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Abstract: Due to the many types of distributed denial-of-service attacks
(DDoS) attacks and the large amount of data generated, it becomes a chal-
lenge to manage and apply the malicious behavior knowledge generated by
DDoS attacks. We propose a malicious behavior knowledge base framework
for DDoS attacks, which completes the construction and application of a
multi-domain malicious behavior knowledge base. First, we collected mali-
cious behavior traffic generated by five mainstream DDoS attacks. At the
same time, we completed the knowledge collection mechanism through data
pre-processing and dataset design. Then, we designed a malicious behavior
category graph and malicious behavior structure graph for the characteristic
information and spatial structure of DDoS attacks and completed the knowl-
edge learning mechanism using a graph neural network model. To protect the
data privacy of multiple multi-domain malicious behavior knowledge bases,
we implement the knowledge-sharing mechanism based on federated learning.
Finally, we store the constructed knowledge graphs, graph neural network
model, and Federated model into the malicious behavior knowledge base to
complete the knowledge management mechanism. The experimental results
show that our proposed system architecture can effectively construct and
apply the malicious behavior knowledge base, and the detection capability of
multiple DDoS attacks occurring in the network reaches above 0.95, while
there exists a certain anti-interference capability for data poisoning cases.

Keywords: DDoS attack; knowledge graph; multi-domain knowledge base;
graph neural network; federated learning

1 Introduction

With the rapid development in the field of 5G technology, more and more terminal devices are
connected to the Internet, and the unrestricted communication between massive terminal devices leads
to the network security issue becoming a factor that cannot be ignored [1]. Due to its concealment and
high efficiency, DDoS has become the most common attack method used by network attackers, which
seriously endangers the security of the Internet. DDoS attacks can be classified into multiple subtypes
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in terms of protocol level and traffic characteristics, for example, there are network layer DDoS attacks
[2], application layer DDoS attacks [3], low-rate DDoS (LDDoS) [4], distributed reflection denial of
service attacks (DRDoS) [5] and botnet DDoS attacks [6]. DDoS attacks tend to send more useless
traffic, so the management and application of the generated malicious behavior knowledge become a
challenge.

Knowledge bases can present data in the form of knowledge graphs [7], which can fully reflect
the potential structural relationships among data. To effectively manage the knowledge of malicious
behaviors generated by multiple types of DDoS attacks, we can use distributed knowledge base
techniques. Structurally, knowledge graphs exist in the form of directed attribute graphs and organize
data in the triad of “entity-relationship-entity” [8]. How to apply malicious behavior knowledge to
achieve DDoS detection and complete knowledge transfer between multiple knowledge bases becomes
a difficult point in applying malicious behavior knowledge.

Traditional DDoS detection is mainly based on statistical and machine learning methods [9],
which learn and identify traffic characteristics to achieve DDoS behavior detection. To evade detec-
tion, attackers continuously update their attack strategies to make the characteristics of traffic more
similar to normal traffic [10]. Graph neural network is a generalized deep learning model based on
graph structure. During training, it requires the input of feature matrix and adjacency matrix of sample
nodes. So it can take into account the feature information and structural information of the sample
nodes in the network space. Therefore graph neural networks are more effective in detecting malicious
communication behaviors occurring in the network. Meanwhile, the proposed federated learning is
a good solution to the knowledge-sharing problem among multiple malicious behavior knowledge
bases [11]. As a distributed machine learning technique, federated learning can ensure that each
participant completes multi-party joint modeling without sharing its dataset, which can greatly protect
the security of data [12]. Each participant only needs to interact with the locally trained gradients
or models obtained from the aggregation server to be able to update the global model during each
communication. Combining graph neural networks and federated learning becomes a novel approach
to applying knowledge of malicious behavior.

Therefore, this paper proposes a multi-domain malicious behavior knowledge base framework
for DDoS behavior detection to solve the above problems, and the contributions of this paper are as
follows:

1. We collected malicious behavior traffic generated by five mainstream DDoS attacks, including
network layer DDoS, application layer DDoS, low-rate DDoS, DrDoS, and botnet. Then we
completed the knowledge collection mechanism by data preprocessing and malicious behavior
dataset design.

2. We designed a malicious behavior category graph and malicious behavior structure graph
for the traffic feature information and spatial structure information of DDoS attacks and
completed the knowledge learning mechanism based on a graph neural network model.

3. We build a multi-domain malicious behavior knowledge base detection system. We complete
the knowledge-sharing mechanism of malicious behavior knowledge bases in multiple network
domains through federated learning, and the process protects the data privacy of each
knowledge base.

4. We build a malicious behavior repository to store the constructed knowledge graphs and a
detection model repository to store the local graph neural network models and global federated
learning models to complete the knowledge management mechanism.
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The study in this paper consists of five sections. Section 2 discusses the related work. Section 3
gives a detailed description of the framework proposed in the text. Section 4 gives the detailed results
and analysis of the experiments. Section 5 concludes the study of this paper and provides some
suggestions for future work.

2 Related Work

In this section, we review related work on knowledge graphs, graph neural networks, and federated
learning for DDoS detection and defense.

Knowledge graphs allow effective management and deep mining of graph-structured data. The
literature [13] provided an overview of the basic concepts and definitions of knowledge inference
and inference methods for knowledge graphs. The authors classified inference methods into three
categories: rule-based inference, distributed representation-based inference, and neural network-based
inference. Also, the authors review relevant applications of knowledge graph inference and discuss
future challenges of knowledge graph inference. The literature [14] proposed a context-aware approach
based on a knowledge base to handle intrusions generated by malicious nodes. The knowledge base
is located at the base station and is mainly used to store malicious events generated by nodes in
the network and to prevent the generation of malicious events by acknowledging cluster heads. The
literature [15] proposed a model for building a malicious behavior knowledge base based on a five-
element model. The model first extracts and constructs entities using machine learning methods to
obtain network security knowledge. The paper inferred rules partly and used the NER method to
complete the knowledge extraction method in the cyber security domain. However, the above literature
does not fully consider the graph structure characteristics of malicious behavior traffic in the network
when constructing the knowledge base.

Graph neural networks are gradually applied to DDoS detection due to their ability to learn
the spatial structure properties of sample nodes. The literature [16] proposed a graph neural network
framework called GLASS to detect and identify DDoS attacks in an SDN environment. Meanwhile,
the authors analyzed the impact of DDoS attacks on throughput, transmission delay, and other
network performance, but the authors did not complete a traceability attack on DDoS. So the literature
[17] used a graph neural network model to effectively extract the temporal and spatial features of the
network state and find the path of a DDoS attack. The literature [18] proposed a detection framework
called FAPDD. This framework includes three stages in detecting DDoS attacks: building a network
graph model, calculating network graph scatter, and dynamic threshold detection. However, none of
these literature constructs a suitable topology for the characteristics of DDoS attacks, which leads to
the inability of the model to make full use of the data.

Federated learning allows individual participants to protect their own private data premise
and complete joint training of multiple participants, which effectively solves the problem of the
insufficient amount and less variety of data. The literature [19] combined federated learning with
blockchain technology, and their anomaly detection models are chained on a distributed ledger. This
combined approach with blockchain allows the privacy and security of the data to be well maintained
through federated learning. A DDoS attack detection model called FLDDoS was proposed in the
literature [20]. The framework uses a hierarchical aggregation algorithm based on K-Means and a
data resampling method based on SMOTEENN to address the problem of the extremely uneven
distribution of detection datasets and the small percentage of attack samples. The literature [21]
pointed out that since the dataset for federated learning is distributed among multiple clients, the
data samples and labels belong to unknown cases, a situation that may significantly degrade the
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performance of federated learning. In addition to this, all the above-mentioned literature only detects
a small number of kinds of DDoS attacks and cannot achieve the detection of multi-level and multi-
species DDoS attacks.

3 Multi-Domain Malicious Behavior Knowledge Base Framework

We propose a multi-domain knowledge base framework for DDoS behavior detection, which is
built based on graph neural networks and federated learning, while we divide the overall system into
four modules. First, we introduce the overall framework of the system. Then, we detail the methods and
steps for collecting malicious traffic of DDoS attacks in the malicious behavior acquisition module.
To achieve local learning of malicious behavior knowledge, we introduce the construction algorithm
of knowledge graph and the training process of graph neural network. To protect the privacy of
participant data, we introduce the implementation principle and details of federated learning. Finally,
we present the construction method of the malicious behavior knowledge base, which will unify the
management of the knowledge generated in the system.

3.1 Framework Overview
To achieve more comprehensive detection of multiple types of DDoS attacks, we propose a multi-

domain malicious behavior knowledge base construction and application scheme. As shown in Fig. 1,
the overall framework is divided into a malicious behavior data collection module, a graph neural
network module, a federated learning module, and a malicious behavior knowledge base module.
Our system is distributed and deployed at the entrance gateways of four network domains. When
malicious behaviors of DDoS attacks occur in this domain, the malicious behavior collection module
collects malicious traffic of DDoS attacks occurring in this domain and provides source data for
the graph neural network module and the federated learning module after data preprocessing and
malicious behavior dataset design. After that, we construct the malicious behavior category graph and
the malicious behavior structure graph respectively, and the two graphs provide the feature information
and structure information of nodes for the graph neural model respectively. At the same time, we will
deposit the graph into the malicious behavior repository. After the local learning is completed, we
implement the knowledge-sharing work of malicious behaviors based on the federal learning module.
We extract the fully connected layer of the graph network model and construct a forward neural
network that can be federated for learning to implement multi-domain federation training. Eventually,
we deposit the trained local graph neural network model and the global federation model into the
detection model repository. The malicious behavior knowledge base contains the knowledge graph and
the trained models and implements a management mechanism for malicious behavior knowledge. The
malicious behavior knowledge base will model DDoS attacks occurring in the network domain based
on the knowledge graph and detection models, and then complete the DDoS behavior detection task.

3.2 Malicious Behavior Collection Module
The malicious behavior collection module implements the malicious behavior knowledge col-

lection mechanism. The main function of the malicious behavior collection module is to collect the
malicious traffic of DDoS attacks occurring in the current network domain and to design a suitable
malicious behavior dataset for the distributed architecture of the system. As shown in Fig. 2, it contains
3 steps malicious behavior acquisition, data pre-processing and malicious behavior dataset design.
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Figure 1: Multi-domain malicious behavior knowledge base framework
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Figure 2: Malicious behavior collection process

3.2.1 Malicious Behavior Collection

Since all the current DDoS attack datasets exist only for some kinds of attacks, to achieve the
detection of more kinds of DDoS attacks, we collected 5G normal traffic and 5 mainstream types
of DDoS attacks. Among them, the 5 mainstream types of DDoS attacks contain 22 small types of
DDoS attacks. We collected 22 types of DDoS attacks, including ACK, UDP, SYN, SlowBody, Shrew,
SlowHeaders, SlowRead, Ares, BYOB, Miral, Zeus, IRC-Botnet, TFTP, Memcached, DRDoS_SSDP,
DRDoS_NTP, Chargen, DRDoS_SNMP, CC, HTTP-Get, HTTP-Flood and HTTP-Post.

We use tools and scripts to simulate attacks and normal flow [22], and we use TCPCPUDUMP
[23] collect experimental flow at the network entrance of each domain for a certain period of time to
get the original data flow. Then, we use the CICFlowMeter [24] to extract the features of the traffic.
CICFlowMeter can read the packet information in the pcap file, extract the relevant flow feature
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information, and finally output 84 dimensions of feature information The number of raw datasets is
shown in Table 1.

Table 1: Statistics of the original dataset

DDoS label Included subtypes of attacks Quantity

Network layer DDoS ACK, UDP, SYN 140051
Application layer DDoS CC, HTTP-Get, HTTP-Flood, HTTP-Flood 425402
LDDoS SlowBody, Shrew, SlowHeaders, SlowRead 324299
DRDoS TFTP, Memcached, DRDoS_SSDP,

DRDoS_NTP, Chargen, DRDoS_SNMP
151198

Botnet DDoS Ares, BYOB, Miral, Zeus, IRC-Botnet 715240

As shown in Table 2, the original dataset contains 84 features. These 84 features include six
aspects of features such as stream identification features, packet header Features, flag bit features, time
features, Stream Attribute Features and payload features and payload features. Stream identification
features represent the network attribute information of a stream. Packet header features represent
the statistical features of the packet header. Flag bit features represents the statistical information of
the flag field in the communication message. Time features represent the time interval information of
packets in a stream. Stream attribute features represent the statistical features of packets in forward
and reverse streams. Packet payload features information about the number of bytes occupied by the
packet payload.

Table 2: Dataset features explanation

Feature type Feature name

Stream identification
features

Flow ID, Src IP, Dst IP, Src Port, Dst Port, Protocol, Timestamp, Label

Packet header
features

FWD Init Win Bytes, FWD Win Bytes Mean\Min\Max\Std, Bwd Init Win
Bytes, Bwd Win Bytes Mean\Min\Max\Std, Fwd Header Length
Mean\Min\Max\Std\Sum, Bwd Header Length Mean\Min\Max\Std,

Flag bit features FIN Flag Count, SYN Flag Count, RST Flag Count, PSH Flag Count,
ACK Flag Count, CWR Flag Count, ECE Flag Count, URG Flag Count,
Fwd PSH Flag, Fwd URG Flag, Bwd PSH Flag, Bwd URG Flag

Time features Flow duration, Flow IAT Min\Max\Mean\Std, Fwd IAT
Min\Max\Mean\Std\Total, Bwd IAT Min\Max\Mean\Std\Total, Active
Min\Max\Mean\Std, Idle Min\Max\Mean\Std

Stream attribute
features

Total Fwd Packet, Total Bwd Packet, Flow Bytes/s, Flow Packets/s, FWD
Packets/s, Bwd Packets/s, Down/Up Ratio, Fwd Act Data Pkts, Bwd Act
Data Pkts, Act Packet Length Mean, Act Fwd Packet Length Mean, Act
Bwd Packet Length Mean, Subflow Fwd Packets, Subflow Fwd Bytes,
Subflow Bwd Packets, Subflow Bwd Bytes, Fwd Bytes/Bulk Avg, Fwd Bulk
Rate Avg, Fwd Packet/Bulk Avg, Bwd Bytes/Bulk Avg, Bwd Bulk Rate Avg,
Bwd Packet/Bulk Avg

(Continued)



IASC, 2023, vol.37, no.3 2961

Table 2 (continued)

Feature type Feature name

Packet payload
features

Packet Length Min\Max\Mean\Std, Packet Length Variance, Fwd Packet
Length Min\Max\Mean\Std, Total Length of Fwd Packet, Bwd Packet
Length Min\Max\Mean\Std, Total Length of Bwd Packet

3.2.2 Malicious Behavior Pre-Processing

The malicious behavior collection part will output data with data anomalies, invalid features, and
other behaviors, so we need to process the collected malicious behavior.

Among the 84-dimensional flow features generated by the CICFlowMeter tool, 8 features,
including flow ID, source IP address, destination IP address, source port number, destination port
number, protocol, timestamp, and label, are not related to the popular form. This information is used
to identify the attack traffic of a particular entry and cannot be used as a classification feature. If these
features are added, it will reduce the generalization ability of the model, so we remove these features.

In addition to the invalid features, we also need to complete three tasks: anomaly data clarity,
feature coding and data normalization. For the missing values in the collected data, if we set them to
specific values or zero, it will affect the original likeness of the traffic features. Considering that we
have collected sufficient normal traffic and malicious behavior traffic, we choose to remove the traffic
with missing values. Then, we use min-max standardization to transform the values of the numerical
features to be in the range of 0–1 [2]. The dataset that completes the above steps will be input to
the dataset design module to provide a data source for the construction of the malicious behavior
knowledge base.

3.2.3 Malicious Behavior Dataset Design

Graph neural networks are more efficient for graph-structured data learning than traditional
models. And the size of the adjacency matrix for mapping node relationships grows with the amount of
data in a O

(
n2

)
relationship. Considering the training cost issue and verifying the effectiveness of the

local learning mechanism, we designed a small batch data set to verify the DDoS behavior detection
capability of the model.

Since the system is distributed and deployed in multiple network domains, we need to design
malicious behavior datasets suitable for each network domain. We divide the five malicious commu-
nication behaviors into four network domains, where each domain has data related to normal traffic
and network layer DDoS attacks. At the same time, each domain has data for one malicious behavior
alone. The multi-domain dataset we designed is shown in Table 3.

3.3 Graph Neural Network Module
The graph neural network module is used to implement a local learning mechanism for malicious

behavior knowledge. As shown in Fig. 3, the graph neural network module includes two steps
constructing a knowledge graph and graph neural network training. We construct the knowledge graph
containing the relationship of malicious behavior nodes based on the quaternion <source IP address,
destination IP address, source port number, destination port number> and timestamp information
of DDoS attack flow. We also use the graph neural network model to realize the learning work
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of malicious behavior knowledge in this domain. At the same time, we will store the constructed
knowledge graph in the malicious behavior base and store the trained local graph neural network
model in the detection model base.

Table 3: Multi-domain malicious behavior data set

Participant Category Quantity Participant Category Quantity

Party ID:10000
IP:192.168.98.79

Benign 3000

Party ID:9999
IP:192.168.98.80

Benign 3000
Network
DDoS

3000 Network
DDoS

3000

Application
DDoS

3000 Application
DDoS

333

DRDoS 333 DRDoS 3000
LDDoS 333 LDDoS 333
Botnet 334 Botnet 334

Party ID:9998
IP:192.168.98.81

Benign 3000

Party ID:9997
IP:192.168.98.82

Benign 3000
Network
DDoS

3000 Network
DDoS

3000

Application
DDoS

333 Application
DDoS

333

DRDoS 333 DRDoS 333
LDDoS 3000 LDDoS 334
Botnet 334 Botnet 3000

DDoS Datasets

Construct
knowledge graph

Graph neural
network training

Node
classification

Malicious communication
behavior dataset

Figure 3: Graph neural network module process

3.3.1 Malicious Behavior Graph Construction

There are many types of DDoS attacks. The attackers also have a variety of objectives, such
as exhausting server resources or stealing resource information. However, regardless of the type of
DDoS attack, the process always generates attack traffic, which is generating traffic characteristics. To
describe the characteristic information and structural information of malicious communication behav-
ior, we carve each malicious communication behavior as a malicious communication behavior node.

Considering that the graph neural network requires the input of the feature matrix and adjacency
matrix of malicious behavior nodes, we construct the malicious behavior category graph and the
malicious behavior structure graph respectively. The malicious behavior category graph contains
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specific malicious communication behavior nodes, which point to the traffic type node they belong
to. Each entity in the malicious behavior category graph contains 84 dimensions of traffic features
to provide feature information for DDoS behavior detection. The malicious behavior structure
graph is a knowledge graph after the coarse-grained division of nodes, containing the connection
relationship between normal traffic and five types of malicious communication behaviors, representing
the adjacency matrix between malicious behavior nodes.

Ei,j =
{

1, if Sourceip,port = Dstip,portand timestamp < 10
0, else (1)

E = {
Ei,j

}
represents the adjacency matrix between malicious behavior nodes, we use it to represent

the connection relationship between malicious behavior nodes, we first extract the <source IP address,
destination IP address, source port number, destination port number> quaternions and timestamp
information of multiple malicious communication behaviors, if two malicious behavior nodes have the
same quaternion information and the time difference between two malicious communication behaviors
occurring is less than 10 s, we consider that these two malicious behavior nodes have connection
relationship, otherwise we consider that they are not connected.

3.3.2 Graph Attention Network Model

For effective learning of the knowledge base of malicious behaviors in this domain, we introduced
the graph attention network model (GAT) [25]. The graph attention network adaptively assigns
weights to each neighbor node through an attention mechanism and improves the expressiveness of
the model by aggregating the features of the neighbors during the training process. In this paper, we
use graph attention networks to implement local learning of malicious behavior knowledge. The graph
attention network will learn the feature information and structural information of malicious behavior
nodes stored in the malicious behavior knowledge base, and then acquire the ability to detect the
collected malicious behaviors in this domain.

The feature matrix of malicious behavior nodes is denoted as h = {h1, h2, . . . , hn} , hi ∈ R
F , where N

denotes the global number of malicious traffic and F denotes the feature dimension of each malicious
traffic. If Ei,j = 1, then we calculate the value of αi,j. αi,j is the attention interrelationships, which
represents the magnitude of influence between malicious traffic node i and malicious traffic node j.
The feature vector of malicious behavior nodes h may be negative, and the Leaky ReLU function will
output non-zero values on negative inputs, which has better resistance to saturation, so GAT chooses
the Leaky ReLU function to calculate the attention coefficient.

αi,j = softmax
(
ei,j

) = exp
(
ei,j

)
∑

K∈Ni

(
ei,k

) = exp
(
Leaky ReLU

(
a

(
Whi||Whj

)))
∑

K∈Ni
(Leaky ReLU (a (Whi||Whk)))

(2)

W ∈ R
F ′×F is a shared linear change matrix that can be learned. The matrix will be applied to

each malicious traffic node, transforming the original feature space into a higher-level feature space
to obtain better node representation.

After obtaining the number of inter-correlations of all nodes, we can calculate the representation
of node features in the high-level dimensional space by node feature aggregation and forward
propagation.

hl+1
i = σ

⎛
⎝∑

j∈Ni

αi,jWhl
j

⎞
⎠ (3)
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In the process of graph neural network training, the malicious behavior category graph provides
feature information about each node, and the malicious behavior structure graph provides structural
information about the relationship between nodes. Compared with traditional deep learning methods,
graph attention networks can learn both feature information and structural relationships of malicious
behavior nodes, transforming the DDoS behavior detection task into a node classification task.

3.4 Federated Learning Module
The Federated Learning Module is used to implement a knowledge-sharing mechanism among

multiple malicious behavior knowledge bases. Transferring data among multiple malicious behavior
knowledge bases may cause cyber security issues such as privacy leakage. We transform the graph
neural network model obtained from local learning. We extract the fully connected layers of the graph
neural network and the corresponding parameters, and then construct a forward propagation neural
network that can perform the classification task. Then, we let the model be federated between multiple
domains for training, allowing the local model to gain the ability to detect malicious behavior in other
network domains. For example, domain 1 contains datasets of low to medium-rate DDoS attacks, and
domain 2 does not contain datasets of low-rate DDoS attacks, so its ability to detect low-rate DDoS
attacks cannot be obtained in the local learning phase. But through federal learning, domain 2 can
learn the low-rate DDoS attack data contained in domain 1, and then obtain the ability to detect this
kind of DDoS attack.

We extract the forward-propagating fully connected layer of the graph neural network model,
construct it into a deep network model. The specific algorithm is described as shown in Algorithm 1,
which is implemented by 4 participants and 1 federated server. Our model uses 2 fully connected layers
to complete the extraction of features and uses a softmax function in the output layer to complete the
DDoS behavior detection task.

Algorithm 1: Off-line training algorithm
Input: K participants, Epoch E, learning rate η

1. /∗Central server∗/
2. for i=0; i < E; ++i
3. Receive the gradient of each participant gk

4. Calculate the polymerization gradient g = ∑K

k=1

nk

n
gk

5. Send aggregation gradient to each participant
6. endfor
7. /∗Client update∗/
8. Import the trained model parameters
9. for t=0; t < E; ++i
10. for j=0; k < K; ++j
11. Each participant calculates the local gradient gk,t = ∇Fk,t (wt)

12. Send gk,j to the central server
13. Get the Polymerization gradient from the server g
14.. update local NN model wt+1 ← wt − ηg
15.. endfor
16. endfor

The local model of each participant encrypts the gradient using homomorphic encryption [26]
after the gradient is computed, and the aggregation server uses secure aggregation techniques to
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achieve privacy protection of the model parameters after receiving the encrypted gradient [27]. After
that, the aggregation server distributes the encrypted gradient obtained by the aggregation to each
participant. Each participant updates the local model after the decryption step.

3.5 Malicious Behavior Knowledge Base Module
As shown in Fig. 4, The workflow of the malicious behavior knowledge base is divided into

five steps. Step 1: The malicious behavior collection module collects simulated attack traffic within
the network domain and Internet-initiated attack traffic. The simulated attacks within the network
domain are labeled data. Step 2: The labeled data is exported to the malicious behavior base to build
the knowledge graph. Step 3: The malicious behavior base provides feature information and structure
information of malicious behavior nodes to the detection model base to train the model. Step 4:
Outputs unlabeled data to the detection model base for detection. Step 5: Feeds the detection results
to the malicious behavior repository to increase the knowledge capacity of the malicious behavior
knowledge base.

Figure 4: Working process of malicious behavior knowledge base

When a DDoS attack occurs in the network, the detection model identifies it, and at the same
time adds the detection results to the malicious behavior base. This process continuously expands the
capacity of the knowledge base, thus realizing an effective knowledge management mechanism.

3.5.1 Malicious Behavior Base

The malicious behavior repository organizes the data in the form of a knowledge graph, and the
mathematical representation of the knowledge graph is shown in formula (3)

Knowledge Graph = 〈E, R, P〉 (4)

E denotes the set of entities in the knowledge graph, which is the mathematical representation of
the objects stored in the knowledge graph. R denotes the connection between different entities, which
is the mathematical representation of the objects associated with the knowledge graph. P Represents
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the set of attributes in the knowledge graph, which are the characteristics possessed by entities and
relations.

The malicious behavior category graph includes six types of entity nodes, which are communi-
cation behavior, malicious communication behavior, normal communication, DDoS attack traffic,
normal traffic, and entity behavior nodes. The entity behavior node corresponds to one specific
communication behavior, and all the remaining nodes are virtual nodes to indicate the type of
communication behavior. The entity behavior node points to the DDoS attack node or normal
traffic node, and the DDoS attack type node points to the corresponding malicious communication
behavior. The malicious behavior category graph shows the relationship before and after coarse and
fine granularity division of DDoS attack types, while the graph manages the feature information
of multi-category and multi-level DDoS attack traffic, which provides source data for analyzing
the characteristics of DDoS attacks and training of detection models. The entities, attributes and
relationships of the malicious behavior category graph constitute a triad as shown in Table 4. The
relationship indicates which type of node this type is related to.

Table 4: Triads of malicious behavior category graph

Entity Attribute Relationships

Communication behavior Virtual node Malicious/normal communication
Malicious communication Virtual node Communication behavior
Normal communication Virtual node Communication behavior
DDoS attack traffic Virtual node Malicious communication
Normal traffic Virtual node Normal communication
Entity behavior node Traffic feature Related traffic type

The malicious behavior structure graph includes six types of entity nodes, which are normal
traffic, network layer DDoS attack, application layer DDoS attack, LDDoS attack, DrDoS and botnet
nodes. In the malicious behavior structure graph, the same type of malicious communication behavior
nodes is connected after satisfying the spatial and temporal relationships. The graph can model
and portray the relationship between different malicious communication behaviors, while providing
structural information of malicious behavior nodes for the detection model. The entities, attributes
and relationships of the malicious behavior structural graph diagram constitute a triad as shown in
Table 5.

Table 5: Triads of malicious behavior structure graph

Entity Attribute Relationship

Normal traffic Traffic feature Related other normal traffic node
Network DDoS Traffic feature Related other network DDoS node
Application DDoS Traffic feature Related other application DDoS node
LDDoS Traffic feature Related other LDDoS node
DrDoS Traffic feature Related other DrDoS node
Botnet DDoS Traffic feature Related to other botnet node
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3.5.2 Detection Model Base

The detection model base stores the network structure of the model and the parameters obtained
after training, and it is represented by the formula as shown in formula (4).

Detection Model = 〈S, W〉 (5)

S denotes the network structure of the local model or the global model, and W denotes the final
parameters obtained from model training and learning. We store the models as h5 files, which can
preserve the complete network structure and parameter information of the models. The detection
model repository manages the graph neural network model and the federation model. The detection
model allows the malicious behavior knowledge base to gain DDoS behavior detection capability. We
deploy it distributed at the ingress gateway of each network domain to identify all traffic uniformly
and provide guidance for detecting and mitigating malicious communication behaviors occurring in
the network.

4 Experimental Results
4.1 Experimental Environment

Our experimental topology environment is shown in Fig. 5. We build the experimental environ-
ment based on the virtual platform of VMware vSphere. There are 4 hosts for the federated learning
participants, while Participant 1 will act as the aggregator. Each host has an OS version of Ubuntu
18.04, 8 virtual cores, and 16 GB of memory. our graph neural network model is based on TensorFlow
[28], and our federation learning experiments are based on the FATE [29].

Figure 5: Network topology of the experimental environment

Each participant only collects the relevant data of its connected DDoS attack domain. For
example, the data of Participant 1 is collected through router 1. It only has the relevant data of network
layer DDoS attacks, application layer DDoS attacks and normal traffic. Therefore, he will not have
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the relevant data on other types of DDoS attacks, so the participant’s ability to detect other types of
DDoS in the local learning stage will be limited.

4.2 Knowledge Graph Construction Results
4.2.1 Initial State of Malicious Behavior Base

Our system captures both labeled traffic and unlabeled traffic. For labeled traffic, we can directly
determine the connection relationship with other nodes based on the type of malicious behavior nodes.
However, for unlabeled traffic, we can only discriminate it by the detection model and then incorporate
it into the knowledge graph. Fig. 6 represents the initial state of the malicious behavior base. We import
both labeled traffic and unlabeled traffic into the knowledge base. Normal communication behaviors
and the five types of malicious communication behaviors are labeled into corresponding colors and
clustered together, while the unlabeled traffic is scattered around the various known labeled traffic.
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Figure 6: Initial state of the malicious behavior base

4.2.2 Build Malicious Behavior Knowledge Graph

For labeled traffic, we can construct a malicious behavior category graph and a malicious behavior
structure graph based on their types. Among them, the malicious behavior category graph describes
the category and characteristic information of malicious behavior nodes. To show the basis of our
classification of 22 DDoS attacks into 5 malicious communication behaviors, we make each entity
behavior node point to the DDoS attack type node it belongs to, and let the DDoS attack traffic
type node point to the malicious communication behavior category node it is classified into. Fig. 7
represents our preliminary malicious behavior category graph, brown nodes are unknown label nodes,
which need to be added to the knowledge graph after model detection.
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Figure 7: Initially constructed malicious behavior category graph

The malicious behavior structure graph depicts the structural information of the malicious
behavior nodes. For the entity behavior nodes of known category, we divide them into different clusters
according to the method described in Subsection 3.2.3, and connect the malicious behavior nodes with
relationships within the clusters. Fig. 8 represents our initial construction of the malicious behavior
structure graph, where the brown nodes denote the unknown labeled nodes. The unknown label nodes
can only be connected to the corresponding clusters after being detected by the model.

4.2.3 Update of Knowledge Graph

The graph neural network performs semi-supervised learning for malicious behavior nodes that
have constructed relationships, and it is unable to perform feature aggregation for nodes that do
not construct the spatial structure. The federated learning model can identify nodes with unknown
labels. We feed the results of the federation learning model detecting the obtained labels into the
malicious behavior base and add the corresponding nodes to the malicious behavior category graph
and malicious behavior structure graph. As shown in Figs. 9 and 10, after the model training and
learning, the structure of the knowledge graph is established for all nodes in the malicious behavior
base. The knowledge graph is updated with more feature information and structure information of
malicious behavior nodes.
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Figure 8: Initially constructed malicious behavior structure graph
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Figure 10: Malicious behavior structure graph

4.3 Model Detection Results
4.3.1 Analysis of Learning Structure Information

In the process of training, the graph attention network will aggregate the characteristics of
malicious behavior nodes according to the adjacency matrix, so that the model can learn the structural
information of malicious behavior nodes. We use the distance between classes to measure the learning
of graph neural network for the structural characteristics of malicious behavior nodes.

dis = tr (Bk)

k − 1
=

∑k

q=1 nq

(
cq − cE

) (
cq − cE

)T

k − 1
(6)

In formula (6), k represents the total number of categories, nq represents the number of nodes
of category q, cq represents the central coordinates of the category q, and cE represents the central
coordinates of all nodes. As shown in Fig. 11, during the training process, the inter-class distance of
different clusters gradually increases, and the accuracy of model detection increases. This is because
the greater the distance between classes, the easier the classifier can find the boundaries of different
classes. Therefore, graph neural network can better complete the task of node classification and DDoS
behavior detection according to the spatial structure of malicious behavior nodes.

4.3.2 Comparison of Local Model and Global Model

Each participant only collects the relevant data of its connected DDoS attack domain. For
example, the data of Participant 1 is collected through router 1. It only has the relevant data of network
layer DDoS attacks, application layer DDoS attacks and normal traffic. Therefore, he will not have
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the relevant data on other types of DDoS attacks, so the participant’s ability to detect other types of
DDoS in the local learning stage will be limited.

Figure 11: Change trend of detection accuracy and inter-class distance

Table 6 shows the results of the comparison between the local model and the federated model for
the four participants. As can be seen, since each participant has data for both benign and network
DDoS, each participant’s local model is effective in detecting both types of traffic. In addition to
this, each participant shows better results for the datasets they alone own. For example, Party 1000
for application layer DDoS attacks, Party 9999 for DrDoS, Party 9998 for LDDoS, and Party 9997.
For Party 9999, the accuracy of detection is only 0.3212 due to the lack of data on application-layer
DDoS attacks. after the joint training of multiple malicious behavior knowledge bases, the accuracy of
application-layer DDoS attacks improves from 0.3212 to 0.985, and the recall improves from 0.7719
to 0.9240. This proves that the federated learning module effectively completes the knowledge-sharing
mechanism among multiple malicious behavior knowledge bases.

4.3.3 Comparison of Multi-Domain Detection Algorithm

To verify the effectiveness of our framework in multi-domain DDoS behavior detection, we
compare the scheme adopted in this paper with the HomoNN (Homogeneous Neural Network) [30]
and HomoSecureBoost [31]. As shown in Fig. 12, we can see that the detection effect of the knowledge
base framework in normal traffic, network layer DDoS attack, application layer DDoS attack and
DrDoS attack is slightly higher than the other two schemes. Especially in the accuracy of Botnet and
the recall rate of low-rate DDoS attacks, the method proposed in this paper has better performance.
This is because the knowledge base framework has acquired the ability to detect malicious behavior
in the local learning stage, thus helping the federated learning stage to obtain better results.

To demonstrate that local training accelerates the federated learning process, we analyzed the over-
all time consumption of the system. As shown in the red part of Fig. 13, the time consumption of our
multiple hosts for federated learning is much lower than that of the HomeNN and HomeSecureBoost.
The green and orange parts of the figure are the construction of the malicious behavior knowledge
graph and the training time consumed by the graph neural network, respectively. These two parts are
performed independently, and each participant could complete both parts at any point before the
start of the training. As can be seen, our local training process accelerates the learning process of the
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federation training, which is because our scheme has already learned some initial weights in the local
model, so the federation learning time has been greatly reduced.

Table 6: Comparison between the local model and global model

Model name Category Precision Recall Model name Category Precision Recall

Benign 1 0.9196 Benign 1 0.9257
Network
DDoS

0.9750 0.9613 Network
DDoS

1 1

Local model
party10000

Application
DDoS

0.9360 0.9504 Local model
party 9999

Application
DDoS

0.3212 0.7719

DrDoS 0.9310 0.8182 DrDoS 1 0.9967
LDDoS 0.6061 0.9091 LDDoS 0.8 1
Botnet 0.4545 0.7895 Botnet 0.9683 0.9242

Benign 0.9787 0.8747 Benign 1 0.9086
Network
DDoS

0.9857 0.9787 Network
DDoS

0.9913 0.9879

Local model
party 9998

Application
DDoS

0.6431 0.7120 Local model
party 9997

Application
DDoS

0.4156 0.3333

DrDoS 0.8966 0.7879 DrDoS 0.9833 0.9219
LDDoS 0.8990 0.9745 LDDoS 0.5231 0.9444
Botnet 0.6667 0.9167 Botnet 0.9918 0.9618

Model name Category Precision Recall

Benign 0.9867 0.99
Network DDoS 1 1

Federated learning model Application DDoS 0.9850 0.9640
LDDoS 0.9721 0.9838
DrDoS 0.9881 1

Figure 12: Comparison of different methods
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Figure 13: Time-consuming analysis

4.3.4 Poisoning Data Experiment

We designed the data poisoning dataset to verify the anti-interference capability of the system.
We manually set the label of the original data as error label and increase it by 0.05. As the percentage
of data contamination increases, the detection accuracy of the system keeps decreasing. As shown
in Fig. 14, we show the variation of accuracy of the model for the four participants in our system,
and we also show the best and worst performance of HomoNN and HomeSecureBoost among the
four participants. We can see that the resistance of the Party9999 and Party9997 participant models
is better than the HomoNN and HomoSecurebost algorithms, and the performance of the other two
participants is higher than the poorer performance of the HomoNN and HomoSecurebost. In terms
of average performance, our system performs better than the other two algorithms. In general, when
the proportion of incorrect labels is less than 20%, the detection performance of each participant in
our system can still reach above 0.8. When the proportion of incorrect labels is greater than 20%, the
detection accuracy of the system for malicious communication behavior will be significantly reduced.

Figure 14: Influence of data poisoning on system detection accuracy
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4.3.5 Online Detection Experiment

We deploy the federated model at the network entry point and perform real-time attacks to verify
the detection performance of the model in real scenarios. It is worth noting that when performing
online detection, we should ensure that the normalized scale of the model input data is uniform with
the training data, otherwise it can have very bad consequences. As shown in Fig. 15, we demonstrate
the detection performance for various attacks under different time windows. The time window refers to
the time when the attack traffic is collected, and the detection performance can be best demonstrated
when the time window is 120 s. Although the online detection performance is slightly worse than the
offline detection, the detection performance of each attack can still reach above 0.95 in the 120 s time
window.

Figure 15: Online detection of experimental effects

5 Conclusion

In this paper, we implement a multi-domain malicious behavior knowledge framework for DDoS
behavior detection. We collected 5G normal traffic and 5 mainstream types of DDoS attacks. To deeply
mine the feature information and structural information of malicious communication behaviors, we
construct two malicious behavior knowledge graphs. Meanwhile, we complete the local knowledge
learning mechanism based on the graph attention network. Then, we implement a knowledge-sharing
mechanism among multiple malicious behavior knowledge bases based on federation learning, and
the process protects the data privacy of each participant. The experimental results show that we can
achieve detection effectiveness above 0.95 for most types of attacks. Finally, we store the constructed
knowledge graphs and the trained models in the malicious behavior knowledge base. The malicious
behavior knowledge base guides the detection and mitigation of malicious communication behaviors
occurring in the network in the future.

In the future, we will investigate how to mitigate the impact of data poisoning on the model. We
will also consider optimizing the structure and parameters of the graph neural network model and the
federated learning model to further improve the accuracy of detection.
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