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Abstract: Modern vehicles are equipped with multiple Electronic Control
Units (ECUs) that support various convenient driving functions, such as
the Advanced Driver Assistance System (ADAS). To enable communication
between these ECUs, the Controller Area Network (CAN) protocol is widely
used. However, since CAN lacks any security technologies, it is vulnerable to
cyber attacks. To address this, researchers have conducted studies on machine
learning-based intrusion detection systems (IDSs) for CAN. However, most
existing IDSs still have non-negligible detection errors. In this paper, we pro-
pose a new filtering-based intrusion detection system (FIDS) to minimize the
detection errors of machine learning-based IDSs. FIDS uses a whitelist and
a blacklist created from CAN datasets. The whitelist stores the cryptographic
hash value of normal packet sequences to correct false positives (FP), while
the blacklist corrects false negatives (FN) based on transmission intervals and
identifiers of CAN packets. We evaluated the performance of the proposed
FIDS by implementing a machine learning-based IDS and applying FIDS to
it. We conducted the evaluation using two CAN attack datasets provided by
the Hacking and Countermeasure Research Lab (HCRL), which confirmed
that FIDS can effectively reduce the FP and FN of the existing IDS.

Keywords: Controller area network; machine learning; intrusion detection
system; automotive security

1 Introduction

A modern vehicle is not just a means of transportation, but also a large mobile computer integrated
with software. With the development of software technology, a variety of Advanced Driver Assistance
Systems (ADAS) technologies, such as Lane Departure Warning (LDS), Adaptive Cruise Control
(ACC), and Lane Keeping Assist (LKA), have been installed in vehicles. To efficiently control the
numerous Electronic Control Units (ECUs) of vehicles, numerous in-vehicle networks have been
studied. Controller Area Network (CAN), which was registered as the ISO 11898 standard in 1993, is
used as the de facto standard in the automotive industry [1].

CAN is an in-vehicle communication protocol developed by Robert Bosch that allows ECUs
to communicate with each other. However, when CAN was initially developed, security was not

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.



https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.039992
https://www.techscience.com/doi/10.32604/iasc.2023.039992
mailto:hyojinjo86@gmail.com

2942 TASC, 2023, vol.37, no.3

considered at all, and therefore there were no encryption, authentication, or integrity verification
technologies available. Generally, there are two ways to access the CAN network: the first is through
a physical access point using the On-Board Diagnostic (OBD-II) port installed on every vehicle,
and the second is through a remote access point such as Wi-Fi, Bluetooth, and Cellular, etc. A
malicious attacker can control a vehicle through these access points by injecting CAN messages that
can manipulate various vehicle operations.

As research on cyber-attacks on the in-vehicle CAN has progressed, research on defense solutions
such as IDS has also been actively conducted. In-vehicle IDS is typically divided into two types:
a packet-based IDS and a window-based IDS, depending on the number of packets required for
attack detection. The packet-based IDS has the advantage of a relatively fast intrusion detection speed
because the number of packets required for attack detection is small. However, it has the disadvantage
of difficulty in analyzing the correlation between consecutive packets. On the other hand, the window-
based IDS can analyze the correlation of successive packets. Recently, IDSs using deep learning
technology have been proposed. However, the proposed IDSs have limitations in that they often result
in FP and FN. Therefore, this paper proposes a study of a Filtering-based IDS (FIDS) that utilizes
whitelist and blacklist to improve the detection rate of existing IDSs.

The main contributions of this paper are as follows:

e In this paper, a filtering-based IDS (FIDS) is proposed to minimize the detection errors of
machine learning-based IDSs. FIDS is composed of two parts: a whitelist and a blacklist.
The whitelist stores the cryptographic hash information of normal packet windows containing
regular CAN packets, while the blacklist contains information about abnormal packet windows
resulting from attacks, such as the number of CAN IDs in a packet window and the presence of
unused CAN IDs. In addition, FIDS can be used in conjunction with any other packet window-
based IDS:s.

e Through experiments using CAN datasets from two real vehicles, it has been confirmed that
FIDS can reduce the detection errors of machine learning-based IDSs.

The structure of this paper is as follows. In Section 2, related works on different defense solutions
for detecting cyber-attacks on CAN are presented. Section 3 provides background knowledge on
CAN. Section 4 introduces the proposed FIDS. Section 5 evaluates the performance of FIDS through
experimental results. Finally, Section 6 presents the conclusion of the paper.

2 Related Work

When the CAN was originally developed, security was not a priority. Consequently, research has
been conducted to identify various vulnerabilities and potential cyber-attacks on the CAN, leading to
the development of IDS as a defense solution. As outlined in [2], IDSs for CAN can be classified into
three metrics, the number of frames required to detect an attack, the type of data used for detection,
and the model used to detect an attack. In this paper, we focus on classifying IDSs for CAN into two
types based on the number of frames required to detect an attack: packet-based IDS and window-
based IDS.

2.1 Packet-Based IDS

Packet-based IDS detects cyber-attacks based on information obtained from a single CAN packet.
Packet-based IDS detects cyber-attacks by analyzing information from a single CAN packet. This
section outlines several studies on packet-based IDS. Kang et al. proposed a method for distinguishing
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normal packets from attack packets using a DNN classifier trained on features extracted from a single
CAN packet [3].

Lee et al. proposed an IDS that utilizes CAN remote frames and analyzes the offset ratio and time
interval between the remote frame and its response frame [4]. Groza et al. proposed an IDS that utilizes
bloom filtering based on message identifiers and parts of data frame fields to test frame periodicity.
The IDS utilized the fact that most traffic on the CAN network is inherently cyclical and that the
format of data fields is fixed due to strict signaling assignments [5]. Cho et al. proposed a Clock-
based IDS (CIDS) that uses clock skew, a unique hardware characteristic of ECU, to detect attacks.
The interval of the CAN messages in the vehicle was periodically measured, and the Recursive Least
Squares (RSL) algorithm was used to construct a baseline of the ECU’s clock operation. Based on
this baseline, CIDS uses the Cumulative Sum (CUSUM) algorithm to detect attacks by identifying
abnormal changes in identification errors [6]. Ying et al. proposed a new Masquerade Attack called a
Cloaking Attack, which is not detected by Cho et al.’s CIDS. This attack evades detection by emulating
the desired clock skew through manipulation of the message transmission time of the spoofed message.
In addition, official models for the State-Of-The-Art (SOTA) IDS and the Network Time Protocol
(NTP) were proposed to detect cloaking attacks [7]. Choi et al. proposed VoltageIDS, which utilizes
the hardware-specific characteristics of the ECU. The IDS uses the unique characteristics of the CAN
signal as a fingerprint for the ECU and detects attack messages based on the voltage signal of the
ECU [&].

In general, the Packet-based IDS is relatively fast at detecting intrusions because the number of
packets required for attack detection is small. However, there is a limitation in that it is difficult to
analyze the correlation of sequential packets. Therefore, research has been conducted on Window-
based IDS to utilize the correlation of sequential packets.

2.2 Window-Based IDS

A Window-based IDS uses a packet window containing multiple CAN packets to detect an attack.
There are two ways to define a window: one includes a predefined number of packets, and the other
includes packets generated during a predefined period. Muter et al. proposed an Entropy-based IDS,
considering that IDS for vehicles is a constrained environment in which attacks must be detected in
real-time. This study defined entropy as a measure of how many different CAN packets existed in each
dataset, and through this, attack messages are detected [9]. However, in an experiment to evaluate
the efficiency of the Entropy-based IDS by Marchetti et al., it was proven that the Entropy-based
IDS can only detect attacks composed of many manipulated CAN messages and not attacks injected
with a few manipulated CAN messages [10]. Taylor et al. proposed a frequency-based IDS since most
attacks inject malicious packets into the network, and CAN messages are generally transmitted at
a strict frequency. The IDS detects an attack by finding the average time using an algorithm that
measures the timing between packets in the sliding window and then compares it with the past average
[11]. However, a limitation was found in that the frequency-based IDS could not distinguish between
valid aperiodic CAN packets without attacks and valid aperiodic CAN packets under attacks [12].
Islam et al. proposed a Graph-based IDS. The IDS constructs a graph of the CAN message with a
predefined number of packets and distinguishes the attack window from the normal window through
a chi-square test. However, the proposed IDS has a limitation in that it requires too many packets to
detect an attack [13].

Recently, Window-based IDS using deep learning has also been studied. Song et al. proposed
a DCNN-based IDS using Deep Convolutional Neural Network (DCNN), which is mainly used
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in image classification. In their paper, a 2D grid frame of 29 x 29 size is created by converting the
hexadecimal CAN ID into 29-bit binary for the input of the model. The generated input is used as
DCNN’s learning data, and spatial correlation features are learned to detect attack messages and
normal messages. In the case of the model, a lightweight version of Inception-RestNet called Reduced
Inception-RestNet was created and used [14,15]. Hossain et al. proposed an LSTM-based IDS using
two deep learning model, Vanilla LSTM and Stacked LSTM [16]. In their paper, ID, Data, and DLC
Field of CAN Data Frame were used for model training. The input data of the model was extracted
from the CAN Data Frame, and preprocessing was performed to convert ID and Data Field, which
are hexadecimal numbers, to binary numbers. Seo et al. proposed a GAN-based IDS (GIDS) using a
Generative Adversarial Network (GAN) [17,18]. GIDS consists of two models: a classifier to detect
existing attacks and a model to detect new, unknown attacks. In their paper, a CAN ID is created as
a 2D grid frame using one-hot vector encoding, and preprocessing is performed to convert it into an
image. The classifier for detecting existing attacks creates a real image by performing a preprocessing
process on the collected dataset and learns the spatial correlation feature of the real image. A model
for detecting a new attack learns to create a fake image like a real image using randomly generated
noise. Then, with the fake images generated by the model, the classifier learns to distinguish between
real and fake images. Finally, the learned classifier and the threshold of the model are adjusted to
detect the attack message. Amato et al. proposed an attack detection and classification methodology
for CAN Bus using deep learning-based Neural Networks (NN) and Multi Layer Perceptrons (MLP).
In their work, the distribution of normal messages and attack messages was used as feature vectors
to classify normal and attack messages [19]. Javed et al. proposed CANintelliDS to prevent attacks
on CAN Bus. CANintelliDS is based on a combination of a Convolutional Neural Network (CNN)
and an Attention-Based Gated Recurrent Unit (GRU) model. It can detect both single and mixed
intrusion attacks on the CAN Bus [20)].

All previous proposed IDS studies are used independently. This does not solve detection errors
such as FP and FN that exist in the results detected by IDS. However, the FIDS proposed in this paper
can be used independently, and the detection results of the IDS can be filtered secondarily. Therefore,
the ensemble effect can be expected by combining the previously studied IDS and FIDS, and through
this, the detection performance of the IDS can be improved.

3 Backgrounds
3.1 Controller Area Network

The CAN protocol is an in-vehicle network that was developed by Robert Bosch in 1986. It
supports efficient communication among ECUs in a bus network structure. The CAN frame consists
of two types of bits: a dominant bit (0) and a recessive bit (1). These bits are expressed using the voltage
difference between two copper wires, CAN-H (high) and CAN-L (low), of the CAN bus. For example,
if CAN-H and CAN-L have voltages of 3.5 and 1.5V, respectively, the difference between the two
voltages (2.0 V or more) is expressed as a dominant bit (0). Similarly, if both CAN-H and CAN-L
have voltages of 1.5V, the difference between the two voltages is expressed as a recessive bit (1).

Since the CAN bus operates as an AND logic gate if one ECU transmits a recessive bit (1) and
another ECU transmits a dominant bit (0) simultaneously, a dominant bit (0) can flow through the
CAN bus. Therefore, the CAN bus determines the priority of the message through the arbitration field
for the simultaneously transmitted CAN data frame. A message with a smaller arbitration field value
has a higher priority. There are four types of CAN frames: data frame, remote frame, error frame, and
overload frame. The data frame is used for transmitting data, the remote frame is used for requesting
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the transmission of a specified message, the error frame is used for indicating an error detected through
an error flag, and the overload frame is used for injecting delay to adjust the speed between frames.

3.2 CAN Data Frame

A data frame, which is one type of CAN frame, is used for transmitting and receiving data, and
there are two types available: CAN 2.0A and CAN 2.0B. CAN 2.0A has an ID length of 11 bits, while
CAN 2.0B has an extended ID field with a length of 29 bits. The remaining fields in both types of
frames have the same length. The basic format for a CAN 2.0A data frame is shown in Fig. 1, and the
description of each field is as follows:
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ke < < >

>

Arbitration Field Control Field Data Field CRC Field ACK Field
8 R E
0 ID | B % oe Data crRc | SRC | ack | ACK | o
0 1 Del Del
F R F
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Figure 1: CAN 2.0A data frame format

Start of frame (SOF) consists of 1 dominant bit (0) and indicates the beginning of a CAN data
frame. The arbitration field includes an Identifier (ID) and a Remote Transmission Request (RTR)
value. The ID is an 11-bit value that determines the priority of the CAN data frame, with a lower
ID indicating higher priority. The RTR value distinguishes between a CAN data frame and a remote
frame, with a dominant bit (0) representing a data frame and a recessive bit (1) representing a remote
frame. If the IDs are the same, priority is determined by comparing RTR values, with the data frame
having higher priority than the remote frame. The control field includes a total of 6 bits, including
R1, RO, and Data Length Code (DLC). R1 and R2 are reserved bits of 2 bits and are used when
the ID value is extended to 29 bits. DLC is a 4-bit value that determines the size of the frame data.
The data field contains the actual transmitted message data and can include up to 64 bits. The Cyclic
Redundancy Check Delimiter (CRC) is a field that uses a cyclic redundancy check to detect errors in
the CAN data frame. The Acknowledgement (ACK) field confirms whether the transmission of the
CAN data frame was successful. Finally, the End of Frame (EOF) is a value that indicates the end of
the CAN frame and consists of 7 recessive bits (1).

3.3 CAN Attack Scenarios
There are four types of attacks on the open dataset used in this paper: Flooding, Spoofing,
Fuzzing, and Replay. The following is a description of each attack technique:

e Flooding Attack: As a Denial of Service (DoS) attack, this method involves injecting many
CAN messages with a higher priority ID than the CAN IDs used by an attack target vehicle. It
is mainly executed by setting the CAN ID to “0 x 000”.

e Spoofing Attack: This attack aims to control a specific function of an attack target vehicle
as desired by the attacker. It is executed by analyzing the CAN message used by the vehicle,
generating a CAN message responsible for a particular function, and injecting it.

e Fuzzing Attack: This attack is aimed at causing unexpected vehicle malfunctions. It is executed
by injecting randomly generated CAN messages into an attack target vehicle.
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e Replay Attack: This attack involves re-injecting the CAN message used by an attack target
vehicle. It is executed by observing and collecting CAN traffic and re-injecting the recorded
CAN traffic at a specific time.

4 Proposed System Model
4.1 Overview

FIDS is designed to minimize the false positives and false negatives of existing deep learning-based
IDSs by filtering misclassified results. As shown in Fig. 2, FIDS consists of three steps. The first step is
Data Preparation, in which CAN packets are collected from CAN datasets, and then a preprocessing
process is performed to convert the collected CAN packets into the IDS’s input format. The second
step is the construction of a White/Blacklist. The whitelist stores valid patterns of normal CAN packet
windows, and the blacklist stores invalid patterns of abnormal CAN packet windows. The third step
is the filtering step, which corrects the detection errors of the existing IDS by using the whitelist and
blacklist.

Step 1: Data Preparation Step 2: Construction of White/Black List Step 3: Filtering
T
\.‘_‘________________/
White
List ( \
\‘__________________/
T
\.‘______________-__/
> Black
List .,
~ | F|':IItDS' s N D?{tecﬂ;n
CAN Preprocessing litering esu
Dataset
» L

IDS's Inputs

Figure 2: Overview of FIDS

4.2 Data Preparation

In general, CAN packets are collected by connecting a monitoring device to the OBD-II port
installed on the vehicle. The collected data contains the CAN ID field, DLC field, data field,
and timestamp. Since the CAN packets cannot be directly entered into an existing IDS without
preprocessing, they should be converted to the required input format of the target IDS. For example, a
CNN-based IDS, a predetermined number of CAN IDs are stacked and formed into a 2D grid image.
This preprocessing is necessary to train the IDS’s AT model.

4.3 Construction of Whitel Black List

FIDS consists of a whitelist to allow normal messages and a blacklist to detect attack messages.
The whitelist contains the cryptographic hash values of normal CAN packet windows without attacks.
In addition, the blacklist includes the characteristics of abnormal CAN packet windows to detect an
attack. This section describes the process of creating whitelists and blacklists in detail.
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4.3.1 Generating Whitelist

A whitelist is created from a dataset labeled as normal without any attack packets because it is
used to identify normal messages. The process of creating a whitelist is shown in Fig. 3. First, the
ID field of each CAN packet is extracted from a normal dataset. Then, the extracted IDs, which are
in hexadecimal format, are converted into binary format with 11 bits. After that, a 2D grid frame
is created according to the predefined window size. However, since 2D grid frames are difficult to
manage, they are inputted into a cryptographic hash function (e.g., MD5, SHA256), which produces
a fixed-size output. The generated cryptographic hash value is stored in the whitelist and is used for
detecting a normal packet window.

ID Fieldj(11 bits)
Window Size
1 o 1 1 0 1 1] 0 ] o i}
V] 0 L] o V] 0 V] 0 0 1 1]
1] L] L] 1 [i] 1 V] o o o 1]
1 1 1 [t} 0 0 1 o 4 1 0

White List
..I Cryptographic | i Hash Value 1
olofloel1|o|l1]o]o]lo|le] > >
| Hash Function I Hash Value 2
0 1 1 o 1 i | 1 o o (1] [i]
Hash Value 3

CANID
Extraction

Normal
Dataset

Figure 3: Generation of the whitelist

4.3.2 Generating Blacklist

The blacklist contains rules that represent the characteristics of attack messages to detect them.
FIDS defines two rules. The first rule, named Rule,,., uses the feature that CAN messages are
transmitted periodically. Through Rule,,.., when a CAN ID is found more than twice in one packet
window, the corresponding window is judged as an attack window containing attack messages. The
second rule, named Rule,,,,,., uses the feature of fuzzy attacks, in which there are randomly generated
and injected CAN IDs. By using Rule, ..., if a packet window containing an unknown CAN ID that
is not found in the normal dataset is identified, the corresponding window is regarded as an attack
window.

4.4 Filtering

This section describes the filtering step for misclassified results of existing IDSs using FIDS. This
filtering step consists of two sub-steps: filtering with the whitelist and filtering with the blacklist.
Filtering with the whitelist corrects false positive windows to normal windows if attack windows
classified by existing IDSs are found in the whitelist. This reduces the false positive rate. In addition,
filtering with the blacklist reduces false negatives by checking Rule,,.. and Rule, .., for every normal
window classified by the existing IDSs. In conclusion, FIDS, composed of the whitelist and blacklist,
improves the detection accuracy of existing IDSs.
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5 Experiment Results and Evaluation

In this section, we select the existing IDSs and implement it, and then evaluate the performance
of FIDS using open CAN datasets.’

5.1 Experimental Environment and Evaluation Metrics
5.1.1 Experimental Environment

In this paper, the performance of FIDS was evaluated by selecting two IDS models: DCNN-based
IDS (DIDS) by Song et al. [15] and LSTM-based IDS (LIDS) by Hossain et al. [16]. The rationale
behind choosing these two models is as follows: DIDS represents the pioneering application of a
CNN model in automotive IDS, and it can be easily integrated with FIDS to enhance performance.
On the other hand, LIDS excels in capturing various patterns and dependencies within a sequence
of packets due to the LSTM feature, which enables it to effectively memorize past information and
incorporate it with the current input to predict the next state. The source codes of the models used in
these studies were not available as open source. Therefore, we developed our own implementation.
For the implementation of DIDS, we utilized Python 3.8 and various Al libraries such as Scikit-
learn, TensorFlow, and Keras. The hyperparameters employed in both models were set to match those
specified in their respective papers [15,16]. The experiments were conducted on a PC equipped with
an Intel (R) Core (TM) 17-10750H CPU @ 2.60 GHz, NVIDIA GeForce GTX 1650 Ti, 16 GB RAM,
and the Windows 10 Pro operating system.

5.1.2 Confusion Matrix

The confusion matrix is used to analyze the detection results of IDS for CAN. It consists of four
values: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). TP
occurs when an attack is correctly detected as an attack, while TN occurs when normal behavior
is correctly detected as normal. On the other hand, FP occurs when normal behavior is incorrectly
detected as an attack, and FN occurs when an attack is incorrectly detected as normal. The confusion
matrix table is shown in Table 1.

Table 1: Confusion matrix

) . Predicted
Confusion matrix
Negative (Attack) Positive (Normal)
Actual Negative (Attack) TN (True Negative) FP (False Positive)

Positive (Normal)  FN (False Negative) TP (True Positive)

5.1.3 Evaluation Metrics

In this paper, four evaluation metrics were selected to evaluate the performance of FIDS: accuracy,
precision, recall, and F1-score. Accuracy represents the ratio of correctly predicted normal and attack
messages to total messages. Precision represents the ratio of actual attack messages among messages
predicted to be actual attack messages. Recall refers to the ratio of correctly predicted attack messages
among actual attack messages. F1-score represents the harmonic mean of precision and recall. The

Thttps://ocslab.hksecurity.net/Datasets
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equations for calculating these evaluation metrics are as follows:

TP + TN
Accuracy = (1)
TP+ TN + FP + FN
TP
Precision = —— (2)
TP + FP
TP
Recall = ———— 3
eca TP+ FN (3)
Precision x Recall
F1 — =2 4
score % Precision + Recall @
5.2 Data Set

FIDS was evaluated using two datasets provided by the Hacking and Countermeasure Research
Lab (HCRL): “Car Hacking: Attack & Defense Challenge 2020 dataset (Dataset I) and the dataset
(Dataset II) used in [17]. In the data set provided by HCRL, there are no error frames; it consists
only of non-error packets. Therefore, the whitelist and blacklist of FIDS consider only normal CAN
packets.

The Dataset I was collected from a Hyundai Avante CN7 and is organized as shown in Table 2.
Messages in the CAN dataset include Timestamp, Arbitration ID, DLC, Data, Class (Normal,
Attack), and Subclass (attack type), with the attack type being the same as the four attack scenarios
described in Section 3.3. Dataset II was collected from a Hyundai YF Sonata and consists of a normal
dataset and four attack datasets as shown in Table 3. Messages in the CAN dataset include Timestamp,
Arbitration ID, DLC, Data, and Flag, with Flag consisting of “R” for a general message and “T” for an
injected message. The four attack scenarios used to construct the Hyundai YF Sonata attack dataset
are as follows: for the DoS Attack, a message with a CAN ID of “0 x 00 is injected every 0.3 ms; for
the Fuzzy Attack, a randomly generated CAN ID and data message is injected every 0.5 ms; for the
Spoofing Attack (RPM/GEAR), a message of a specific CAN ID related to RPM/GEAR information
is injected every 1 ms. The dataset serves as input for training and testing the DIDS model and LIDS
model, as well as for generating the FIDS whitelist. While Dataset I is partitioned into separate training
and testing sets for model training, Dataset II lacks such a division. Thus, in this paper, Dataset II is
divided into training and testing sets based on the packet count, as shown in Table 4.

Table 2: Construction of Hyundai Avante CN7 dataset (Dataset I)

Round Type # Normal # Attack # Total

Preliminary ~ Submission 3,358,210 393,836 3,752,046
Training 3,372,743 299,408 3,672,151

Table 3: Construction of Hyundai Sonata YF dataset (Dataset 1)

Attack type # Normal # Attack # Total
DoS attack 3,078,250 587,521 3,665,771
Fuzzy attack 3,347,019 491,847 3,838,860

(Continued)
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Table 3 (continued)

Attack type # Normal # Attack # Total
Spoofing the RPM gauze 3,845,890 597,252 4,443,142
Spoofing the drive GEAR 3,966,805 654,897 4,621,702
Attack-free normal 988,872 - 988,987

Table 4: Construction of training and test datasets for Hyundai Sonata YF

Attack type Train Test # Total
DoS attack #1~#2,456,066 #2,456,067~#3,665,771 3,665,771
Fuzzy attack #1~#2,572,036 #2,572,037~#3,838,860 3,838,860

Spoofing the RPM gauze #1~#3,096,540 #3,096,541~#4,621,702 4,621,702
Spoofing the drive GEAR H#1~#2,976,905 #2,976,906~#4,443,142 4,443,142

5.3 Experiment Result

In the case of Dataset I, DIDS and LIDS were trained using the “Training Type” dataset and
tested using the “Submission Type” dataset. In the case of Dataset II, DIDS and LIDS were trained
and tested using the training and test datasets. Finally, the detection results predicted by DIDS and
LIDS are filtered through the FIDS proposed in this paper. The performance of FIDS is evaluated by
comparing four metrics with and without FIDS.

5.3.1 Packet Window’s Patterns according to the Window Size

To construct the whitelist, a specific pattern in the packet window is required. Therefore, this
paper conducted an experiment to determine the optimal window size where these patterns exist. The
patterns, represented by unique cryptographic hash values, were extracted from a predefined number
of CAN packets (i.e., the window size) in the normal datasets of Dataset I and Dataset II.

During the experiment, the window pattern rate, which measures how many patterns exist based
on the window size, was calculated. The window pattern rate is calculated by dividing the number
of window patterns by the total number of windows. The equation for obtaining the window pattern
ratio is shown in Eq. (5). In this experiment, a pattern is defined as a case where the cryptographic
hash value calculated for every window overlaps more than 30 times.

Duplicated Window (5)
Total Window

The experiment results showed that there were no patterns when the window size was 13 or greater
in Dataset I, and no patterns when the window size was 16 or greater in Dataset I, as shown in
Table 5. We conducted an experiment using a heuristic method to determine the optimal window size.
As shown in Table 5, we found that smaller window sizes provide better performance. This is because
smaller window sizes create more distinguishable patterns between normal packets and attack packets.
Therefore, window sizes of 3, 5, and 10 were used in the experiment.

Winodw Pattern Rate =
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Table 5: Window pattern rate by window size

Type Dataset I (Avante CN7)

Dataset II (Sonata YF)

Window pattern rate

Window size

2 0.937
3 0.728
4 0.501
5 0.346
6 0.210
7 0.108
8 0.058
9 0.027
10 0.019
11 0.011
12 0.010
13 0.0
14 0.0
15 0.0
16 0.0

0.998
0.971
0.866
0.747
0.589
0.443
0.301
0.182
0.102
0.042
0.017
0.014
0.001
0.001
0.0

5.3.2 Comparison

2951

In this experiment, the performance evaluation of FIDS involved filtering the erroneous detection
results of both DIDS and LIDS for each dataset. The window size used in the experiment was
determined based on the outcomes of the experiments mentioned in Section 5.3.1. The results of the
experiment are presented in Table 6. In the case of Dataset I, both DIDS and LIDS initially exhibited
low detection performance. However, their performance significantly improved after applying FIDS
filtering, with LIDS achieving particularly high results. For Dataset II, there was an improvement in
the F1 scores after the FIDS filtering process. Notably, when the window size was set to 3 (DIDS
with FIDS), there was a significant increase in the F1-score, approximately 12%. Conversely, when the
window size was set to 10, the increase in the evaluation metric was minimal, reaching only 6%. This
highlights the importance of selecting an appropriate window size for FIDS in order to maximize the
performance improvement of the existing IDS.

Table 6: Comparison of evaluation metrics before and after filtering using FIDS

Type Dataset I

Model DCNN based IDS LSTM based IDS

Window size 3 5 10 3 5 10
w/o, w/FIDS wlo w/ wlo  w/ wlo  w/ wlo  w/ wlo  w/ wlo  w/
Accuracy 0.867 0.881 0.796 0.810 0.741 0.756 0.892 0.929 0.813 0.858 0.740 0.789
Precision 0.756 0.795 0.683 0.703 0.698 0.708 0.834 0.930 0.752 0.820 0.769 0.797

(Continued)
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Table 6 (continued)

Type Dataset I

Model DCNN based IDS LSTM based IDS

Window size 3 5 10 3 5 10
wlo, w/FIDS w/lo w/ wlo  w/ wlo  w/ wlo  w/ wlo  w/ wlo  w/
Recall 0.771 0.772 0.809 0.816 0.774 0.807 0.761 0.807 0.715 0.775 0.627 0.729
F1-score 0.764 0.783 0.741 0.755 0.734 0.754 0.796 0.864 0.733 0.797 0.691 0.762
Type Dataset II (DoS Attacks)

Model DCNN based IDS LSTM based IDS

Window Size 3 5 10 3 5 10
wlo, w/FIDS wlo  w/ wlo  w/ wlo  w/ wlo  w/ wlo  w/ wlo  w/
Accuracy 0.980 0.999 0.987 0.999 0.989 0.994 1.000 1.000 0.999 1.000 1.000 1.000
Precision 0.777 0.990 0.847 0.984 0.862 0.917 0.998 1.000 0.995 0.999 0.998 0.999
Recall 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.997 1.000 0.997 1.000
F1-score 0.874 0.995 0917 0.992 0.926 0.957 0.999 1.000 0.996 0.999 0.997 0.999
Type Dataset I (Fuzzy Attacks)

Model DCNN based IDS LSTM based IDS

Window Size 3 5 10 3 5 10
w/o, w/FIDS wlo w/ wlo  w/ wlo  w/ wlo  w/ wlo  w/ wlo  w/
Accuracy 0.979 0.998 0.985 0.997 0.987 0.992 0.999 1.000 0.999 1.000 0.999 1.000
Precision 0.806 0.979 0.881 0.974 0.901 0.934 0.998 1.000 0.995 0.997 0.998 0.998
Recall 0.993 0.994 0.988 0.997 0.994 0.999 0.992 1.000 0.993 1.000 0.989 1.000
F1-score 0.89 0.987 0.932 0.985 0.946 0.966 0.995 1.000 0.994 0.999 0.994 0.999
Type Dataset II (Spoofing the RPM)

Model DCNN based IDS LSTM based IDS

Window Size 3 5 10 3 5 10

wlo, w/FIDS wlo w/ wlo  w/ wlo  w/ wlo  w/ wio  w/ wlo  w/
Accuracy 0.957 0.972 0971 0.981 0.990 0.993 1.000 1.000 1.000 1.000 1.000 1.000
Precision 0.891 0.994 0.946 0.994 0.965 0.980 0.999 1.000 0.999 1.000 0.999 1.000
Recall 0.835 0.835 0913 0.913 0.991 0.991 1.000 1.000 1.000 1.000 0.999 1.000
F1-score 0.862 0.908 0.929 0.952 0.978 0.986 1.000 1.000 0.999 1.000 0.999 1.000
Type Dataset II (Spoofing the GEAR)

Model DCNN based IDS LSTM based IDS

Window Size 3 5 10 3 5 10

w/o, w/FIDS w/lo w/ wlo  w/ wlo W/ wlo  w/ wlo  w/ wlo  w/
Accuracy 0.965 0.983 0.978 0.989 0.989 0.993 1.000 1.000 0.995 1.000 0.999 0.999
Precision 0.864 0.991 0.928 0.991 0.956 0.974 0.999 1.000 0.995 0.999 0.998 0.998
Recall 0.880 0.880 0.942 0.942 0.989 0.989 1.000 1.000 1.000 1.000 0.996 0.997
F1-score 0.872 0.932 0.935 0.966 0.972 0.982 1.000 1.000 0.997 0.999 0.997 0.998
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6 Conclusion

The advancement of vehicle technology plays a role in providing driving convenience. As a
result, more and more IT technologies are being installed in modern vehicles. However, since security
technology has not been considered for the CAN protocol in vehicles, it has been attacked in various
ways. To deal with these threats, machine learning-based IDSs have been studied extensively. However,
machine learning-based IDSs have inherent limitations regarding identifying attack packets as normal
or identifying normal packets as attacks. This is particularly problematic when it comes to CAN
packets related to controlling a safety-critical ECU because misidentifying them can lead to serious
consequences. Therefore, this paper proposes FIDS to correct the misidentified results of the existing
machine learning-based IDSs. For the performance evaluation of FIDS, we directly implemented two
machine learning models, CNN-based IDS and LSTM-based IDS, and conducted experiments using
publicly available open datasets.
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