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Abstract: Particle swarm optimization (PSO) is a stochastic computation tech-
nique that has become an increasingly important branch of swarm intelligence
optimization. However, like other evolutionary algorithms, PSO also suffers
from premature convergence and entrapment into local optima in dealing
with complex multimodal problems. Thus this paper puts forward an adaptive
multi-updating strategy based particle swarm optimization (abbreviated as
AMS-PSO). To start with, the chaotic sequence is employed to generate high-
quality initial particles to accelerate the convergence rate of the AMS-PSO.
Subsequently, according to the current iteration, different update schemes
are used to regulate the particle search process at different evolution stages.
To be specific, two different sets of velocity update strategies are utilized to
enhance the exploration ability in the early evolution stage while the other
two sets of velocity update schemes are applied to improve the exploitation
capability in the later evolution stage. Followed by the unequal weightage
of acceleration coefficients is used to guide the search for the global worst
particle to enhance the swarm diversity. In addition, an auxiliary update
strategy is exclusively leveraged to the global best particle for the purpose of
ensuring the convergence of the PSO method. Finally, extensive experiments
on two sets of well-known benchmark functions bear out that AMS-PSO
outperforms several state-of-the-art PSOs in terms of solution accuracy and
convergence rate.

Keywords: Particle swarm optimization; local optima; acceleration
coefficients; swarm diversity; premature convergence

1 Introduction

Particle swarm optimization (PSO) is a swarm intelligent optimization algorithm that is based
on the metaphors of social interaction and communication (e.g., bird flocking and fish schooling)
[1]. Due to the merits of swarm intelligence, intrinsic parallelism, easy implementation, inexpensive
computation and few parameters to be adjusted, PSO has drawn a great attention of numerous
researchers in the field of evolutionary computation [2–8] and has been successfully applied in a wide
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range of optimization problems in many different areas in the past two decades [9–21]. However,
like other nature-inspired evolutionary algorithms (EA), PSO still suffers from loss of diversity and
slow convergence caused by the contradiction between exploration and exploitation, especially when
dealing with complex multimodal problems. This will inevitably impair the performance of particle
swarm optimization to a large extent. To this end, a large number of PSOs have been developed
from different perspectives to circumvent these issues in literature [2,4–12]. It is known that the
performance of PSO is heavily dependent on the parameters associated with the update scheme.
Concerning the inertia weight, it is believed that the overall performance of PSO is strongly affected
by the inertia weight through balancing the exploration and exploitation during the search process.
As a consequence, much research effort has been devoted to the development of various types of
inertia weight, including fixed-value [22], linear [23], nonlinear [2], random [3], fuzzy rules [9], chaos [4],
and others [5]. Regarding the acceleration coefficients, it is reported that the appropriate acceleration
coefficients can enhance the global search in the early stage of the optimization and to encourage the
particle to converge towards the global optima at the end of the search process. From the literature, it
can be seen that a variety of acceleration coefficients, ranging from fixed-value [1], linear [6], nonlinear
[10] and random [11] to adaptive paradigm [7], have been introduced into the update scheme of PSO
to get a better trade-off between the global and local search abilities. Hence, this work will further
investigate the effects of the acceleration coefficients and employ different values of them to enhance
the performance of PSO according to the different statuses of particle. Besides, the two random
numbers in PSO system also have a significant influence on the convergence behavior of the swarm
[8,12], especially the chaotic sequence, instead of the random number, is used in the velocity update
equation [12]. To strike a better balance between exploration and exploitation, this paper proposes an
adaptive multi-updating strategy based particle swarm optimization (AMS-PSO). On the one hand,
the chaos-based sequence is used to generate high-quality initial particles to accelerate the convergence
rate of AMS-PSO. On the other hand, according to current iteration, different update schemes are
leveraged to regulate the particle search process at different evolution stages. Specifically, two different
sets of velocity update strategies are utilized to enhance the exploration ability in the early stage while
the other set of update strategy as well as the Gaussian mutation is applied to improve the exploitation
capability in the later stage. Followed by the unequal weightage of acceleration coefficients is harnessed
to guide the search for the global worst position (gworst) of particle so as to strengthen the swarm
diversity. Besides, an auxiliary update strategy is exclusively applied to the global best position (gbest)
of particle in order to ensure the convergence of the proposal. In actual fact, the key idea behind AMS-
PSO is somewhat similar to multi-swarm based PSOs, viz., different update scheme is used for different
subgroup of particles so as to enhance the communications within and between subgroups. At length,
conducted experiments validate the superiority of AMS-PSO over several existing competitive PSO
variants in the literature.

The rest of this paper is organized as follows. Section 2 discusses the related work, involving the
update strategies based on acceleration coefficients, gworst particle, and gbest particle, respectively. In
Section 3, the standard particle swarm optimization is briefly introduced. Section 4 elaborates on the
proposed AMS-PSO from three aspects of swarm initialization, update scheme for the gbest particle
and update scheme for the gworst and other particles, respectively. In Section 5, extensive experiments
on two sets of well-known benchmark functions are reported and analyzed. Finally, the concluding
remarks and future work are discussed in Section 6.
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2 Related Work

Ever since the introduction of particle swarm optimization in 1995, researchers have been working
hard to explore more and more efficient PSOs from different aspects to enhance their performance.
Loosely speaking, most of the current existing PSO variants can be roughly classified into the following
five categories:

(i) Swarm initialization. As a crucial step in any evolutionary computation, swarm initialization
has a great effect on the convergence rate and the quality of the final solution. The most
common method is random initialization which is used to generate initial particles without
any prior information about the solution to the problems [24]. To produce high-quality initial
particles, several advanced swarm initialization methods, including chaos-based sequence [25],
opposition-based learning method [12], chaotic opposition-based learning method [26], and
other initial strategies [27], have been developed and widely applied in the field of swarm
intelligence optimization with substantial performance improvement.

(ii) Parameter selection. Proper parameters can significantly affect the performance of particle
swarm optimization. In general, an appropriate inertia weight can achieve an effective
balance between exploration and exploitation. A larger inertia weight is beneficial for global
exploration whereas a smaller one is conducive to local exploitation for fine-tuning the
current search region [23], such as fitness-based dynamic inertia weight [12], sigmoid-based
inertia weight [2] and chaotic-based inertia weight [28], to name a few. By changing inertia
weight dynamically, the search capability of PSO can be also dynamically adjusted. Besides,
both acceleration coefficients [7] and random numbers [12] have a significant effect on the
convergence behavior of swarm. All of them have been deeply studied in the literature and
widely applied in many real-world optimization problems.

(iii) Topology structure. The neighborhood topology aims to enrich the swarm diversity and
undoubtedly influence the flow rate of the best information among particles. The early notable
topologies include circle, wheel, star, and random topology [29]. Instead of using the fixed
neighborhood topology, the dynamic multi-swarm PSO variants are developed in literature
[13], whose basic idea is that a larger swarm is divided into many small-sized sub-swarms
that can be regrouped after a predefined regrouping period. Besides, a ring topology in
exemplar generation is adopted to enhance the swarm diversity and exploration ability of
the genetic learning PSO [30]. Compared with basic PSO, it is not difficult to see that the
topology structure-based PSOs have a more powerful ability in keeping the swarm diversity
and preventing premature convergence.

(iv) Learning strategy. PSO adopts different learning strategies to regulate global exploration and
local exploitation that has attracted considerable attention. It’s known that a particle usually
learns from its history personal best and the global best of the entire swarm, but such a learning
strategy tends to cause particle to oscillate between the two exemplars when they are located
on the opposite sides of the candidate particle [14]. Hence, a variety of learning strategy-based
PSO variants have been proposed in this regard, such as heterogeneous CLPSO [31], hybrid
learning strategies-based PSO [32], PSO with elite and dimensional learning strategies [33],
PSO with enhanced learning strategy [34], to keep swarm diversity and to avoid premature
convergence.

(v) Hybrid mechanism. Since each algorithm has its own merits and demerits, two methods are
usually complementary to each other and the combination makes them benefit from each
other. Based on this recognition, the goal of hybrid PSO with other meta-heuristics or auxiliary
search techniques is to well balance the global search and local search without being trapped
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into local optima. Classical work includes hybrid PSO with genetic algorithm [15], hybrid PSO
with artificial bee colony [35], integrating PSO with firefly [36], hybrid PSO with gravitational
search algorithm [16], hybrid PSO with chaos searching technique [17] and so forth. Besides,
the most often used genetic operators (crossover [34] and mutation [26]) are integrated into
PSO to enhance the diversity of swarm.

As reviewed above, most of the PSOs can achieve state-of-the-art performance and motivate
us to explore more efficient particle swarm optimization algorithms with the help of their excellent
experiences and knowledge. Different from previous studies of the related work, here, we exclusively
focus on the existing PSO update schemes in the literature from the aspects of acceleration coefficients,
gworst particle, and gbest particle, respectively. More details can be found in the following sections.

2.1 Review of Acceleration Coefficients-Based Updating Strategy
From the literature, it can be clearly observed that acceleration coefficients can be divided into

two categories: fixed-value [1] and time-varying [7]. For the limited space, here we only provide a brief
survey on the constant acceleration coefficients. Since the introduction of the acceleration factors into
the update scheme of PSO, they come into effect on the movement of particle, particularly they are
greatly importance to the success of PSO in both the social-only model and the cognitive-only model.
A large value of the acceleration factor c1 makes a particle fly towards its own ever-known best position
(pbest) faster and a large value of the acceleration factor c2 makes a particle move towards the best
particle (gbest) of the entire swarm faster. In general, c1 and c2 are set equal (c1 = c2 = 2) [1] to give
equal weightage to both the cognitive component and the social component simultaneously. In [37], the
acceleration coefficients are also set equal (c1 = c2 = 2.05) to control magnitudes of particle’s velocity
and to ensure convergence of particle swarm optimization. As for the values of c1 and c2, it is reported
that acceleration coefficient with big values tends to cause particle to separate and move away from
other, while taking small values causes limitation of the movements of particle, and not being able to
scan the search space adequately [38].

Alternatively, it is to be noted that particles are allowed to move around the search space rather
than move toward the gbest with a large cognitive component and a small social component in the
early stage. On the contrary, a small cognitive component and a large social component allow particle
to converge to the global optima in the latter stage of the search process. Based on this argument,
much research effort is devoted to the development of unequal acceleration coefficients for PSO
[12,18,39,40]. In the early work [39], the cognitive and social values of c1 = 2.8 and c2 = 1.3 yield good
results for their chosen set of problems. In literature [40], the acceleration coefficients c1 and c2 are
first initialized to 2 and adaptively controlled according to four evolutionary states: increasing c1 and
decreasing c2 in an exploration state, increasing c1 slightly and decreasing c2 slightly in an exploitation
state, increasing c1 slightly and increasing c2 slightly in a convergence state, and decreasing c1 and
increasing c2 in a jumping-out state. To accelerate the convergence, a larger value is assigned to the
social component (c1 = 0.5, c2 = 2.5) [18], which enables the convergence rate of PSO to be markedly
improved than that with an equal setting of c1 = 1.5 and c2 = 1.5. Besides, the unbalanced setting of
c1 and c2 (c1 = 3, c2 = 1) is exclusively used for gworst particle whereas the balanced setting of c1 and
c2 (c1 = c2 = 2) is used for all the other particles [12]. It draws direction of the newly updated particle
towards its pbest. That is, the unequal weightage is only applied in the case of stagnation of the particle
that helps the newly generated particle to avoid drifting towards the gbest and explore a new region in
the search space. Thus it can avoid stagnation of swarm at a suboptimal solution. In sum, proper
adaptation and proper value setting of c1 and c2 can be promising in enhancing the performance



IASC, 2023, vol.37, no.3 2787

of PSO. This is the main motivation to develop AMS-PSO in this work by varying the value of
acceleration coefficients to control the influence of cognitive information and social information,
respectively.

2.2 Review of the gworst Particle-Based Updating Strategy
In PSO system, the personal best position (pbest) and global best position (gbest) play an

important role in regulating particle search around a region. In contrast, there is almost no research
and analysis about the global worst position (termed as gworst) in literature. However, just as the cask
effect says that how much water a wooden bucket can hold does not depend on the longest board
but the shortest board, which can increase the water storage of the wooden bucket by replenishing
the length of the shortest board and eliminating the restricting factors formed by this short board.
Similarly, gworst particle does not mean that the particle does not contain any valuable information
for the search process. All particles may carry useful information, and the performance of the entire
swarm may be enhanced to some extent by strengthening the worst particle. Inspired by this argument,
the personal worst position (pworst) and the gworst of particles are introduced into the velocity update
equation as a means to dictate the motion of particle [41]. Afterward, only the pworst is integrated
into the basic update scheme to help particles to remember their previously visited worst position [19].
This modification is beneficial for exploring the search space very effectively to identify the promising
solution region. Likewise, only gworst particle is embedded in the velocity update equation that is
called impelled or penalized learning according to the corresponding weight coefficient to balance the
exploration and exploitation abilities by changing the flying direction of particles [42]. Subsequent
work [43] incorporates both pworst and gworst into the update scheme to ensure that the extra velocity
given from the worst position is always in the direction of the best position as well as the extra velocity
given to a particle is maximized when the particle is at its worst position and decreases as the particle
moves away.

To increase swarm diversity and to avoid local optima, a fourth part is added to the standard
velocity update scheme that enables particles to move away from the gworst can disturb particle
distribution and make swarm more diversified [20]. In literature [12], the gworst particle is updated
based on an unequal acceleration factors c1 = 3 and c2 = 1 while the other particles are updated with the
equal setting of c1 = 2 and c2 = 2. Unlike the traditional update scheme, the worst replacement strategy
is used to update swarm, whereby the gworst in swarm is replaced by a better newly generated position
in [44]. In more recent work [45], a worst-best example learning strategy is devised, in which the worst
particle learns from the gbest particle to strengthen itself. In essence, it also belongs to social learning
as in PSO, but it is used only on the gworst particle, not on all the particles, which will significantly
improve not only the worst particle but also the quality of the whole swarm. To sum up, gworst particle
can enhance the performance of PSO by fighting against premature convergence and avoiding local
optima, which is well worth exploring in the field of swarm intelligence optimization.

2.3 Review of the gbest Particle-Based Updating Strategy
In standard particle swarm optimization, it is known that the movement of a particle is usually

directed by the velocity and position update formula, in which the personal best position (pbest) and
global best position (gbest) play a critical role in regulating particle search around a region. From the
literature, it is observed that the majority of the existing PSO variants adopt pbest and gbest to guide
the search process. Classical work includes the SRPSO [46], in which the self-regulating inertia weight
is utilized by the gbest particle for a better exploration and the self-perception of the global search
direction is used by the rest of particles for intelligent exploitation of the solution space. In literature
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[47], IDE-PSO adopts three velocity update schemes for different kinds of particles: good particles,
weak particles, and normal particles. Note that except for the normal particle, both the cognitive
component associated with pbest and the social component associated with gbest have been removed
from the velocity update formula for the other two cases. After that, the PSOTL [25] is proposed, in
which an auxiliary velocity-position update scheme is exclusively used for gbest particle to guarantee
the convergence of PSO while the other set of the ordinary update scheme is exploited for the updating
of other particles.

Despite a great deal of research work dedicated to gbest particle for better optimization perfor-
mance, however, it seems that PSO is somewhat arbitrary to make all the particles get acquainted with
the same information from the gbest. In this case, no matter how far particle is from the gbest, each
particle learns information from the global best position. As a result, all of them are quickly attracted
to the optimal position and the swarm diversity starts to drastically decrease. Moreover, the search
information of gbest in standard PSO is merely used to guide the search direction, which will also
inevitably impair the diversity of swarm. As a result, it increases the possibility of PSO falling into local
optima. Because of this, some PSO variants adopt the concept of an exemplar instead of gbest to direct
the flying of particles, such as the orthogonal learning PSO [48], in which the exemplar comes from
pbest or gbest resulting from the construction of the experimental orthogonal design. In [49], the leader
particle selected from the archive that provides the best aggregation value (Lbest) is utilized to replace
gbest to update the velocity. In literature [50], the non-parametric PSO is developed by discarding the
parameters of inertia weight and acceleration coefficients. In particular, each particle uses the best
position found by its neighbors (plbest) to update its velocity, and the effect of gbest is integrated
into the position update scheme. Recent work [28] makes use of the Spbest and Mpbest to replace
the personal best position and global best position in standard PSO update scheme, respectively.
Specifically, stochastic learning gives particles ability to learn from other excellent individuals in the
swarm and moves particles more diverse (Spbest). On the other hand, the overemphasis on gbest will
lead to the quick loss of swarm diversity, thus the mean of the personal best positions (Mpbest) of
all particles is devised to solve this potential problem by enhancing communication between particles
in the dimensional aspect. Similarly, to pull the entire swarm toward the true Pareto-optimal front
quickly, MaPSO is developed in [51], in which the leader particle is selected from several historical
solutions by using the scalar projections, and a sign function is used to adaptively adjust the search
direction for each particle. In more recent work [52], the distance from the particle to its pbest and gbest
are respectively used to replace the cognitive and social components associated with the pbest and gbest
in the velocity update scheme. In a nutshell, it is of utmost importance that the careful incorporation
of gbest into particle swarm optimization is instrumental in achieving good performance.

3 Standard PSO

Particle swarm optimization is a powerful nature-inspired meta-heuristic optimization technique
that emulates the social behavior of bird flocking and fish schooling [1]. In standard PSO (SPSO),
each particle denotes a candidate solution in the search space and the method searches for the global
optimal solution by updating generations. Given that in an n-dimensional hyperspace, two vectors are
related to the ith particle (i = 1, 2, . . . ,N), one is the velocity vector Vi = [vi1, vi2, . . . , vin], and the other
is the position vector Xi = [xi1, xi2, . . . , xin], where N denotes the swarm size. During the search process,
each particle dynamically updates its position based on its previous position and new information
regarding velocity. Moreover, the ith particle (i = 1, 2, . . . ,N) will remember its current personal best
location found in the search space so far, usually denoted as pbesti = [pbesti1, pbesti2, . . . , pbestin], and
the best previous location found by the whole swarm described as gbest = [gbest1, gbest2, . . . , gbestn].
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After these two best values are identified, the velocity and position update as follows:

Vi = w × Vi + c1 × rand1 × (pbesti − Xi) + c2 × rand2 × (gbest − Xi) (1)

Xi = Xi + Vi (2)

where w is the inertia weight used for the balance between the global and local search capabilities of the
particle. A large inertia weight, w, at the beginning of the search increases the global exploration ability
of swarm. In contrast, a small value of w near the end of the search enhances the local exploitation
ability. c1 and c2, termed as acceleration coefficients, are positive constants reflecting the weighting of
stochastic acceleration terms that pull each particle toward pbest and gbest positions respectively in
the flight process. rand1 and rand2 are two random numbers uniformly distributed in the interval [0,
1]. Besides, the velocity is confined within a range of [Vmin, Vmax] to prevent particles from flying out
of the search space. Note that if the sum of the accelerations causes the velocity of that dimension to
exceed a predefined limit, the velocity of that dimension is clamped to a defined range.

So far, the complete procedure of standard PSO can be described below:

Step 1: Initialization

Initialize the parameters and swarm with random positions and velocities.

Step 2: Evaluation

Evaluate the fitness value (the desired objective function) for each particle.

Step 3: Find pbest

If the fitness value of particle i is better than its best fitness value (pbest) in history, then

set the current fitness value as the new pbest of particle i.

Step 4: Find gbest

If any updated pbest is better than the current gbest, then set gbest as the current value of

the whole swarm.

Step 5: Update

Update the velocity and move to the next position according to Eqs. (1)–(2).

Step 6: Termination

If the termination condition is reached, then stop; otherwise turn to Step 2.

4 Proposed AMS-PSO
4.1 Swarm Initialization

For any swarm intelligence computation, swarm initialization is a crucial step since it affects the
convergence rate and the quality of final solutions. From the literature, it can be seen that the most
common method is random initialization [24], which is often exploited to generate initial particles
without any information about the solution to the problems. However, it is reported that PSO with
random initialization cannot be guaranteed to provide stable performance and fast convergence [2].
Based on this recognition, large amounts of research have been devoted to the development of high-
quality initial particles for PSO to improve its performance, including chaos based sequence [7],
opposition-based learning [12], chaotic opposition-based method [26], and other paradigms based
swarm initialization [27]. As one of the most often used chaotic systems, logistic map [2,7,8,25] has
been attracting significant research attention in the evolutionary computation area in the most recent
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years owing to its properties of randomness, ergodicity, regularity, and non-repeatability, especially in
the community of particle swarm optimization. As a result, it is observed that many PSO studies make
full use of chaotic systems to enhance their search capabilities without being trapped in local optima
from different aspects of chaos-based sequence for swarm initialization [25], chaos-based sequence for
parameter setting [8], chaos-based sequence for mutation [26] and so forth. Given this, the classical
logistic map is exploited in this work, which can be described as follows:

xi+1 = μ × xi × (1 − xi), i = 0, 1, 2, . . . (3)

where xi represents the ith chaotic variable in the interval 0 and 1 under the conditions that x0 is
generated randomly for each independent run without being equal to some periodic fixed points
0, 0.25, 0.5, 0.75, and 1. μ is a predefined constant termed as bifurcation coefficient. Note that the
value of μ determines the bifurcation of the logistic map. In the case of μ < 3, xi converges to a single
point. When μ = 3, xi oscillates between two points, and this characteristic change in behavior is called
bifurcation. For μ > 3, xi encounters further bifurcation, eventually resulting in chaotic behavior. Due
to the limited space, here we only give a brief introduction to logistic map and for more details please
refer to literatures [2,7,8,12,25]. Algorithm 1 illustrates the pseudocode of the chaos-based swarm
initialization, which mainly consists of two stages: generating a chaotic variable and mapping the
chaotic variable to the search space of the problem to be solved. Note also that xmin and xmax denote
the lower and upper bounds of the optimization variable.

Algorithm 1: Pseudocode of Chaotic Sequence-Based Initialization
Input: μ: bifurcation coefficient, N: swarm size, D: swarm dimension,

S = NULL, X : current swarm.
Process:
1. Randomly initialize chaotic variables.
2. % Generate chaotic sequence as the initial swarm
3. while the number of maximal iterations is not met do
4. if a chaotic variable falls into fixed points or periodic cycles then
5. Execute a very small positive random perturbation.
6. Map them by Eq. (3).
7. else
8. Update chaotic variables by Eq. (3) directly.
9. end if
10. end while
11. Save the chaotic variables in set X .
12. % Map chaotic variables in X to the solution space
13. for i = 1 to N do
14. for j = 1 to D do
15. xij = xmin + (xmax − xmin) ∗ xij

16. end for
17. end for
18. Save the initial variables in set X .
Output: the N particles as the initial swarm.
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4.2 Update for gbest Particle
As discussed in Section 2, the movement of particles heavily depends on pbest and gbest, and

the acceleration coefficients stand for the weighting of pbest and gbest. Hence, the proper control of
these two components is very important in finding the optimal solution accurately and efficiently.
Moreover, they are capable of achieving an effective balance between exploration and exploitation
during the evolution process under the conditions of proper pertinent parameters, especially the
cognitive weighting factor c1 and the social weighting factor c2. Because of this, the velocity update
equation of particles is devised by varying the value of acceleration factors to control the influence of
cognitive information and social information, respectively. On one side, instead of introducing complex
learning strategies adopted by most existing PSOs, the ultimate goal of this work is to explore how to
obtain much better PSO performance through the use of learning strategies as simple as possible.
On the other side, since all of the particles may carry useful information and the performance of
swarm may be enhanced by updating all particles, including pbest, pworst, and normal particles.
Hence, different updating strategies are adopted for different particles in different evolution stages.
Specifically, to guarantee the convergence of AMS-PSO, an auxiliary update strategy is exclusively
used to keep the gbest particle moving until it has reached a local minimum under the assumption of
minimization [53], which can be expressed as below:

vξd(t + 1) = −xξd(t) + pgd(t) + wvξd(t) + ρ(t)(1 − 2r2d(t)) (4)

xξd(t + 1) = xξd(t) + vξd(t + 1) = pgd(t) + wvξd(t) + ρ(t)(1 − 2r2d(t)) (5)

where ζ denotes the index of the gbest particle, −xζd(t) resets the particle’s position to the gbest pgd(t),
wvζd(t) indicates the current search direction, ρ(t)(l−2r2d(t)) generates a random sample from a sample
space with side lengths 2ρ(t). Note that ρ is a scaling factor defined below. The addition of the ρ term
enables PSO to perform a random search in an area surrounding the gbest. It determines the diameter
of the search area to proceed with exploring.

ρ(t + 1) =

⎧⎪⎨
⎪⎩

2ρ(t), if # successes > sc

0.5ρ(t), if # failures > fc

ρ(t), otherwise

(6)

where #successes and #failures denote the numbers of consecutive successes and failures, respectively.
Here, a failure is defined as f (pg(t)) = f (pg(t − 1)) whereas success is just the opposite. sc and fc are preset
thresholds, the optimal choice of their values depends on the objective function. In common cases a
default initial value ρ(0) = 1.0 has been found empirically to produce encouraging results.

4.3 Update for gworst and Other Particles
Note that compared to the studies of the gbest particle, almost none of the researchers pay

attention to the gworst particle, thus unable to discover the potential information concealed around
it. However, the gworst particle does not mean it does not contain any useful information at all. On
the contrary, just as the cask effect says that the weak part often determines the level of the whole
organization. So the effect of the gworst particle will be fully considered in this work. At the same
time, it must be emphasized that both exploration and exploitation are equally important and should
be explored cleverly during the evolution process. Based on this scenario, it is expected to realize the
twin goals of balancing the global and local search abilities as well as decreasing the risk of falling into
local optima by adjusting parameters c1 and c2 for PSO. Without loss of generality, a large cognitive
weighting factor c1 and a small social weighting factor c2 are applied to guide the search for gworst
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particle to avoid possible stagnation [12]. In addition, for other normal particles in swarm, three sets
of different acceleration coefficients are utilized to direct the search process. To be specific, the equal
weightage is applied to c1 and c2 in the early evolution stage to enhance the exploration ability when
the fitness of particle is less than or equal to the average fitness of the whole swarm, otherwise, a small
c1 and a large c2 is adopted to speed up the convergence rate. Accordingly, a large c1 and a small c2

are exploited in the velocity update formula to improve the exploitation capability when the fitness of
particle is greater than the average fitness of the entire swarm, otherwise, Gaussian mutation [26] is
timely applied to mutate pbest of particles to sustain the swarm diversity in the later evolution stage
for fine-tuning the search process.

pbest
′
ij = pbestij + gaussianj() (7)

where gaussianj() is a random number generated by Gaussian distribution.

In contrast to most existing PSO variants that formulate the velocity and position updates based
on large amounts of complex mechanisms, such as various devised parameters [2], topology structure
[30], hybrid learning strategy [32], elite and dimensional learning strategies [33], enhanced learning
strategy [34] and so on. Different from the existing update strategies, however, AMS-PSO takes
advantage of distinct update schemes for different particles based on the simple yet very effective
constant acceleration factors to enhance the performance of PSO. In essence, the idea behind AMS-
PSO is somewhat identical to the multi-swarm particle swarm optimization [13]. That is to say,
the larger swarm is first divided into several small-sized sub-swarms that can be regrouped after a
predefined period during the evolution process, whose main aim is to explore different sub-regions of
the solution space with different search strategies and to take advantage of the experience gathered by
others through sharing information until the end of the search process.

Besides that, the classical linear decreasing inertia weight is leveraged in AMS-PSO method as
follows [23]:

w (t) = (wmax − wmin) × (itermax−iter)
itermax

+ wmin (8)

where wmax and wmin are the initial and final values of inertia weight, iter, and itermax denote the current
iteration and the maximal allowed the number of iterations, respectively.

Up to this point, the succinct procedure of AMS-PSO can be described as follows:

Algorithm 2: Pseudocode of the proposed AMS-PSO algorithm
Input: w0: inertia weight, N: swarm size, D: swarm dimension, itermax:

the maximal allowable number of iterations, β: control factor.
Process:
1. Initialize the particles of swarm by Algorithm 1.
2. Calculate w by Eq. (8).
3. while the maximum number of iterations (iter ≤ itermax) is not met do
4. Calculate fi and favg.
5. switch (fi)

(Continued)
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Algorithm 2 (continued)
6. {
7. case gbest:
8. Update velocity and position by Eqs. (4)–(5) with equal c1 and c2.
9. case gworst:
10. Update velocity and position by Eqs. (1)–(2) with unequal c1 and c2.
11. default
12. if iter ≤ βitermax then
13. % Enhance exploration ability
14. if fi ≤ favg then
15. Update velocity and position by Eqs. (1)–(2) with equal c1 and c2.
16. else
17. Update velocity and position by Eqs. (1)–(2) with unequal c1 and c2.
18. end if
19. else
20. % Enhance exploitation ability
21. if fi ≤ favg then
22. Perturb pbest of particles by Gaussian mutation with Eq. (7).
23. else
24. Update velocity and position by Eqs. (1)–(2) with unequal c1 and c2.
25. end if
26. end if
27. }
28. Calculate the fitness values of the new particle Xi .

29. if Xi is better than pbesti then
30. Set Xi to be pbesti .

31. end if
32. if Xi is better than gbest then
33. Set Xi to be gbest.
34. end if
35. end while
Output: gbest particle as the final optimal solution.

5 Experimental Results and Analysis
5.1 Basic Test Functions

To demonstrate the effectiveness of AMS-PSO proposed in this paper, six well-known benchmark
functions are adopted for simulation, they are expressed as follows:

(1) Sphere function

min f1 (x) =
d∑

i=1

xi
2

where the global optimum x∗ =0 and f (x∗)=0 for −10≤xi ≤ 10.
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(2) Schwefel function

min f2 (x) =
d∑

i=1

|xi| +
d∏

i=1

|xi|

where the global optimum x∗ =0 and f (x∗)=0 for −100≤xi ≤ 100.

(3) Rosenbrock function

min f3 (x) =
d−1∑
i=1

[
100(x2

i − xi+1)
2 + (xi − 1)2

]
where the global optimum x∗ = (1, 1, . . . , 1) and f (x∗)=0 for −30≤xi ≤ 30.

(4) Rastrigin function

min f4 (x) =
d∑

i=1

[
xi

2 − 10 cos (2πxi) + 10
]

where the global optimum x∗ =0 and f (x∗)=0 for −5.12≤xi ≤ 5.12.

(5) Griewank function

min f5 (x) = 1
4000

d∑
i=1

(xi)
2 −

d∏
i=1

cos
(

xi√
i

)
+ 1

where the global optimum x∗ =0 and f (x∗)=0 for −600≤xi ≤ 600.

(6) Ackley function

min f6 (x) = −20 exp

⎛
⎝−0.2

√√√√1
d

d∑
i=1

x2
i

⎞
⎠ − exp

(
1
d

d∑
i=1

cos (2πxi)

)
+ 20 + e

where the global optimum x∗ =0 and f (x∗)=0 for −32≤xi ≤ 32.

Fig. 1 depicts the 2-dimensional graphical shows of the six test functions.

Table 1 shows the search range, optimal x∗, global optimum and property of test functions. Note
that all of the test functions are to be minimized. The first three functions are unimodal whereas the
last three are multimodal. Specifically, f 1 is a continuous and convex function that has several local
minima except for the global one. f 2 is complex, with many local minima. It is deceptive in that the
global minimum is geometrically distant, over the parameter space, from the next best local minima.
Hence the search method is potentially prone to convergence in the wrong direction. Note that f 3 is
also referred to as the valley or banana function, which is a popular test problem for the gradient-based
optimization algorithms and the global minimum lies in a narrow, parabolic valley. However, even if
this valley is easy to find, convergence to the minimum is difficult. f 4 has several local minima, but
locations of the minima are regularly distributed. Similarly, f 5 has many widespread local minima that
are regularly distributed in the allowable search space. As for function f 6, it is widely used for testing
optimization algorithms. In its two-dimensional form as shown in the plot above, it is characterized by
a nearly flat outer region and a large hole at the center, this function poses a risk for the optimization
algorithm, particularly hill climbing, to be trapped in one of its many local minima.
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(a) Sphere function   (b) Schwefel function 

(c) Rosenbrock function (d) Rastrigin function 

(e) Griewank function       (f) Ackley function 

Figure 1: Graphical shows of the test functions



2796 IASC, 2023, vol.37, no.3

Table 1: Search range, optimal x∗, global optimum, and property of test functions

Function Search range Optimal x∗ Global optimum Property

f 1 [−100, 100]D {0}D 0 Unimodal
f 2 [−10, 10]D {0}D 0 Unimodal
f 3 [−30, 30]D {1}D 0 Unimodal
f 4 [−5.12, 5.12]D {0}D 0 Multimodal
f 5 [−600, 600]D {0}D 0 Multimodal
f 6 [−32, 32]D {0}D 0 Multimodal

5.2 Parameter Settings
The parameter settings can be described as follows: the bifurcation coefficient μ is set to be 4,

swarm size N = 40, time-varying inertia weight starts at 0.9 and ends at 0.4 according to Eq. (8), viz.
wmax = 0.9 and wmin = 0.4, the control factor β is set as 0.5 by trial and error by taking into account the
tradeoff between convergence rate and computational accuracy. In particular, the equal acceleration
coefficients are set to be 2 (c1 = c2 = 2) whereas the unequal setting of c1 = 3 and c2 = 1 is exclusively
used for gworst particle. At the same time, the first group of the unbalanced setting of c1 = 1.5 and
c2 = 2.5 is leveraged in the case of the fitness of particle is greater than the average of swarm in the
early evolution process while the second group of the unequal setting of c1 = 2.5 and c2 = 1.5 is applied
under the conditions of the fitness of particle is greater than the average of the entire swarm in the later
search process. In such a case, a well-balanced exploration and exploitation can be achieved. For each
test function, 30 independent runs are performed by AMS-PSO, and each run is with 1000 iterations.
Without loss of generality, the most often used metrics, including best solution, average solution,
and standard deviation, are leveraged to demonstrate the performance of AMS-PSO proposed in this
paper.

5.3 Results and Analysis
Note that since the superiority of chaos-based swarm initialization has already been validated in

our previous studies [2,7,25], so we will not detail it anymore here. Instead, to illustrate the effect
of different update schemes for PSO, AMS-PSO is first compared with its three variants in this
section, involving AMS-PSO-gb, which denotes the acronym of AMS-PSO without the auxiliary
update strategy that is exclusively applied to gbest particle. Likewise, AMS-PSO-gw is the acronym
of AMS-PSO without an update strategy based on the unequal acceleration factors that are applied to
gworst particle. Besides, AMS-PSO-no is the acronym of AMS-PSO without an update strategy based
on unequal acceleration factors that are applied to normal particles. In other words, except for the
different update schemes based on different acceleration factors, all the experiments are carried out
under the same conditions described in Subsection 5.2.

From Table 2, it is observed that AMS-PSO markedly outperforms its three variants on all the test
functions except on f 3 and f 4 with the same optimization results. For the first two unimodal functions,
AMS-PSO achieves an advantage of 6, 8, and 13 along with 29, 14, and 36 orders of magnitude over
the other corresponding variants in terms of best solution, respectively. As for the third unimodal
function, since the global minimum of f 3 lies in a narrow and parabolic valley, it is rather difficult to
converge to the minimum even if the valley is easy to be found. Hence, the optimized result on function
f 3 is relatively poor compared to the best solutions of other functions achieved by our proposal. What
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is more, all the AMS-PSOs converge to the same global minimum with dimension 10. In comparison,
f 4 is multimodal, which is the widely used test function in the research of evolutionary computation.
Likewise, it is prone to be trapped in a local minimum on its way to the global minimum. However, by
achieving an effective balance between the exploration and exploitation search ability, AMS-PSO gets
the global optima on each dimension on f 4. This is largely attributed to the different update schemes
applied to regulate the particle search process at different evolution stages. Meanwhile, the stability
of PSO is improved obviously due to the high-quality initial particles generated by the chaotic map.
Concerning the rest two multimodal functions f 5 and f 6, AMS-PSO can also get promising results in
terms of best solution, average solution, and standard deviation in comparison with its three variants,
which further validates the respective merit of the auxiliary update strategy for the global best particle,
the unequal weightage for the global worst particle as well as equal weightage and Gaussian mutation
for other particles, and all of these strategies should be used together for good performance based on
their complementary information.

Table 2: Results of AMS-PSO with different update schemes under D = 10

Function Method Best solution Average solution Standard deviation

f 1

AMS-PSO-gb 3.4026e−218 4.2943e−213 0.0000e−000
AMS-PSO-gw 1.8100e−216 1.0681e−208 0.0000e−000
AMS-PSO-no 1.5718e−211 7.5912e−205 0.0000e−000
AMS-PSO 1.9420e−224 4.6632e−216 0.0000e−000

f 2

AMS-PSO-gb 5.1099e−178 3.5904e−175 0.0000e−000
AMS-PSO-gw 2.4412e−193 1.4239e−189 0.0000e−000
AMS-PSO-no 8.2301e−171 6.6005e−169 0.0000e−000
AMS-PSO 1.9292e−207 7.2248e−204 0.0000e−000

f 3

AMS-PSO-gb 9.0000e−000 9.0000e−000 0.0000e−000
AMS-PSO-gw 9.0000e−000 9.0000e−000 0.0000e−000
AMS-PSO-no 9.0000e−000 9.0000e−000 0.0000e−000
AMS-PSO 9.0000e−000 9.0000e−000 0.0000e−000

f 4

AMS-PSO-gb 0.0000e−000 0.0000e−000 0.0000e−000
AMS-PSO-gw 0.0000e−000 0.0000e−000 0.0000e−000
AMS-PSO-no 0.0000e−000 0.0000e−000 0.0000e−000
AMS-PSO 0.0000e−000 0.0000e−000 0.0000e−000

f 5

AMS-PSO-gb 1.3096e−001 1.4483e−001 1.6133e−002
AMS-PSO-gw 1.1633e−001 1.2357e−001 6.3108e−003
AMS-PSO-no 1.4467e−001 1.5742e−001 1.6036e−002
AMS-PSO 7.3165e−003 8.8363e−003 4.8173e−003

f 6

AMS-PSO-gb 2.4631e−013 3.4386e−012 3.5168e−012
AMS-PSO-gw 9.0821e−013 4.5243e−012 6.4578e−012
AMS-PSO-no 4.2772e−012 2.9177e−011 1.7719e−011
AMS-PSO 2.9747e−014 3.8837e−012 3.7115e−012
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To illustrate the convergence process of different AMS-PSOs, Fig. 2 depicts the evolution curves of
PSOs with different update schemes for all the test functions. Taking Fig. 2a for example, the evolution
curves of the four AMS-PSOs decline at almost the same rate during the whole search process, and they
are very close to each other. It is worth noting that the evolution trends for function f 2 are somewhat
similar to Fig. 2a except for obvious differences. Note that an interesting observation comes from
Fig. 2c, all of the convergence curves decrease sharply in the first 50 iterations. After that, they converge
very slowly and flatly until the end of the search. That is to say, all of them get stuck in local optimal
at this point. This shows that the multiple update strategies formulated in this work have a marginal
effect on the optimization performance for function f 3. Similarly, one can see that all the PSOs evolve
very fast on f 5 and f 6 at the early 100 iterations, and subsequently evolve very slowly and flatly without
obvious improvement except for AMS-PSO tested by function f 6. Besides, it can be seen that AMS-
PSO quickly converges to the optimal solution before 200 iterations on f 4. In contrast, AMS-PSO-
no evolves with a slow convergence rate even though it converges to the optimal solution at the end.
Note that the convergence curves of AMS-PSO-gb and AMS-PSO-gw lie between the above two cases,
and AMS-PSO-gw evolves much faster than AMS-PSO-gb. That is, the global best particle plays an
important role in guaranteeing the convergence of PSO.

Figure 2: (Continued)
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Figure 2: Evolution curves of different AMS-PSO variants

5.4 CEC’17 Test Suite
To further illustrate the effect of the proposed AMS-PSO algorithm, experiments are also

conducted on the well-known CEC 2017 test suite [54] that has been widely used by researchers [55–
58]. It includes 30 functions, which can be roughly classified into four groups. Specifically, the first
group involves three unimodal functions (f 1–f 3), in which function f 2 has been excluded here because
it shows unstable behavior especially for higher dimensions. Functions f 4–f 10 belongs to the second
group, and all of them are multimodal functions. The third group comprises ten hybrid functions (f 11–
f 20), and the last group includes ten composition functions (f 21–f 30). Thus the total number of test
functions is twenty-nine. Note that Table 3 lists the name, search range, global optimum, and property
of CEC’17 test functions.

Table 3: Name, search range, global optimum and property of CEC’17 test functions

Func. Name Search range Global optimum Property

f 1 Shifted and rotated bent cigar [−100, 100]D 100 Unimodal
f 3 Shifted and rotated zakharov [−100, 100]D 300 Unimodal
f 4 Shifted and rotated rosenbrock’s [−100, 100]D 400 Multimodal
f 5 Shifted and rotated rastrigin’s [−100, 100]D 500 Multimodal
f 6 Shifted and rotated expanded

scaffer’s F6
[−100, 100]D 600 Multimodal

f 7 Shifted and rotated lunacek
bi_rastrigin

[−100, 100]D 700 Multimodal

f 8 Shifted and rotated
non-continuous rastrigin’s

[−100, 100]D 800 Multimodal

f 9 Shifted and rotated levy [−100, 100]D 900 Multimodal
f 10 Shifted and rotated schwefel’s [−100, 100]D 1000 Multimodal
f 11 Hybrid function 1 (N = 3) [−100, 100]D 1100 Hybrid

(Continued)
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Table 3 (continued)

Func. Name Search range Global optimum Property

f 12 Hybrid function 2 (N = 3) [−100, 100]D 1200 Hybrid
f 13 Hybrid function 3 (N = 3) [−100, 100]D 1300 Hybrid
f 14 Hybrid function 4 (N = 4) [−100, 100]D 1400 Hybrid
f 15 Hybrid function 5 (N = 4) [−100, 100]D 1500 Hybrid
f 16 Hybrid function 6 (N = 4) [−100, 100]D 1600 Hybrid
f 17 Hybrid function 6 (N = 5) [−100, 100]D 1700 Hybrid
f 18 Hybrid function 6 (N = 5) [−100, 100]D 1800 Hybrid
f 19 Hybrid function 6 (N = 5) [−100, 100]D 1900 Hybrid
f 20 Hybrid function 6 (N = 6) [−100, 100]D 2000 Hybrid
f 21 Composition function 1 (N = 3) [−100, 100]D 2100 Composition
f 22 Composition function 2 (N = 3) [−100, 100]D 2200 Composition
f 23 Composition function 3 (N = 4) [−100, 100]D 2300 Composition
f 24 Composition function 4 (N = 4) [−100, 100]D 2400 Composition
f 25 Composition function 5 (N = 5) [−100, 100]D 2500 Composition
f 26 Composition function 6 (N = 5) [−100, 100]D 2600 Composition
f 27 Composition function 7 (N = 6) [−100, 100]D 2700 Composition
f 28 Composition function 8 (N = 6) [−100, 100]D 2800 Composition
f 29 Composition function 9 (N = 3) [−100, 100]D 2900 Composition
f 30 Composition function 10 (N = 3) [−100, 100]D 3000 Composition

To fully demonstrate the advantages of our proposal, AMS-PSO is conducted with dimension
30 and is compared with seven state-of-the-art PSO variants, including MPSO [28], IH-PSO [59],
LIPS [60], CDWPSO [61], EPSO [62], HCLPSO [31] and CLPSO [63]. Among the compared PSOs,
LIPS, EPSO, HCLPSO and CLPSO1 as well as MPSO2 have been reproduced and the experimental
results are used to evaluate their performance. As for IH-PSO and CDWPSO, for the sake of fair
comparison, their experimental results are directly taken from [59,61,64] to be compared because
it is almost impossible to reproduce these two PSO variants exactly as they were in their original
literature, even including the running environment of program. Without loss of generality, the mean
best solution (Mean) and standard deviation (Std.) are utilized to verify the performance, and the best
result in a comparison is emphasized as bold font. Table 4 lists the parameter settings employed in the
experiment. Likewise, the swarm size is 50, each PSO variant is run 30 times on every test function
with 2000 iterations for each run, and the stopping criterion is set as reaching the total number of
iterations.

1https://github.com/P-N-Suganthan/CODES
2https://github.com/lhustl/MPSO

https://github.com/P-N-Suganthan/CODES
https://github.com/lhustl/MPSO
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Table 4: Parameter settings of the compared PSO variants

PSO variant Inertia weight Acceleration coefficients Other parameters

MPSO w: 0.9∼0.4 c1 = c2 = 2 err = 1e−8
LIPS w = 0.7298 c1 = c2 = 2.05 nsize = 3
EPSO / / ε = 0.01, χ = 0.729,

nsize = 3, g1 = 8, g2 = 12
HCLPSO w: 0.99∼0.2 c1 = 2.5∼0.5, c2 = 0.5∼2.5, c = 3∼1.5 K: 3∼1.5, a = 0.05, b = 0.25
CLPSO w: 0.9∼0.4 c1 = 3∼1.5 m = 7, c4_1 = 2.5∼0.5,

c4_2 = 0.5∼2.5, Pc = 0.5
AMS-PSO w: 0.9∼0.4 c1 = 3, c2 = 1; c1 = 1.5, c2 = 2.5;

c1 = 2.5, c2 = 1.5; c1 = c2 = 2
μ = 4, β = 0.5

From the results reported in Table 5, it can be clearly observed that AMS-PSO achieves better
performance than other PSO variants on most of the functions. To be specific, AMS-PSO obtains the
best result on functions f 3, f 5, f 7, f 8, f 11, f 22, f 24, f 25 and f 28 respectively in terms of the mean value. At
the same time, it is worth noting that our proposal obtains the same mean as EPSO, HCLPSO and
CLPSO on functions f 6 and f 25, EPSO and CLPSO on function f 17, MPSO and IH-PSO on function
f 20, HCLPSO on function f 23 and CDWPSO on function f 27, respectively. Particularly, it achieves the
global optimum on f 6. Another interesting observation is that even if AMS-PSO performs slightly
worse than EPSO on f 9 and f 21, CLPSO on f 16 and HCLPSO on f 29 and f 30 according to the mean, it
achieves much better standard deviation on these functions, especially on functions f 9, f 29 and f 30,
it outperforms EPSO and HCLPSO with 1, 1 and 2 orders of magnitude difference. This can be
largely attributed to the high-quality initial particles generated by the logistic map. In addition, note
that AMS-PSO ranks first 14 times, second 9 times, third twice, fourth twice and fifth twice among
the twenty-nine test functions. In contrast, MPSO, IH-PSO, LIPS, CDWPSO, EPSO, HCLPSO and
CLPSO achieve 3, 1, 3, 1, 8, 6 and 5 first-place ranks, respectively. The average rank of AMS-PSO
is 1.93, much lower than that of other PSO variants listed in Table 5. As a result, its overall rank
is the first. In sum, all the experimental results demonstrate that AMS-PSO possesses promising
optimization performance, at least for the functions of CEC’17 test suite employed here.

Table 5: Comparison results of AMS-PSO with other PSO variants

Metric MPSO IH-PSO LIPS CDWPSO EPSO HCLPSO CLPSO AMS-PSO

f 1 Mean 4.63e + 07 5.96e + 09 7.61e + 02 1.46e + 10 3.61e + 03 4.46e + 03 3.63e + 04 2.92e + 03
Std 7.31e + 08 2.94e + 09 7.98e + 02 3.82e + 09 4.41e + 03 5.03e + 03 1.22e + 04 3.16e + 03

f 3 Mean 7.43e + 02 5.28e + 04 6.93e + 04 7.21e + 04 4.83e + 02 5.68e + 03 6.47e + 04 3.55e + 02
Std 2.72e + 02 1.12e + 04 1.88e + 04 3.83e + 03 2.11e + 02 3.44e + 03 1.16e + 04 3.02e + 02

f 4 Mean 5.09e + 02 8.83e + 02 6.04e + 02 3.06e + 03 4.55e + 02 4.83e + 02 5.15e + 02 4.82e + 02
Std 1.30e + 02 4.78e + 02 8.30e + 01 1.14e + 03 3.44e + 01 3.51e + 01 1.15e + 01 1.63e + 01

f 5 Mean 5.67e + 02 6.99e + 02 5.61e + 02 8.38e + 02 5.55e + 02 5.55e + 02 5.96e + 02 5.42e + 02
Std 3.28e + 01 3.18e + 01 1.62e + 01 3.10e + 01 1.61e + 01 1.62e + 01 1.20e + 01 1.15e + 01

f 6 Mean 6.02e + 02 6.46e + 02 6.07e + 02 6.72e + 02 6.00e + 02 6.00e + 02 6.00e + 02 6.00e + 02
Std 8.61e + 00 7.99e + 00 4.31e + 00 9.59e + 00 2.18e−01 1.16e−03 8.90e−03 4.92e−01

f 7 Mean 7.96e + 02 1.09e + 03 7.86e + 02 1.23e + 03 7.82e + 02 7.94e + 02 8.66e + 02 7.70e + 02
Std 2.27e + 01 8.64e + 01 1.66e + 01 4.49e + 01 1.74e + 01 1.81e + 01 1.43e + 01 1.37e + 01

(Continued)
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Table 5 (continued)
Metric MPSO IH-PSO LIPS CDWPSO EPSO HCLPSO CLPSO AMS-PSO

f 8 Mean 9.05e + 02 1.02e + 03 8.63e + 02 1.08e + 03 8.66e + 02 8.58e + 02 9.01e + 02 8.50e + 02
Std 1.71e + 01 3.40e + 01 1.33e + 01 2.37e + 01 1.82e + 01 3.05e + 01 1.03e + 01 1.12e + 01

f 9 Mean 1.28e + 03 5.30e + 03 1.23e + 03 9.19e + 03 9.30e + 02 9.36e + 02 1.31e + 03 9.31e + 02
Std 5.93e + 02 1.47e + 03 2.36e + 02 1.12e + 03 1.14e + 02 6.90e + 01 1.52e + 02 4.78e + 01

f 10 Mean 4.40e + 03 7.58e + 03 3.86e + 03 7.76e + 03 3.88e + 03 3.83e + 03 5.13e + 03 4.11e + 03
Std 6.71e + 02 5.38e + 02 2.63e + 02 5.15e + 02 5.88e + 02 6.83e + 02 2.57e + 02 4.06e + 02

f 11 Mean 1.23e + 03 1.86e + 03 1.26e + 03 4.73e + 03 1.21e + 03 1.18e + 03 1.27e + 03 1.17e + 03
Std 3.69e + 02 1.02e + 03 9.53e + 01 1.08e + 03 3.72e + 01 5.17e + 01 2.98e + 01 3.29e + 01

f 12 Mean 1.23e + 06 2.34e + 08 9.71 + 05 1.32e + 09 5.18e + 04 1.12e + 05 1.88e + 06 1.10e + 05
Std 1.34e + 06 3.98e + 08 1.69e + 06 6.81e + 08 2.91e + 04 8.08e + 04 5.71e + 05 8.91e + 04

f 13 Mean 1.80e + 04 3.19e + 07 4.12e + 03 1.11e + 09 1.62e + 04 8.95e + 03 2.37e + 04 1.85e + 04
Std 5.04e + 04 4.18e + 07 2.61e + 03 6.81e + 08 3.51e + 04 6.56e + 03 1.32e + 04 3.77e + 04

f 14 Mean 3.12e + 03 4.85e + 04 2.62e + 04 1.88e + 06 1.12e + 04 2.63e + 04 3.11e + 04 5.89e + 03
Std 3.06e + 03 4.18e + 04 3.13e + 04 1.42e + 06 1.29e + 04 2.14e + 04 2.29e + 04 5.26e + 03

f 15 Mean 3.30e + 03 9.48e + 03 2.60e + 03 9.89e + 03 3.93e + 03 7.10e + 03 3.33e + 03 5.13e + 03
Std 3.23e + 03 1.02e + 03 1.96e + 03 2.99e + 03 3.13e + 03 6.44e + 03 1.15e + 03 4.08e + 03

f 16 Mean 2.61e + 03 3.23e + 03 2.29e + 03 4.29e + 03 2.30e + 03 2.43e + 03 2.18e + 03 2.19e + 03
Std 3.02e + 02 4.40e + 02 2.27e + 02 3.79e + 02 1.85e + 02 3.52e + 02 1.43e + 02 1.38e + 02

f 17 Mean 2.05e + 03 2.34e + 03 1.93e + 03 2.81e + 03 1.88e + 03 1.94e + 03 1.88e + 03 1.88e + 03
Std 1.93e + 02 2.22e + 02 9.46e + 01 2.60e + 02 8.91e + 01 1.42e + 02 6.62e + 01 4.99e + 01

f 18 Mean 6.00e + 04 8.17e + 05 2.05e + 05 1.46e + 07 1.82e + 05 2.38e + 05 2.55e + 05 2.00e + 05
Std 3.46e + 04 9.74e + 05 3.20e + 05 9.48e + 06 3.19e + 05 1.93e + 05 1.13e + 05 2.31e + 05

f 19 Mean 5.21e + 03 5.82e + 03 3.01e + 03 6.23e + 03 2.91e + 03 5.74e + 03 3.04e + 02 4.78e + 03
Std 2.19e + 03 9.93e + 03 1.53e + 03 4.11e + 03 2.74e + 03 5.52e + 03 1.26e + 03 3.82e + 03

f 20 Mean 2.24e + 03 2.24e + 03 2.46e + 03 2.59e + 03 2.30e + 03 2.27e + 03 2.80e + 03 2.24e + 03
Std 8.31e + 01 5.85e + 01 1.97e + 02 1.94e + 02 2.49e + 02 9.28e + 01 2.03e + 02 4.39e + 01

f 21 Mean 2.37e + 03 2.50e + 03 2.36e + 03 2.61e + 03 2.35e + 03 2.36e + 03 2.39e + 03 2.37e + 03
Std 2.35e + 01 2.44e + 01 1.77e + 01 2.64e + 01 3.98e + 01 1.74e + 01 2.86e + 01 1.52e + 01

f 22 Mean 2.31e + 03 5.43e + 03 2.32e + 03 4.01e + 03 2.31e + 03 2.44e + 03 2.43e + 03 2.29e + 03
Std 8.21e + 02 2.00e + 03 3.03e + 01 7.30e + 02 1.26e + 01 8.03e + 02 9.08e + 01 3.33e + 01

f 23 Mean 2.74e + 03 2.94e + 03 2.75e + 03 3.23e + 03 2.73e + 03 2.72e + 03 2.75e + 03 2.72e + 03
Std 7.50e + 01 6.13e + 01 2.66e + 01 8.49e + 01 2.33e + 01 1.81e + 01 4.26e + 01 1.67e + 01

f 24 Mean 2.89e + 03 3.11e + 03 2.91e + 03 3.45e + 03 2.88e + 03 2.90e + 03 2.92e + 03 2.87e + 03
Std 1.12e + 02 7.85e + 01 2.92e + 01 6.28e + 01 3.82e + 01 2.48e + 01 5.37e + 01 2.12e + 01

f 25 Mean 2.99e + 03 3.47e + 03 2.92e + 03 3.50e + 03 2.89e + 03 2.89e + 03 2.89e + 03 2.89e + 03
Std 2.77e + 01 1.69e + 02 4.13e + 01 1.94e + 02 1.15e + 01 1.33e + 00 1.40e + 00 1.29e + 00

f 26 Mean 4.46e + 03 6.31e + 03 3.72e + 03 8.42e + 03 3.10e + 03 4.04e + 03 3.98e + 03 3.46e + 03
Std 2.48e + 03 4.95e + 02 8.33e + 02 7.27e + 02 6.21e + 02 5.91e + 02 4.31e + 02 3.99e + 02

f 27 Mean 3.24e + 03 3.38e + 03 3.31e + 03 3.20e + 03 3.22e + 03 3.23e + 03 3.22e + 03 3.20e + 03
Std 3.77e + 01 8.14e + 01 2.64e + 01 2.27e−04 8.77e + 00 1.21e + 01 3.85e + 00 2.71e + 00

f 28 Mean 3.33e + 03 4.07e + 03 3.30e + 03 3.30e + 03 3.21e + 03 3.21e + 03 3.25e + 03 3.20e + 03
Std 5.23e + 01 4.56e + 02 8.91e + 01 5.75e−02 4.70e + 01 2.12e + 01 1.05e + 01 1.84e + 01

f 29 Mean 3.60e + 03 4.53e + 03 3.83e + 03 5.38e + 03 3.60e + 03 3.52e + 03 3.53e + 03 3.53e + 03
Std 2.20e + 02 3.74e + 02 1.50e + 02 5.53e + 02 2.94e + 02 3.23e + 02 6.74e + 01 2.90e + 01

f 30 Mean 1.63e + 04 7.66e + 06 1.03e + 05 7.69e + 07 9.81e + 03 8.84e + 03 2.18e + 04 8.86e + 03
Std 8.03e + 03 6.46e + 03 2.00e + 04 2.31e + 07 5.15e + 03 4.22e + 05 4.88e + 07 4.79e + 03

Avg. rank 3.76 6.14 3.48 6.93 2.21 3.03 4.21 1.93
Final rank 5 7 4 8 2 3 6 1
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Fig. 3 illustrates the histogram of mean ranks for AMS-PSO and the compared PSOs mentioned
in this section, which is mainly used to indicate the number of times each PSO has acquired the ranks
in the range of 1 to 8. Our proposal achieves the top ranks compared to other PSO variants, which
further bears out the effect of AMS-PSO for numerical function optimization.

Figure 3: Histogram of the mean rank

In addition, to thoroughly and fairly compare AMS-PSO with other methods, we have validated it
from the perspective of statistical analysis [65,66] by trial and error. To be specific, a pairwise statistical
test named Wilcoxon signed-rank test is conducted between the results of the proposed AMS-PSO
and the results of other PSO variants with the significance level of 5%, which is a non-parametric
test that can be used to check for the statistical significance difference between two algorithms. As
shown in Table 6, the number of test functions showing that AMS-PSO is significantly better than
the compared PSO (Better), almost the same as the compared PSO (Same), and significantly worse
than the compared PSO (Worse), respectively. Note that the “Merit” score is calculated by subtracting
the “worse” score from the “better” score. From Table 6, it can be seen that AMS-PSO has achieved
excellent performance and performed significantly better than the other seven PSOs on the majority
of the test functions.

Table 6: Statistical analysis of Wilcoxon test between AMS-PSO and its competitors

Item MPSO IH-PSO LIPS CDWPSO EPSO HCLPSO CLPSO

Better 19 25 20 25 13 15 18
Same 7 4 5 4 9 11 8
Worse 3 0 4 0 7 3 3
Merit 16 25 16 25 6 12 15

6 Conclusions and Future Work

This paper presents an adaptive multi-updating strategy based particle swarm optimization, which
takes advantage of the chaotic sequence to generate high-quality initial particles to increase the
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stability and accelerate the convergence rate of the PSO, the different update schemes to regulate the
particle search process at different evolution stages, the unequal weightage of acceleration coefficients
to guide the search for the global worst particle, and an auxiliary update strategy for the global best
particle to ensure convergence of the PSO. Conducted experiments demonstrate that the proposed
PSO outperforms several state-of-the-art PSOs in terms of solution accuracy and effectiveness.

As for future work, AMS-PSO will be compared with more competitive PSOs on more complex
functions and in some real-world applications such as image processing, feature selection, optimization
scheduling, and robot path planning, etc. More importantly, we intend to delve deeper into the use of
different update schemes in different scenarios, especially for adequate acceleration coefficients tuning
in a wide range of applications. Last but not the least, we will probe into the relationship between
different acceleration coefficients and convergence of PSO as well as the relationship between stability
and well-distributed initial particles generated by the logistic map from a computational efficiency
perspective.
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