poor.
After strong screening, a total of 18 features are obtained. The amplitude of the highest occurrence
frequency decreases by 20%, and the core region is between (0.4∼0.8). The overall characteristic data
is relatively more stable. After two rounds of data screening, the data evolution results obtained by the
DT system are shown in Table 1.

After the original oscillation data screening and the complex feature data dimension reduction
screening, the accuracy of the DT data representation results is effectively improved. The effective
self-improvement ability reaches 6.61% and 15.13%, respectively, and the accuracy rate increases from
85.8% to 89.11%, which has a certain improvement effect.
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Table 1: Comparison of data representation accuracy before and after data instability processing

Sample size Data representation index considering initial instability

MSE value Accuracy of digital twin data representation

Sample of original discrete data 0.1582 0.858
Stable full data sample 0.1484 0.869
Sample after complexity dimension
reduction

0.1289 0.8911

(2) Adaptability Comparison of Feature Extraction Methods

Seven typical algorithms (PCA, ICA, MDS, KPCA, ISOMAP, LLE and SE) are used to test the
adaptability of different methods to discrete data representation. The results are shown in Fig. 9:

(a) Evaluation index with different methods (b) Prediction results (partial interception)

(c) Vertex trend capture in Fig. 9(b)

Figure 9: Comparison of prediction results with different feature extraction algorithms
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PCA method has the best comprehensive performance, and the fitting degree is 0.8911. KPCA,
MDS, SE and FastICA have similar fitness levels, and the fit degree fluctuated around 0.87, as shown
in Fig. 9a. The deviations between each method and PCA are shown in Table 2. Compared with PCA,
the MSE errors of ISOMAP and LLE algorithms are 32.23% and 74.46%, respectively, which are
not suitable for the screening of this sample. The Manifold Dimension Reduction method has poor
adaptability to noisy data.

Table 2: Accuracy evaluation with different feature dimension reduction methods

Implement deviation
evaluation indicators

kPCA PCA MDS Spectral
embedding

FastICA Isomap Locally linear
embedding

MES 0.1330 0.1289 0.1549 0.1412 0.1597 0.1902 0.5047
R2 0.8876 0.8911 0.8691 0.8807 0.8650 0.8392 0.5734
Relative deviation
rate (based on MSE
value)

3.06% 0% 16.79% 8.68% 19.28% 32.23% 74.46%

Part of the fitting region is randomly selected, and the range of bandwidth ±20% is used to fit
the adaptive results (blue bandwidth region, as shown in Fig. 9c). The results show that KPCA, PCA-
SVR, MDS and SE can capture the vertex features well, while FastICA, ISOMAP and LLE have poor
anti-distortion ability and weak adaptive ability.

4.3 Dual-Model Stacking Integration Model Optimization
The multi-round selection and optimization of the dual model are key in improving the accuracy

of the prediction model. The optimal lightweight model selection results are as follows:

4.3.1 Selection and Optimization of Base Model

Seven classical single algorithms are selected for comparison selection and hyperparameter
optimization, and the base model with the highest adaptability is obtained. The prediction results of
seven prediction algorithms (RF, GBR, SVR, Ada Boost, ET, dt and KNN) are fitted and compared
with the XGBoost method with strong adaptability.

The results show that the fitting accuracy of SVR is higher than that of other models. The relative
error loss values of other algorithms relative to SVR reach 146.97%, 15.57%, 8.68%, 62.21%, 43.33%
and 59.54%, respectively. RF has poor predictive performance; XGBoost with strong adaptability has
a higher fitting degree of prediction results, and its R2 value reaches 0.8796, which is more significant
than most single-fitting models. SVR performance (with R2 = 0.8911) is more prominent, as shown in
Fig. 10a and Table 3. Part of the fitting region is randomly selected, and the range of bandwidth ±20%
is used to fit the adaptive results (blue bandwidth region, as shown in Fig. 10b). The results show that
the prediction results of the initial base model cannot accurately capture the important features of the
data, and have a large deviation from the actual situation, which needs to be further improved.
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(a) Comparison of evaluation index (b) Comparison of prediction results in sub-regions

Figure 10: Prediction results of the initial base model

Table 3: Comparison of base models pre-selection results

General models RF SVR GBR Ada ET dt KNN XGB

MSE 0.3183 0.1289 0.1490 0.2091 0.1848 0.2611 0.2057 0.1425
R2 0.7309 0.8911 0.8741 0.8233 0.8438 0.7793 0.8262 0.8796
Relative deviation
rate (based on MSE
value)

146.97% 0% 15.57% 8.68% 62.21% 43.33% 59.54% 10.55%

Based on the above analysis results, the results of second-round hyperparameter tuning of each
model are compared. Using 5 K Fold cross-validation, adaptive real-time deviation data adjustment
is introduced to realize real-time optimization and improvement based on dynamic hyperparameter
adjustment. The results are shown in Table 4.

Table 4: Comparison of optimization and self-promotion ability of base models

Base model Second optimization mode MSE R2 Self-promotion (based on MSE value)

RF
Before optimization Gen model 0.318 0.731

31.76%
After optimization Opt model 0.217 0.817

SVR
Before optimization Gen model 0.129 0.891

17.05%
After optimization Opt model 0.107 0.906

GBR
Before optimization Gen model 0.149 0.874

14.77%
After optimization Opt model 0.127 0.893

Ada
Before optimization Gen model 0.209 0.823

2.87%
After optimization Opt model 0.203 0.829

KNN
Before optimization Gen model 0.206 0.826

5.34%
After optimization Opt model 0.195 0.836

XGB
Before optimization Gen model 0.142 0.879

9.86%
After optimization Opt model 0.128 0.892
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After adaptive adjustment and hyperparameter optimization, the self-improvement ability of each
model is improved. The RF model has the strongest self-improvement ability, with an improvement
rate of 31.76%. Ada Boost’s adjustment ability is limited and is only increased by 2.87%. The average
self-improvement of models is more than 10%. The XGB model combined with strong generalization
ability also gets a good promotion effect. Overall, SVR is the most effective option in base model
optimization.

4.3.2 Stacking Multi-Model Integration Optimization

The real-time analysis of massive industrial data requires the system to be lightweight. The
lightweight of prediction model is the key to the dynamic regulation mechanism. In this section,
the advantage model obtained in Section 4.3.1 will be integrated and optimized again to obtain
a lightweight dual-model optimization system. Finally, a double improvement of the prediction
algorithm is realized.

(1) The Establishment of Lightweight Integrated Algorithm Architecture

The optimized SVR OPT model is used as a meta-model, and 7 different base models are
combined and optimized to obtain correlation and error analysis. The results are shown in Fig. 11a.
The difference among SVR, Ada and KNN is the largest and the correlation of error distribution
is the lowest, but the richness of the model will be lost, as shown in Fig. 11b. RF, GBR, ET and
XGBoost are all tree-based models, and since similarity is too high, the combination is not conducive
to the structural optimization of the prediction model. The data representation effects of different
integration combinations are shown in Table 5. After deleting the base model with high similarity, the
accuracy of data representation is improved. Compared with the accuracy of data representation, the
accuracy of five models’ combination reaches 0.9065, and showed stronger advantages. The precision
of a three-model combination is slightly lower due to the decrease in richness.

(a) Predictioncorrelation with 7 base models (b) Prediction correlation with simplified model (3 base models)

Figure 11: Prediction error correlation results with the base model

To ensure the accuracy of the modeling, the data used for the first modeling is the operation
parameters of the boiler and its auxiliary equipment within one year. A lightweight model greatly
reduces the data processing time of the system. The establishment of lightweight model is of great
significance for the first large-scale computation. When 7 basic models are reduced to 5 basic models,
the running time is reduced by 132.81% from 243.12 to 104.43 s. After 5 base models are reduced to 3
base models, their running time will be reduced again by 67.74% from 104.43 to 62.39 s, as shown in
Table 5.
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Table 5: Systematic variance analysis of data representation

Base model (Opt models) Stacking
metamodel

Loss MSE R2 Run time/s

RF+SVR+GBR+ADA+ET+GBM+KNN SVR cv-opt 0.1116 0.9037 243.1245
SVR+GBR+ADA+ET+GBM+KNN SVR cv-opt 0.1117 0.9053 195.4269
SVR+GBR+ADA+ET+KNN SVR cv-opt 0.1106 0.9065 104.4317
SVR+ADA+ET+KNN SVR cv-opt 0.1094 0.9059 94.6459
SVR+ADA+KNN SVR cv-opt 0.1108 0.9063 62.3906

The optimal lightweight model obtained from the first large-scale calculation is brought into the
single real-time data again, which will effectively improve the stability of the analysis model.

(2) Stacking Fusion Construction and Optimization

Based on the effectiveness of SVR for discrete data representation, automatic tuning of the SVR
meta-model is continued in stackingII. PSO (particle swarm optimization), GA (genetic algorithm)
and GWO (Gray Wolf Optimizer) are used for real-time automatic optimization of hyperparameters,
which makes the system obtain a higher representation effect. Empirical hyperparameter tuning and
XGB self-tuning optimization [30] are used to conduct a second-round evaluation of the integrated
optimization model. The optimization results are shown in Table 6. In the automatic optimization of
SVR series algorithms, the self-lifting ability of SVR-Gwo is the highest, reaching 18.16%. The self-
lifting capacity of SVR-PSO is the lowest, with 11.68%. The mean value of the SVR series self-lifting
is 15.85%. The two-round optimization has an obvious gain effect.

Table 6: Comparison of base-meta dual model optimization

Base model
general

Stacking
model

MSE R2 Base model
opt

Stacking
model

MSE R2 Relative
self-lifting
general to opt

Self-lifting
mean value

SVR+GBR+
ADA+ET+
KNN

SVR-CV 0.1288 0.8912

svr+gbr+
ada+et+knn

SVR-CV 0.1106 0.9065 16.46%
(SVR series
optimization)
15.85%

SVR-PSO 0.1233 0.8958 SVR-PSO 0.1104 0.9067 11.68%
SVR-GA 0.1267 0.8929 SVR-GA 0.1082 0.9085 17.1%
SVR-Gwo 0.1269 0.8928 SVR-Gwo 0.1074 0.9092 18.16%
XGB 0.1412 0.8807 XGB 0.1144 0.9033 23.43% 23.43%

GWO has the best performance in similar optimization, with R2 = 0.9092 after optimization,
exceeding the predicted performance of all existing models. The optimization model reduces the loss
rate (MSE) from the initial 0.318 to the optimal 0.1074, and increases R2 from the initial 0.731 to the
optimal 0.9092. The accuracy and stability of the model are improved. Stacking integrated optimiza-
tion effectively improves the adaptability and representation accuracy of the prediction model. The
second optimization of the meta-model is an effective improvement of the dual-model integrated opti-
mization structure. The results show that the loss deviation of the secondary optimization is reduced by
20% on average after the dual-mode synchronous self-regulation optimization. The optimization effect
of SVR-GWO is the best, the accuracy rate reaches 90.92%, and the self-improvement ability reaches
18.16%. XGBoost, which initially has strong adaptability, has a greater performance improvement
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after dual-mode secondary tuning, with the largest increase of 23.43%. The strong screening dual-
model integrated optimization structure can promote the accurate representation of discrete data.

4.4 Result Representation
The representation effect of the system on part of discrete data is randomly selected, and the range

of bandwidth ±20% is used to fit the adaptive results (blue bandwidth region, as shown in Fig. 12b).

(a) Partially random region (b) Partially random region compared with Figure 10(b)

Figure 12: Base-meta dual model optimization predicted results

The results show that the system representation ability is more stable after multi-stage optimiza-
tion. Compared with the original analysis results in Fig. 10b, all alternatives are within the error margin
of 10%. The prediction value is consistent with the actual value, and the capturing ability of data
discreteness is effectively enhanced.

5 Conclusions

Digital representation and accurate prediction of key performance for large industrial equipment
is an important way to realize the whole life-cycle management for the key equipment. To solve the
difficulties in real-time information interaction and dynamic prediction of the DT-IIoT platform, a
dynamic regulation mechanism is proposed in the DT system, integrating the IIoT with algorithm
optimization. A digital dynamic representation and evolution regulation mechanism driven by indus-
trial big data is established to realize dynamic intelligent regulation. An SSDO prediction method,
based on Stacking integration and fusion, is proposed in the dynamic systematic regulation. Taking
the performance of key equipment boilers in large power plants as an example, the evolution prediction
analysis of boiler steam quantity is realized. The results show that the multi-stage tuning lightweight
structure composed of the five-element base model + the improved SVR meta-model can promote the
accurate representation of discrete data. The running time is reduced by 132.81%. The loss deviation
of the secondary optimization is reduced by 20% on average after the dual-model synchronous self-
regulation optimization. Stacking integrated optimization effectively improves the adaptability and
representation accuracy of the prediction model. Compared with the original analysis results, all
alternatives are within the error margin of 10%. The prediction and representation effect of SVR-
GWO optimization is the best, as the accuracy reaches 90.92%, and the self-improvement ability
reaches 18.16%. The adaptability and reliability of the model are comprehensively improved, and
better prediction and analysis results are achieved.



IASC, 2023, vol.37, no.3 3017

Funding Statement: This research was funded by: Major Science and Technology Project of Anhui
Province (Grant Number: 201903a05020011), Talents Research Fund Project of Hefei University
(Grant Number: 20RC14), and the Natural Science Research Project of Anhui Universities (Grant
Number: KJ2021A0995). Graduate Student Quality Engineering Project of Hefei University (Grant
Number: 2021Yjyxm09). Enterprise Research Project: Research on Robot Intelligent Magnetic Force
Recognition and Diagnosis Technology Based on DT and Deep Learning Optimization.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. A. Miguel, O. M. Carlos and D. R. Javier, “Data-driven energy prediction modeling for both energy

efficiency and maintenance in smart manufacturing systems,” Energy, vol. 238, no. 8, pp. 121691, 2022.
[2] S. Jamil, M. Rahman and Fawad, “A comprehensive survey of digital twins and federated learning for

Industrial Internet of Things (IIoT), Internet of Vehicles (IoV) and Internet of Drones (IoD),” Applied
System Innovation, vol. 5, pp. 56–71, 2022.

[3] S. Malakuti and S. Gruner, “Architectural aspects of digital twins in IIoT systems,” in Proc. of European
Conf. on Software Architecture, Madrid, Spain, pp. 1–2, 2018.

[4] Y. Lu, C. Liu, K. Wang, H. Huang and X. Xu, “Digital twin-driven smart manufacturing: Connotation,
reference model, applications and research issues,” Robotics and Computer Integrated Manufacturing,
vol. 61, pp. 101837, 2019.

[5] Y. He, J. Guo and X. Zheng, “From surveillance to digital twin: Challenges and recent advances of signal
processing for industrial internet of things,” IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 120–129,
2018.

[6] C. Zhang, G. H. Zhou, J. He, Z. Li and W. Cheng, “A data-and knowledge-driven framework for digital
twin manufacturing cell,” in Proc. of CIRP Conf. on Industrial Product-Service Systems, China, pp. 345–
350, 2019.

[7] K. Zhang, T. Qu, D. J. Zhou and H. F. Jiang, “Digital twin-based opti-state control method for a
synchronized production operation system,” Robotics and Computer Integrated Manufacturing, vol. 63,
no. 3, pp. 101892, 2020.

[8] W. C. Luo, T. L. Hu and Y. X. Ye, “A hybrid predictive maintenance approach for CNC machine tool
driven by digital twin,” Robotics and Computer-Integrated Manufacturing, vol. 65, no. 1, pp. 101974, 2020.

[9] M. N. Liu, S. L. Fang, H. Y. Dong and C. Z. Xu, “Review of digital twin about concepts, technologies, and
industrial applications,” Journal of Manufacturing Systems, vol. 58, pp. 346–361, 2021.

[10] S. Rikard, K. Wärmefjord, J. S. Carlson and L. Lindkvist, “Toward a digital twin for real-time geometry
assurance in individualized production,” CIRP Annals, vol. 66, no. 1, pp. 137–140, 2017.

[11] C. Gehrmann and M. Gunnarsson, “A digital twin based industrial automation and control system security
architecture,” IEEE Transactions on Industrial Informatics, vol. 16, no. 1, pp. 669–680, 2019.

[12] Y. M. Zhao, L. Li, Y. Liu, Y. X. Fan and K. Y. Lin, “Communication-efficient federated learning for digital
twin systems of industrial Internet of Things,” IFAC-PapersOnLine, vol. 55, no. 2, pp. 433–438, 2022.

[13] A. Niaz, S. Khan, F. Niaz, M. U. Shoukat, I. Niaz et al., “Smart city IoT application for road infrastructure
safety and monitoring by using digital twin,” in Proc. of Int. Conf. on IT and Industrial Technologies,
Chiniot, Pakistan, pp. 1–6, 2022.

[14] M. Platenius-Mohr, S. Malakuti and S. Grüner, “Interoperable digital twins in IIoT systems by transfor-
mation of information models: A case study with asset administration shell,” in Proc. Int. Conf. on the
Internet of Things, Bilbao, Spain, pp. 1–8, 2019.

[15] J. Cheng, H. Zhang and F. Tao, “DT-II: Digital twin enhanced industrial internet reference framework
towards smart manufacturing,” Robotics and Computer-Integrated Manufacturing, vol. 62, no. 4, pp.
101881, 2020.



3018 IASC, 2023, vol.37, no.3

[16] J. Cecil, S. Albuhamood and A. Cecil-Xavier, “An advanced cyber physical framework for micro devices
assembly,” IEEE Transactions on Systems Man Cybernetics-systems, vol. 49, no. 1, pp. 92–106, 2019.

[17] F. Tao and X. Ma, “Research on digital twin sttandard system,” Computer Integrated Manufacturing
System, vol. 25, no. 3, pp. 2405–2418, 2019.

[18] W. Luo, T. Hu, C. Zhang and Y. Wei, “Digital twin for CNC machine tool: Modeling and using strategy,”
Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 3, pp. 1129–1140, 2019.

[19] J. S. Yoon, J. Jordon and M. van der Schaar, “GAIN: Missing data imputation using generative adversarial
nets,” in Proc. of Int. Conf. on Machine Learning, Stockholm, Sweden, pp. 2640–3498, 2018.

[20] Z. Ren, J. Wan and P. Deng, “Machine-learning-driven digital twin for lifecycle management of complex
equipment,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 1, pp. 9–22, 2022.

[21] K. Xia, C. Sacco, M. Kirkpatrick, C. Saidy, L. Nguyen et al., “A digital twin to train deep reinforcement
learning agent for smart manufacturing plants: Environment interfaces and intelligence,” Journal of
Manufacturing Systems, vol. 58, no. 3, pp. 210–230, 2021.

[22] X. W. Xiao and F. Wang, “Bionic structure and cyber-physical system for intelligent power plant oriented
to the industrial internet,” Transactions of China Electrotechnical Society, vol. 35, no. 23, pp. 4898–4911,
2020.

[23] A. Rasheed, O. San and T. Kvamsdal, “Digital twin: Values, challenges and enablers from a modeling
perspective,” IEEE Access, vol. 99, pp. 21980–22012, 2020.

[24] L. Kucera and J. Vachalek, “The digital twin of a measuring process within the Industry 4.0 concept,” in
Proc. of Int. Conf. of Machine Design Departments, Demanovska Dolina, Slovakia, pp. 333–341, 2019.

[25] S. Malakuti, R. Borrison, A. Kotriwala and B. Kloeppe, “An integrated platform for multi-model digital
twins,” in Proc. of Int. Conf. on the Internet of Things, St. Gallen, Switzerland, pp. 9–16, 2022.

[26] G. Li and S. Zhao, “YOLO-RFF: An industrial defect detection method based on expanded field of feeling
and feature fusion,” Electronics, vol. 11, no. 24, pp. 4211, 2022.

[27] H. Li and H. Q. Wang, “Concept, system structure and operating mode of industrial digital twin system,”
Computer Integrated Manufacturing System, vol. 27, no. 12, pp. 3373–3390, 2021.

[28] M. H. Chen, Q. Y. Liu and J. S. Zhang, “XGBoost-based algorithm for post-fault transient stability status
prediction,” Power System Technology, vol. 44, pp. 1026–1033, 2020.

[29] B. Hu and Z. Q. Zhan, “Prediction research on short-term photovoltaic output based on PCA-GA-
ELMAN,” Acta Energiae Solaris Sinica, vol. 41, pp. 256–263, 2020.

[30] J. Q. Yu, W. Q. Jing and A. J. Zhao, “Cold load prediction model based on improved PSO-BP algorithm,”
Journal of System Simulation, vol. 33, pp. 54–61, 2021.


	State Accurate Representation and Performance Prediction Algorithm Optimization for Industrial Equipment Based on Digital Twin
	1 Introduction
	2 Related Work
	3 DT-IIoT Architecture and Optimization Methods
	4 Results and Discussion
	5 Conclusions
	References


