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Abstract: With the improvement of image editing technology, the threshold
of image tampering technology decreases, which leads to a decrease in the
authenticity of image content. This has also driven research on image forgery
detection techniques. In this paper, a U-Net with multiple sensory field
feature extraction (MSCU-Net) for image forgery detection is proposed. The
proposed MSCU-Net is an end-to-end image essential attribute segmentation
network that can perform image forgery detection without any pre-processing
or post-processing. MSCU-Net replaces the single-scale convolution module
in the original network with an improved multiple perceptual field convolution
module so that the decoder can synthesize the features of different perceptual
fields use residual propagation and residual feedback to recall the input
feature information and consolidate the input feature information to make the
difference in image attributes between the untampered and tampered regions
more obvious, and introduce the channel coordinate confusion attention
mechanism (CCCA) in skip-connection to further improve the segmentation
accuracy of the network. In this paper, extensive experiments are conducted
on various mainstream datasets, and the results verify the effectiveness of
the proposed method, which outperforms the state-of-the-art image forgery
detection methods.

Keywords: Forgery detection; multiple receptive fields; cyclic residuals; U-Net;
channel coordinate confusion attention

1 Introduction

The ever-evolving image processing technology and powerful image processing software are
heavily integrated into our lives. Even users without professional image processing knowledge can
very easily tamper with the image content, resulting in a reduction in the authenticity of the image
content. There are three types of common image processing techniques, as shown in Fig. 1.

(1) Splicing: A splicing method that copies areas from one image and pastes them into other
images.
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(2) Copy-move: A method of copying certain areas of an image and moving them to cover other
areas.
(3) Remove: A method to remove some regions from an image.

Splicing Copy-move

Figure 1: Examples of common forged image types (tampered areas are in red boxes)

The current forgery detection methods mainly identify the differences in image properties between
the tampered and untampered regions of an image such as differences in lighting, shadows, sensor
noise, and camera reflections.

Traditional tampering detection algorithms for clipping combinations are mainly based on
the differences in attributes between tampered and non-tampered regions in images, and detection
algorithms based on these attribute differences can be broadly classified into four categories:

(1) Detection methods based on the essential image attributes [1-3].
(2) Detection methods based on imaging device attributes [4-0].

(3) Detection method based on image compression attributes [7—11].
(4) Image hash-based detection methods [12,13].

These methods are used to obtain these attributes. A failed detection occurs when these attributes
are not apparent or do not exist. Furthermore, postprocessing operations such as image blurring,
JPEG compression, and subsampling can affect specific image attributes, reducing the detection
efficiency of traditional detection methods.

To date, deep learning has led technological advances in areas such as computer vision. In this
process, deep learning techniques have also been gradually introduced in the localization of image
falsification. Liu [14] proposed a stitching tampering pixel-level localization framework based on full
convolutional networks and conditional random fields that can easily overfit overfitting due to the
limitation of the dataset. Bi et al. [15] proposed a circular residual U-net network to enhance the
learning abilities of CNNss.

With [16-18] being subsequently proposed, pixel-level localization for stitching, copy-paste and
image removal tampering is achieved. However, the current CNN-based feature extraction detection
methods suffer from the loss of contextual information, gradient degradation of deeper networks, and
single extracted features. In summary, to address the problems of existing CNN-dwelling detection
methods, a multiple sensory field-scale feature extraction and channel coordinate confusion U-Net
(MSCU-Net) is proposed in this paper to solve these problems. Our main contributions are as follows.
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We use the multiple perceptual field feature extraction module instead of the single convolution
module in the traditional U-Net, enabling the model to extract more features and have a larger
perceptual field.

Moreover, we introduce channel coordinates to confuse the attention mechanism in the skip-
connection of the model to enhance the spatial information encoded by the CNN.

2 Related Work

Deep learning methods based on data-driven approaches have shown excellent performance on
many computer vision and image processing tasks. Thus, many researchers have also applied deep
learning to image tampering detection, and a few of the more popular directions are improving the
detection accuracy by improving network structures, network models based on the correlation design
of imaging devices, etc.

The U-Net network is essentially a convolutional neural network that was proposed by
Ronneberger et al. [19] in 2015 and is widely used in medical fields.

It is widely used in the field of medical image processing and has improved both the detection rate
and detection accuracy compared to the traditional neural structure segmentation algorithm.

U-Net uses successive convolutional layers and maximum pooling layers to obtain the contextual
feature information in images uses a series of upsampling layers to interpolate and amplify the obtained
feature information to obtain a high-resolution feature map, and finally uses the lateral propagation of
features between layers to reduce the loss of feature details and accurately locate the tampered region.
However, since the identifiable features between tampered and non-tampered regions in the image are
more hidden and weak, these identifiable features will have gradient disappearance when the network
structure is deeper. To solve this problem, He et al. proposed ResNet [20] in 2015. The principle is that
by adding a constant mapping to the shallow network and directly skipping the intermediate layer to
transfer to the later network layers, the input of a segment of the neural network is superimposed on
its output as the input of the lower network through a shortcut connection, and the output y (x) =
F (x) + x converts the learning target from F (x) to F (x) + x, which can ensure a deeper depth. It
simplifies the network training and enhances the learning methods of CNNs.

Hu et al. [21] developed the first attention module used in computer vision and proposed the
squeeze-and-excitation module (SE), which extracts both spatial and channel information of the
feature map and is widely used in various tasks in the field of vision. Woo et al. [22] proposed
the convolutional block attention module (CBAM) module, which is based on the SE module.
Zhang et al. [23] proposed SA-Net to fuse the output feature maps at each scale with reference to the
top-down characteristics of the human visual system. However, since tampering detection task features
are difficult to identify, the channel coordinate confusion attention (CCCA) module is proposed in this
paper to enhance the feature extraction capability of the network.

3 Multisensory Field and Channel Coordinate Obfuscation U-Net
3.1 Multiscale Feature Extraction U-Net Network

The multiscale feature extraction module solves the problem of traditional networks extracting
single features, and the propagation of cyclic residuals both solves the problem of gradient degradation
and amplifies the differences in image attributes between untampered and tampered regions. The
CCCA attention mechanism enhances the spatial coordinate information of encoding, enhances
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meaningful features, and suppresses useless features. In summary, the cyclic multiscale feature extrac-
tion structure extracts features between the layers of the network while ensuring a more obvious
discrimination of the essential image attribute features, which can achieve better and more detection
performance compared with traditional feature extraction-based detection methods and existing
CNN-based detection methods. The network architecture of MSCU-net is shown in Fig. 2.
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Figure 2: The multisensory field and channel coordinate confused U-Net (the number in the box
indicates the number of feature map channels)

3.2 Multisensory Field Feature Extraction Module

The U-Net network sends the feature maps with much detail in the shallow network to the
corresponding decoders to assist in segmentation by adding a jump connection between the encoder
and decoder. However, the decoders uniformly use the single-scale convolution module for the merged
feature maps. The single-scale convolution module uses only fixed-size convolution kernels, which
makes it difficult to make full use of the information at different scales in the merged feature maps.
In this paper, we propose an improved feature extraction module with multiple sensory fields. As
shown in Fig. 3, the single-scale convolution module in the decoder is replaced by the improved
multiscale module, which enables the decoder to utilize the feature information of different receptive
fields in a comprehensive manner and further improve the segmentation accuracy of the network.
The improved multiscale convolution module is divided into two parts: multiscale and feature fusion.
The multiscale part consists of a series of convolutional layers of different scales, through which the
feature information of different sensory fields in the feature map is extracted, and the 1 % 1 convolution
is introduced in front of the multiscale convolutional layer to downscale the input feature map with
reference to the Inception structure [24], which can ensure the feature extraction effect and at the same
time effectively reduce the computation of the whole module and further improve the generalization
ability of the model by introducing more nonlinearities. The feature fusion part uses a 3 x 3 convolution
to fuse and downscale the output feature information of the multiscale part, which further reduces
the computational effort of the model while extracting more features of the tampered region without
affecting the model effect.
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Figure 3: Multi-sensory field feature extraction module (MFE)

3.3 The Ringed Residual Module
To solve the vanishing gradient problem, we introduce the structure of cyclic residuals.

A cyclic residual module is shown in Fig. 4, which is subdivided into residual propagation and
residual feedback, with the output of residual propagation defined as

Yy=FxAWH+ W xx (1)

where x and y are the inputs and outputs of the module, W, denotes the weights of the i th layer, and
the function F (x, {W;}) denotes the residual mapping to be learned.

Residual Propagation

e
(5(G(y) +1)* x J

Residual Feedback

Figure 4: The ringed residual MFE (RRMFE)

Residual feedback, through sigmoid activation response values superimposed on the input
information to amplify the difference in the essential properties of the image between the untampered
and tampered regions, is defined by Eq. (2).

vo=(s(G () +1) % x @

where x is the input, y, is the equation, and y, is the augmented input. The function G is a linear
mapping for changing the size of y,. The function s is the sigmoid activation function. Residual
feedback is analogous to the human need to repeat what has been learned and learning new knowledge
in the process of constant repetition. Residual feedback can amplify the differences between image
attributes. The structure of the circular residuals is shown in Fig. 4.

3.4 Channel Coordinates Confuse Attention

We propose channel coordinates confuse attention (CCCA) based on Spatial-Channel Squeeze &
Excitation (scSE) [25]. CCCA consists of three channels that obtain the information of feature maps
in spatial coordinates.
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The input feature map of UL,SE is U = [u,u, . ..,u], where each channel v, € R"*", U is globally
averaged to obtain the vector z € R"™'*. Moreover, the k values at each position are

= Z Z . G.)) ()

The obtalned Vector passes through two fully connected layers.
Z =W, (W2) 4)

where W, and W, are the weights of the fully connected layer. Afterward, after ReLU is performed,
this process enhances the independence between each channel. For Z obtained after the sigmoid layer
and normalized to between 0 and 1 to obtain o (Z), the whole calculation process can be expressed by
the following equation:

U, performs a global average pooling operation on the input feature map, performs a 1-
dimensional convolution operation with a convolution kernel size of k, and obtains the weights w
of each channel after the sigmoid activation function. The computation procedure is shown below:

f]eCA = [U (%,1) TN (qi,j) u',o (QHJ’V) uH‘W] ©)

Then, the weights are multiplied with the corresponding elements of the original input feature
map to obtain the final output feature map.

U, encodes the channel relationships and long-range dependencies by means of accurate location
information. For the input X, each channel is first encoded along the horizontal and vertical
coordinate directions using pooling kernels of dimensions (A, 1) and (1, W), and the captured location
information is fully utilized to precisely locate the region of interest. The whole computational process
can be expressed by the following equation:

ye (i,) = X (0,)) x g/ (1) x & () (6)

CCCA is the combination of the above three, as shown in Fig. 5. By introducing the CCCA
attention mechanism in skip-connection to enhance meaningful features and suppress useless features,
the difference between tampered regions and untampered image attributes is amplified.

4 Experiments

To evaluate the performance of the proposed MSCU-Net, various experiments have been con-
ducted to determine the effectiveness and robustness. Additionally, the method is compared with
several other image forgery detection methods in different situations.

Experimental Dataset: We selected three public datasets, CASIA [26], NIST16 [27] and Columbia
[5], for testing.

On CASIA, the witty vintage set contains images with the three tampering means of copy-shift,
stitching, and removal.

On NISTI16, the dataset provides images with three tampering means copy-shift, splice, and
removal.

Columbia provides images of the stitching tampering means.

For the NIST2016 image dataset, there are two main subsets: training (404) and testing. Then,
these subsets are randomly selected.
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Figure 5: Channel coordinate confusion attention (CCCA). By adding U, and U,g; to obtain a more
precisely calibrated spatial feature map, U,, enables the network to focus on a large range of location
information

For the CASIA image library, 5123 images from CASIA v2.0 were selected for training, 921
images from CASIA v1.0 were used for testing, and the entire Columbia dataset was used for testing.
The division details are shown in Table 1. To better train MSCU-Net, the image size was uniformly
processed to 384 x 256.

Table 1: Training and testing split (number of images, the sign ‘-’ in the table indicates that the item is
not required)

CASIA Columbia NIST16
Train 5123(CASIAv2.0) - 404
Test 921(CASIAvV1.0) 180 160

Evaluation Metrics: The evaluation metrics referred to in the comparison experiment section of
this paper are Precision, Recall, and F-measure, and the evaluation metrics are the number of correctly
detected tampered pixels (7P), the number of incorrectly detected tampered pixels (FP) and the
number of incorrectly detected untampered pixels (FN). Among them, the accuracy rate is calculated
as shown in Eq. (7), the recall rate is calculated as shown in Eq. (8), and the F-measure is calculated
as shown in Eq. (9).

. TP
Precision = ——— @)
TP+ FP

Recall e )
ec R
= TPTFEN
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2 x Precision x Recall
F — measure = — 9)
Precision + Recall

Compare detection methods: To evaluate the practical effectiveness of the algorithms proposed in
this paper, the following models are selected for comparison.

The C2R-Net [28] algorithm can locate the tampered content in the image, but there are still a
small number of false detections and more missed detections.

RGB-N [16] which is a two-stream Faster R-CNN network, is proposed and trained end-to-end
to detect tampered regions of a given image.

SPAN [18&] utilizes a pyramid architecture and models the dependency of image patches through
self-attentive blocks.

RRU-Net [15] reinforces the CNN learning approach to amplify the difference between tampered
and untampered regions.

Table 2 shows the average values of precision, recall, and F1 for the detection results of the
proposed algorithm and the five compared algorithms on three publicly available datasets. From
Table 2, it can be seen that the detection results of the proposed algorithm in this paper are better
than the other five comparison algorithms in terms of precision and F1. However, the precision and
recall on the CASIA dataset and Columbia dataset are slightly lower than those of the RRU-Net
algorithm. The F-measure score metrics implemented on both image libraries indicate that the method
in this paper achieves relatively high tampering localization results. In addition, images of the results
of image tampering localization are provided. The test result picture displayed in Fig. 6 illustrates that
our model delivers a better segmentation effect, as it can be observed.

Table 2: Training and testing split (number of images, the sign ‘-’ in the table indicates that the item is
not required, F1 in this table is F-measure)

Method CASIA NIST16 Columbia
Precision Recall F1 Precision Recall Fl1 Precision Recall F1

C2R-Net 0417 0.424 0.420 - - - 0.732 0.821 0.695
RGB-N 0.509 0.453 0.408 0.673 0.764 0.722 0.797 0.642 0.697
SPAN - - 0.382 - - 0.582 - - 0.815
U-Net 0.432 0.231 0.352 0.535 0.689 0.533 - - 0.634
RRU-Net 0.464 0.440 0.397 0.892 0.862 0.862 0.882 0.797 0.863
Ours 0.451 0.485 0.422 0.905 0.875 0.876 0.914 0.773 0.869

Ablation Experiments: To verify the effectiveness of the CCCA and RRMFE modules, we perform
ablation experiments on the NIST16 dataset, as shown in Table 3. The terms in bold font indicate
the optimal performance value, / indicates that the experimental model contains the corresponding
module, and x indicates that the experimental model does not contain the corresponding module. As
shown in the second row of the table, after directly fusing the spatial location coordinate information of
the images, the experimental results are improved by 0.013 for precision, 0.003 for recall, and 0.067 for
F-measure compared with the original network. To further amplify the attribute differences between
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tampered and untampered regions, the RRMFE module for different scales and different perceptual
fields of feature fusion are proposed in this paper. The experimental results show that the F-measure
and precision performance are optimal with the feature fusion of CCCA+RRMFE.

GT

RGB-N

Ours

Figure 6: Visualization of our prediction results, showing the forged images, GT, RGB-N prediction
results, SPAN prediction results and our prediction results from top to bottom. From the figure, our
network model has better results in the details of segmentation

Table 3: Comparison of the model validity ablation experimental results (F1 in this table is the F-
measure)

Baseline CCCA RRMFE  Precision Recall F1

Vi X X 0.892 0.8623 0.8628
Vi Vi X 0.9005 0.8626 0.8695
v X Vi 0.8928 0.8799 0.8741
Vi Vi Vi 0.9052 0.8751 0.8766

Robustness experiments: In real scenarios, tampered images mostly undergo various types of
postprocessing operations, such as network transmission compression and noise. Therefore, a tamper
detection and localization framework that is robust against postprocessing operations is particularly
important. In this paper, we design robustness experiments for 2 types of postprocessing operations.
The specific types and parameters are shown in Table 4. The experimental results of MSCU-Net are
smooth and robust under the postprocessing operations of each parameter, and the experimental
results are shown in Figs. 7 and &.
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Table 4: Robust experimental post-processing operations and their parameter settings

Post-processing means Parameter values
JPEG compression {100,90,80,70,60,50}
Gaussian noise {0.01,0.008,0.006,0.004,0.002}

Gaussian noise
8- C2R-Net
—o— RGB-N
—— FRU-Net

034

07

=
o

o
o

F-measure

=
-

—— —

024
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Figure 7: F-measure after adding Gaussian noise

JPEG compression

—— C2R-Net

—&— RGB-N
0.8+ —&— SPAN

—— U-Net

—&— RRU-Net
0.7

—r— Qurs

Compression factor

Figure 8: F-measure value after JPEG compression

Experimental details: The MSCU-Net detection method was run on a computer with an Intel(R)
Core(TM)15-10400F CPU and an NVIDIA A6000 GPU. In the training process of MSCU-Net, we use
the cross-entropy loss function [29] and group normalization (GN) [30] to normalize the scattered data
in high-dimensional space. We use random values for the initial parameters and stochastic gradient
descent with a batch size of 10 samples, a momentum of 0.9, a weight decay of 0.0005, and an initial
learning rate of 0.01.
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5 Conclusion

In this paper, an image tampering detection algorithm based on U-shaped detection network
is proposed. First, the suspected tampered regions in the image are detected using the U-shaped
detection network. Then, to further optimize the detection results of the fine U-shaped network,
the final detection results are obtained using the multi-feature extraction module and the coordinate
channel confusion attention mechanism. To evaluate the effectiveness and practicality of the proposed
algorithm in this paper, current deep learning-based detection algorithms are experimentally compared
and experimentally visualized simultaneously on the tampering standard dataset, showing that the
model pair in this paper has better detection and localization performance. In the task of tampering
detection, it is important to extract image information at multiple scales, which can improve the
detection ability of the model to a certain extent for targets in various sizes of regions and to
facilitate the expression of image tampering features using attention modules. The experimental results
show that the proposed algorithm in this paper outperforms several other comparative algorithms in
detection.
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